Sähkömagneettiset häiriöt. Mittaustekniikan perusteet / luento 9. Sähkömagneettiset häiriöt. Sähkömagneettiset häiriöt
|
|
- Hannu-Pekka Tuominen
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Mittaustekniikan perusteet / luento 9 Sähkömagneettiset häiriöt Signaali-kohinasuhteen parantaminen Sähkömagneettiset häiriöt Häiriö on ei-toivottu sähköinen signaali, joka voidaan poistaa mittauksista Häiriö voidaan poistaa esim. suojauksella tai suodatuksella Häiriö kytkeytyy usein mittauskohteeseen ulkopuolelta Häiriökysymyksistä myös oma kurssi: S Elektroniikan häiriökysymykset Vertaa: Kohinalla tarkoitetaan elektronisessa järjestelmässä spontaania fluktuaatiota, joka aiheutuu jonkin laitteen, komponentin tai materiaalin fysiikasta Sähkömagneettiset häiriöt Luonnon aiheuttamat kkoshäiriöt 000 V ylittyy vuosittain pienjänniteverkossa Maadoitus on keskeinen torjuntakeino Atmosfäärinen kohina Aurinko Magneettiset myrskyt Kohina Sähkömagneettiset häiriöt Ihmisen aiheuttamat Tarkoituksella säteilevät laitteet Radiot, suurtaajuuskuumentimet etc. Kapeakaistaisia Häiriösäteilijät. Periodiset impulssit, kytkimien häiriöt, hakkurit ym. Laajakaistaisia Sähkönsiirtoverkko (50 Hz)
2 Sähkömagneettiset häiriöt Sähkömagneettiset häiriöt Häiriöiden kytkeytyminen Häiriöiden kytkeytyminen Sähkömagneettisen kentän kytkeytyminen Voidaan ratkaista Maxwellin yhtälöistä Liian monimutkaista käytännön sovelluksiin Yksinkertaistus: lähikenttä (dimensiot < λ) MG-kenttä keskinäisinduktanssi Sähkökenttä keskinäiskapasitanssi sein hyvä approksimaatio, koska valtaosa häiriöistä MHz:n alapuolella (λ > 300 m) Kytkeytyminen johtumalla Suuri-impedanssisessa kentässä sähkökenttä dominoi: kytkeytyminen tapahtuu pääasiassa kapasitiivisesti Pieni-impedanssisessa kentässä magneettikenttä dominoi: kytkeytyminen tapahtuu pääasiassa induktiivisesti Kaukokentässä: E H 377Ω
3 Kapasitiivinen kytkeytyminen Kytkeytymistapoja: Johdinten välillä (mittajohto ja verkkojohdin) Muuntajan käämien välisen kapasitanssin kautta Kytkentä on tyypillisesti ylipäästösuodatin Piirissä tapahtuu jännitteenjako keskinäiskapasitanssin ja piirin impedanssin (osin resistiivinen) välillä Suuret taajuudet kytkeytyvät helposti Labratyössä Verkko: 40V rms MAA Kapasitiivinen kytkeytyminen Lähetin R S Häiritsevä johdin jωc H C C Vastaanotin C L R L h h = πfr C jω L s L R s pieni H h S H ( C + C + C ) + R + R H Induktiivinen kytkeytyminen Virta aiheuttaa ympäristöönsä magneettikentän H Kenttä kytkeytyy mittauspiirin johdinten muodostamaan virtasilmukkaan (mittausjohdot, maajohdot ) Piirin koko pieni suhteessa aallonpituuteen Kytkeytymistä voidaan tarkastella keskinäisinduktanssin L m avulla Häiriöjännite kytkeytyy sarjaan mitattavan jännitteen kanssa Suuret taajuudet kytkeytyvät helposti: =L m di/dt = jωl m I (sin) Labratyössä Induktiivinen kytkeytyminen Häiritsevä johdin Lähetin Vastaanotin Verkko: Pinta-ala A 40V rms MAA R S I H H I H = πr C L R L h h = dφ dt h dh h µ 0 A (A pieni) h = µ 0 A = dt πr di dt
4 Sähkömagneettisen kentän kytkeytyminen Merkittävä radiotaajuuksilla Piirin mitat voivat olla aallonpituuden suuruusluokkaa johdot toimivat vastaanottoantenneina Vaimenee kaukokentässä kääntäen verrannollisena etäisyyteen (kaukokenttä: lähteen etäisyys >> häiriön aallonpituus) Radiomasto r >> λ _ H _ E Häiriytyvä laite Antennivaikutus on voimakas, jos johtimen pituus on aallonpituuden neljäsosan moninkerta Epälineaarisuuksien takia suuritaajuiset kentät voivat häiritä myös tasasähkömittauksia (tasasuuntautuminen) Kolme tapaa torjua häiriöitä. Estetään häiriöiden syntyminen. Katkaistaan häiriöiden etenemistie 3. Parannetaan häiriönsietoa Toimiva maadoitus on ensiarvoisen tärkeä Keinoja (esim.): Johdinten ja piirien järjestely Symmetrointi Suodatus, eri taajuuksien erottelu Modulaation käyttö Analogia-digitaalimuunnos Maadoitus Maadoituksen tehtävät: Tehdä laite turvalliseksi käyttäjälleen Tarjota sama maapotentiaali järjestelmän eri osille Estää laitteiden vaurioituminen vikatilanteissa Muuntamo Suurjänniteverkko maadoituselektrodi Talokeskus L N G Pistorasia vaihejohto 0-johto (neutral) suojamaa L N G ukkosenjohdatin antenniverkko puhelinverkko vesijohtoverkko viemäri talon metallirakenteet Maadoitus Eri maadoitukset: suojamaa ja verkon 0-johdin Verkon 0-johdin (Sininen) on osa virtapiiriä ja tarjoaa paluutien kulutuskojeen virralle Suojamaa (KeVi) on normaalitilanteessa virraton Turvallinen reitti vikavirroille Molemmat on kytketty maapotentiaaliin Signaalimaa = Jännitteen referenssitaso eri laitteille (voi olla kelluva) Suureen arvo on verrannollinen poikkeamaan referenssitasosta Suojamaata käytetään usein signaalimaana Esimerkkejä: mittalaitteet, AV-laitteet... Johtimet epäideaalisia (resistanssia, induktanssia) absoluuttista referenssitasoa ei ole
5 Maadoitus Maadoitus Maadoitustapoja (esim.) (piirielementtien kytkentä referenssipisteeseen) Sarjaankytketty maadoitus (yleensä huonoin vaihtoehto) Rinnankytketty maadoitus (puumaiset verkot) Monipistemaadoitus (suurilla taajuuksilla) Sarjaankytketty Rinnankytketty Maasilmukat Maasilmukka syntyy, kun järjestelmä on kytketty useammasta kuin yhdestä pisteestä maapotentiaaliin Seuraus: maapotentiaali (referenssitaso) järjestelmän eri osissa vaihtelee häiriö Syy: maajohtimien virrat resistanssi (induktanssi) = jännite Mittalaitteiden teholähteet 50 Hz häiriö Suuret silmukat induktiiviset häiriöt Suodattimien ym. synnyttämät kapasitiiviset virrat Eri maiden käyttö referensseinä Kuvat: ABB:n TTT-käsikirja Maadoitus Maadoitus R S Maasilmukoiden katkaisu (esimerkkejä) Eroitusmuuntaja C L R L h Kuristin I maasilmukka Laitekoteloiden välisen maajohdon resistanssi (impedanssi) muuttaa maasilmukassa kiertävän virran laitekoteloiden väliseksi häiriöjännitteeksi Optoerotin Staattinen suoja Kuvat: ABB:n TTT-käsikirja
6 Johdinten ja piirien järjestely Kapasitiivisesti kytkeytyvän häiriön pienentäminen Pienennetään johdinten välistä kapasitanssia Johtimien etäisyys ja suunta Metallikotelointi = sähköstaattinen suojaus Johdinten sijoitus lähelle maatasoa Johdinten ja piirien järjestely Sähköstaattinen suojaus: maadoitettu metallikotelo, -häkki tai -punos, jonka sisällä johto, laite, laitteen osa tai kokonainen huone on (esim. koaksiaalikaapeli) Suojaa kapasitiiviselta kytkeytymiseltä (sekä sähkömagnettiselta kentältä) Esimerkki: muuntajan käämien välinen kapasitiivinen kytkeytyminen voidaan estää käämien välisellä maadoitetulla metallifoliolla (staattinen suoja) Kapasitiivisesti kytkeytyvää häiriötä voidaan pienentää käyttämällä mahdollisimman matalia impedanssitasoja Johdinten ja piirien järjestely Induktiivisesti kytkeytyvän häiriön pienentäminen Pienennetään johdinten välistä induktanssia Vältetään pitkiä yhdensuuntaisia johdotuksia Signaalijohdot ja niihin liittyvät maadoitusjohdot (paluujohdot) vierekkäin Hyvin suojatut kaapelit Kierretyt parikaapelit Symmetrointi Tiivis metallinen laitekotelo Symmetrointi Symmetrisessä kytkennässä Signaali välitetään + ja - kanavien jännite-erona (differential-mode) Vahvistuu erovahvistimessa Häiriö h kytkeytyy (pääosin) samalla tavoin yhteismuotoisena (common-mode) molempiin kanaviin Kumoutuu erovahvistimessa Signaali Epäsymmetrinen kytkentä out=a (+h) Symmetrinen kytkentä out=a ( +- -) Erovahvistin h Häiriö Huom: jännite-ero myös muuntajalla tms. h
7 Symmetrointi Symmetrisen jännitteen vaimennusta kuvataan: CMR, eli yhteismuotoisen jännitteen vaimennus CMRR, eli yhteismuotoisen jännitteen vaimennussuhde Käytännön erovahvistimien vaimennus yhteismuotoiselle jännitteelle ei ole ääretön: CMRR = = A + A A A e y e e y Määritellään: y tai CMR = A y CMR ja CMRR CMR ja CMRR pienenevät taajuuden kasvaessa Riittävän suuri yhteismuotoinen jännite kyllästää piirin Symmetrointi Mikäli mittapiirissä on epäsymmetriaa, muuttuu yhteismoutoinen jännite eromuotoiseksi ja järjestelmän CMRR ja CMR pienenevät Kuvat: Burr-Brown Suodatus Kohinan ja häiriöiden vaikutusta mittaukseen voidaan pienentää kaventamalla taajuuskaistaa Kohinajännitteen tai -virran tehollisarvo riippuu mittauksen kaistanleveydestä. Terminen kohina: Raekohina: Valkoinen kohina yleisesti: u n = 4kTRB I n = Häiriöille kaistanleveysriippuvuus usein voimakkaampi. Häiriö voi olla kokonaan kaistan ulkopuolella Impulssihäiriö: û h ei = A B B dc u n = A B=kaistanleveys B Kohinattoman signaalin tehon P s ja kohinatehon P n suhde: P s SNR = 0log Pn [ db] tai signaalin tehollisarvon V RMS ja kohinan tehollisarvon e n suhde: V RMS SNR = 0log en [ db] Suodatus Muistin virkistykseksi: signaali-kohinasuhde Signaali-kohinasuhdetta laskettaessa sisällytetään kohinaan usein kaikki ei-toivottu signaali - myös häiriöt
8 Suodatus Menetelmiä signaali-kohinasuhteen parantamiseksi: Aktiiviset ja passiiviset suotimet Rajoituksena ajan ja ympäristön vaikutus komponenttiarvoihin. Keskiarvoistus Jaksolliset signaalit, voidaan tehdä digitaalisesti. Korrelaatiotekniikka Jaksolliset signaalit, tehdään digitaalisesti. Vaiheherkkä ilmaisu, lock-in vahvistin Signaalin modulointi Suotimen kaistanleveys ei voi olla signaalin kaistanleveyttä pienempi. Keskiarvoistus Mittaus mahdollista toistaa (tai mitattava ilmiö on luonteeltaan toistuva) signaali-kohinasuhdetta voi parantaa keskiarvoistamalla Esimerkki: Multichannel scaler Muistiavaruus jonne voidaan tallentaa (esim. 3 bit) lukuja Muistipaikkaan tallennetaan pulssien lukumäärä (= laskuri) Aktiivista muistipaikkaa voidaan vaihtaa askelittain tai ulkopuolisella osoituksella (esim. ajan funktiona) Esimerkki signaalista: suuri määrä satunnaisia kohinapulsseja n k joiden joukossa signaalipulsseja n s (n s << n k ) Keskiarvoistus Signaali-kohinasuhde Pulsseja kerätään usean toiston aikana Signaalipulssit kertyvät samoihin muistipaikkoihin jokaisen toiston aikana Kohinapulssit kertyvät kaikkiin muistipaikkoihin Signaalin havaitsemisen kannalta kohinapulssien kokonaismäärällä ei ole merkitystä: signaali-kohinasuhde määräytyy kohinapulssien lukumäärän hajonnasta keskiarvonsa ympärillä Eli: signaali n s t, kohina (n k t) signaali-kohinasuhde paranee t -riippuvasti keskiarvoistusajan funktiona Keskiarvoistus Mössbauerresonanssi Co 57:n lähettämän gammasäteilyn absorptio Fe 57 kalvossa n s = 0. n k = 0.4
9 Keskiarvoistus Kaistanleveys Keskiarvoistettaessa aika t on mittauksen kaistanleveys karkeasti f=/t Vertaa: sinisignaalin keskiarvoistus Signaali-kohinasuhde Kohinan tehotiheys = p k [W/Hz] Signaalin teho = P s Signaali-kohinasuhde = 0log(P s t/p n ) amplitudille saadaan t -riippuus (kuten edellä) Modulointi Häiriöt ja kohina eivät ole jakautuneet tasaisesti eri taajuuksille /f-kohina Suurin osa häiriöistä alle MHz:n taajuuksilla Häiriöiden ja kohinan vuoksi AC-signaalin amplitudin pieni muutos on paljon helpompi mitata, kuin DC-signaalin tason pieni muutos. Tämän vuoksi monissa mittauksissa käytetään moduloituja signaaleja Moduloimalla mittaus siirretään esim. DC:ltä korkeammille taajuuksille Modulointi Lock-in -vahvistin Vaiheherkkä ilmaisu on eräs kokeellisen fysiikan tärkeimmistä mittausmenetelmistä. Lock-in vahvistin siirtää mittauksen suuremmille taajuuksille moduloimalla Kaistanleveys on mahdollista valita hyvin pieneksi. Kaistanleveys voi olla esim. mhz. Signaali-kohinasuhde paranee Häiriöiden vaikutus pienenee Mahdollistaa nv-tasoisten signaalien mittauksen, sekä mittaukset kohinaisissa ympäristöissä.
10 Lock-in -vahvistin Lock-in -vahvistin Miksi käyttää lock-in vahvistinta? Esimerkki: mitataan 0 nv RMS / 0 khz siniaaltoa Vahvistus 000 signaali: nv = 0 µv Tavallinen mittausvahvistin: Kohina 5 nv/ Hz, kaistanleveys 00 khz kohina: nv/ Hz (00 khz) =.6 mv Sama mittausvahvistin + hyvä suodatin: Kaistanleveys 00 Hz kohina: nv/ Hz (00 Hz) = 50 µv Lock-in vahvistin: Kaistanleveys esim. 0 mhz, vahvistus ja kohina kuten ed. kohina: nv/ Hz (0.0 Hz) = 0.5 µv signaali-kohinasuhde: 6 db Oskillaattori Moduloitu valonlähde (LED) Mittaus Vaiheensiirto (viive) φ Sekoitin Alipäästösuodin Anturi (fotodiodi) lostulo Sekoitin (mikseri) Sekoitin muuttaa signaalin taajuuden siten, että signaalin informaatio säilyy Perustapaus: analoginen kertoja sin( ωt) sekoitin sin( ω t + ϕ ) sin( ω t) sin( ω t + ϕ ) = [ cos( ω t ω t ϕ ) cos( ω t + ω t + ϕ )] Sekoitin on epälineaarinen komponentti Digitaalisissa lock-in vahvistimissa signaali näytteistetään ja tulo lasketaan prosessorilla Erotaajuus Summataajuus Lock-in -vahvistimen toiminta Sigaalit: Modulointisignaali ja referenssisignaali samalla taajuudella u = sin( ωt) u = sin( ω t + ϕ ) m m r Näiden tulo kertojalla: Erikoistapaus, koska molemmat samalla taajuudella m r um ur = ( cos( ϕ ) cos(ω t + ϕ) ) Alipäästösuodatus: Poistetaan toinen harmoninen (+ korkeammat harmoniset) m r u m ur = cos( ϕ ) =Vaiheherkän ilmaisun perusyhtälö r Säädettävä vaihe-ero Vaihe-erosta riippuva DC-termi
11 Lock-in -vahvistimen toiminta Lock-in -vahvistimen signaalit Mitä lock-in vahvistin mittaa? Lock-in vahvistin kertoo sisääntulevan signaalin (mahdollisiman) puhtaalla siniaallolla Alipäästösuodatin keskiarvoistaa tuloksen kahden siniaallon tulon keskiarvo on nolla, elleivät signaalit ole tasan samalla taajuudella Eli: lock-in vahvistimen DC-ulostulo on verrannollinen sisääntulevan signaalin siihen komponenttiin, jonka taajuus on sama kuin referenssitaajuus Oskillaattori Moduloitu valonlähde (LED).0 Mittaus Vaiheensiirto (viive) φ 4 Sekoitin Alipäästösuodin Anturi (fotodiodi) 0,5 0,4 0,3 0, 0, 0,0-0, 4 lostulo Aika [s] Aika [s] Aika [s] Aika [s] Lock-in -vahvistimen signaalit Vaiheensiirto (viive) Sekoitin Alipäästösuodin Oskillaattori φ lostulo 0,5 0,4 Moduloitu valonlähde (LED) Mittaus Anturi (fotodiodi) 0,3 0, 0, 0,0-0, DC-signaali Aika [s] Taajuus [Hz] Taajuus [Hz] Taajuus [Hz]
Sähkömagneettiset häiriöt. Mittaustekniikan perusteet / luento 9. Sähkömagneettiset häiriöt. Sähkömagneettiset häiriöt
Mittaustekniikan perusteet / luento 9 Sähkömagneettiset häiriöt Signaali-kohinasuhteen parantaminen Sähkömagneettiset häiriöt Häiriö on ei-toivottu sähköinen signaali, joka voidaan poistaa mittauksista
LisätiedotSähkömagneettiset häiriöt. Sähkömagneettiset häiriöt. Mittaustekniikan perusteet / luento 8
Mittaustekniikan perusteet / luento 8 Signaali-kohinasuhteen parantaminen Häiriökysymyksistä myös oma kurssi: S-108.180 Elektroniikan mittaukset ja häiriökysymykset Häiriö on ei-toivottu sähköinen signaali,
LisätiedotOngelmia mittauksissa Ulkoiset häiriöt
Ongelmia mittauksissa Ulkoiset häiriöt Häiriöt peittävät mitattavia signaaleja Häriölähteitä: Sähköverkko 240 V, 50 Hz Moottorit Kytkimet Releet, muuntajat Virtalähteet Loisteputkivalaisimet Kännykät Radiolähettimet,
LisätiedotS-108.180 Elektroniset mittaukset ja elektroniikan häiriökysymykset. Vanhoja tenttitehtäviä
S-18.18 Elektroniset mittaukset ja elektroniikan häiriökysymykset 1. Vastaa lyhyesti: a) Mitä on kohina (yleisesti)? b) Miten määritellään kohinaluku? c) Miten / missä syntyy raekohinaa? Vanhoja tenttitehtäviä
LisätiedotEMC:n perusteet. EMC:n määritelmä
EMC:n perusteet EMC:n määritelmä Järjestelmän tai laitteen kyky toimia tyydyttävästi sähkömagneettisessa ympäristössään tuottamatta muille laitteille tai järjestelmille niille sietämätöntä häiriötä tässä
LisätiedotKapasitiivinen ja induktiivinen kytkeytyminen
Kapasitiivinen ja induktiivinen kytkeytyminen EMC - Kaapelointi ja kytkeytyminen Kaapelointi merkittävä EMC-ominaisuuksien kannalta yleensä pituudeltaan suurin elektroniikan osa > toimii helposti antennina
LisätiedotS-108.3020 Elektroniikan häiriökysymykset. Laboratoriotyö, kevät 2010
1/7 S-108.3020 Elektroniikan häiriökysymykset Laboratoriotyö, kevät 2010 Häiriöiden kytkeytyminen yhteisen impedanssin kautta lämpötilasäätimessä Viimeksi päivitetty 25.2.2010 / MO 2/7 Johdanto Sähköisiä
LisätiedotHÄIRIÖSUOJAUS KAKSISUUNTAINEN PROSESSI SISÄISET JA ULKOISET HÄIRIÖT
LUENTO 4 HÄIRIÖSUOJAUS KAKSISUUNTAINEN PROSESSI SISÄISET JA ULKOISET HÄIRIÖT HAVAINTOJA ELÄVÄSTÄ ELÄMÄSTÄ HYVÄ HÄIRIÖSUOJAUS ON HARVOIN HALPA JÄRJESTELMÄSSÄ ON PAREMPI ESTÄÄ HÄIRIÖIDEN SYNTYMINEN KUIN
LisätiedotPetri Kärhä 04/02/04. Luento 2: Kohina mittauksissa
Kohinan ominaisuuksia Kohinamekanismit Terminen kohina Raekohina 1/f kohina (Kvantisointikohina) Kohinan käsittely Kohinakaistanleveys Kohinalähteiden yhteisvaikutus Signaali-kohina suhde Kohinaluku Kohinalämpötila
LisätiedotEMC Mittajohtimien maadoitus
EMC Mittajohtimien maadoitus Anssi Ikonen EMC - Mittajohtimien maadoitus Mittajohtimet ja maadoitus maapotentiaalit harvoin samassa jännitteessä => maadoitus molemmissa päissä => maavirta => häiriöjännite
LisätiedotEMC: Electromagnetic Compatibility Sähkömagneettinen yhteensopivuus
EMC: Electromagnetic Compatibility Sähkömagneettinen yhteensopivuus Ympäristön häiriöt Laite toimii suunnitellusti Syntyvät häiriöt Sisäiset häiriöt EMC Directive Article 4 1. Equipment must be constructed
LisätiedotLOPPURAPORTTI 19.11.2007. Lämpötilahälytin. 0278116 Hans Baumgartner xxxxxxx nimi nimi
LOPPURAPORTTI 19.11.2007 Lämpötilahälytin 0278116 Hans Baumgartner xxxxxxx nimi nimi KÄYTETYT MERKINNÄT JA LYHENTEET... 3 JOHDANTO... 4 1. ESISELOSTUS... 5 1.1 Diodi anturina... 5 1.2 Lämpötilan ilmaisu...
LisätiedotFYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto
FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva
LisätiedotMittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014
Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella
LisätiedotKondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan
VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan
LisätiedotElektroniikan perusteet, Radioamatööritutkintokoulutus
Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 30.10.2014 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:
LisätiedotHäiriökysymykset. Häiriöt mittauksissa. Teknillinen korkeakoulu Mittaustekniikan laboratorio. Esa Häkkinen Kim Fallström Atte Haapalinna Petri Kärhä
Teknillinen korkeakoulu Mittaustekniikan laboratorio Espoo 999 Häiriökysymykset Häiriöt mittauksissa Esa Häkkinen Kim Fallström tte Haapalinna Petri Kärhä Kytkin a) b) Kulutuslaite S Maa lmastolliset ylijännitteet
LisätiedotFYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa
FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva
LisätiedotRadioamatöörikurssi 2018
Radioamatöörikurssi 2018 Häiriöt Ukkossuojaus Harhalähetteet 27.11.2018 Tatu, OH2EAT 1 / 15 Esimerkkejä häiriöiden ilmenemisestä Ylimääräinen taustakohina radiovastaanottimessa Muut sähkölaitteet häiriintyvät
LisätiedotKOHINA LÄMPÖKOHINA VIRTAKOHINA. N = Noise ( Kohina )
KOHINA H. Honkanen N = Noise ( Kohina ) LÄMÖKOHINA Johtimessa tai vastuksessa olevien vapaiden elektronien määrä ei ole vakio, vaan se vaihtelee satunnaisesti. Nämä vaihtelut aikaansaavat jännitteen johtimeen
LisätiedotLABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN
LABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN Päivitetty: 23/01/2009 TP 3-1 3. VAIHELUKITTU VAHVISTIN Työn tavoitteet Työn tavoitteena on oppia vaihelukitun vahvistimen toimintaperiaate ja käyttömahdollisuudet
LisätiedotRadioamatöörikurssi 2016
Radioamatöörikurssi 2016 Häiriöt Ukkossuojaus Harhalähetteet 22.11.2016 Tatu, OH2EAT 1 / 16 Häiriöt Ei-toivottu signaali jossain Yleinen ongelma radioamatöörille sekä lähetyksessä että vastaanotossa 2
LisätiedotLABORATORIOTYÖ 1 MITTAUSVAHVISTIMET
Työ 1 Mittausvahvistimet LABORATORIOTYÖ 1 MITTAUSVAHVISTIMET Päivitetty: 5/01/010 TP 1 1 Työ 1 Mittausvahvistimet 1. MITTAUSVAHVISTIMET Työn tarkoitus: Työn tarkoituksena on tutustua operaatiovahvistimen
LisätiedotOngelmia mittauksissa Ulkoiset häiriöt
Ongelmia mittauksissa Ulkoiset häiriöt Häiriöt peittävät mitattavia signaaleja Häriölähteitä: Sähköverkko 240 V, 50 Hz Moottorit Kytkimet Releet, muuntajat Virtalähteet Loisteputkivalaisimet Kännykät Radiolähettimet,
LisätiedotEMC Säteilevä häiriö
EMC Säteilevä häiriö Kaksi päätyyppiä: Eromuotoinen johdinsilmukka (yleensä piirilevyllä) silmulla toimii antennina => säteilevä magneettikenttä Yhteismuotoinen ei-toivottuja jännitehäviöitä kytkennässä
LisätiedotMaadoitus. Maadoitusta tarvitaan kaikissa elektronisissa laitteissa. Maadoitus voi olla muuhun elektroniikkaan nähden yhdistetty eristetty kelluva
Laitesuunnittelu 2007: Maadoitus 1/47 Käsitteitä Maadoitus Maadoitusta tarvitaan kaikissa elektronisissa laitteissa. Maadoitus voi olla muuhun elektroniikkaan nähden yhdistetty eristetty kelluva Maadoitus
LisätiedotS-108.1020 Mittaustekniikan perusteet Y - Tentti
S-108.1020 Mittaustekniikan perusteet Y - Tentti 15.12.06/Kärhä Merkitse vastauspaperiin laboratoriotöiden suoritusvuosi. 1. Ohessa on 12 väittämää antureista. Ovatko väittämät oikein vai väärin? Oikeasta
LisätiedotKäytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely)
Käytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely) ELEC-C5070 Elektroniikkapaja, 21.9.2015 Huom: Kurssissa on myöhemmin erikseen
LisätiedotAnturit ja Arduino. ELEC-A4010 Sähköpaja Tomi Pulli Signaalinkäsittelyn ja akustiikan laitos Mittaustekniikka
Anturit ja Arduino Tomi Pulli Signaalinkäsittelyn ja akustiikan laitos Mittaustekniikka Anturit ja Arduino Luennon sisältö 1. Taustaa 2. Antureiden ominaisuudet 3. AD-muunnos 4. Antureiden lukeminen Arduinolla
Lisätiedot- Kahden suoran johtimen välinen magneettinen vuorovaikutus I 1 I 2 I 1 I 2. F= l (Ampèren laki, MAOL s. 124(119) Ampeerin määritelmä (MAOL s.
7. KSS: Sähkömagnetismi (FOTON 7: PÄÄKOHDAT). MAGNETSM Magneettiset vuoovaikutukset, Magneettikenttä B = magneettivuon tiheys (yksikkö: T = Vs/m ), MAO s. 67, Fm (magneettikenttää kuvaava vektoisuue; itseisavona
LisätiedotLABORATORIOTYÖ 2 A/D-MUUNNOS
LABORATORIOTYÖ 2 A/D-MUUNNOS Päivitetty: 23/01/2009 TP 2-1 2. A/D-muunnos Työn tarkoitus Tässä työssä demotaan A/D-muunnoksen ominaisuuksia ja ongelmia. Tarkoitus on osoittaa käytännössä, miten bittimäärä
LisätiedotHäiriöt kaukokentässä
Häiriöt kaukokentässä eli kun ollaan kaukana antennista Tavoitteet Tuntee keskeiset periaatteet radioteitse tapahtuvan häiriön kytkeytymiseen ja suojaukseen Tunnistaa kauko- ja lähikentän sähkömagneettisessa
LisätiedotEMC Johdanto EMC. Miksi? Elektroniikan käytön voimakas kasvu mobiililaitteet, sulautetut järjestelmät
EMC Johdanto EMC Mitä tarkoittaa EMC? ElectroMagnetic Compatibility Sähköisen laitteen kyky toimia laboratorion ulkopuolella laite ei aiheuta häiriöitä muille lähietäisyydellä oleville laitteille laitteen
LisätiedotS Elektroniset mittaukset ja elektroniikan häiriökysymykset. 2 ov
TKK / Mittaustekniikan laboratorio HUT / Metrology Research Institute S-108.180 Elektroniset mittaukset ja elektroniikan häiriökysymykset 2 ov 7.2.2001 KL kohina.ppt 1 Elektroninen mittaussysteemi MITATTAVA
LisätiedotElektroniikan perusteet, Radioamatööritutkintokoulutus
Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 14.11.2013 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:
LisätiedotS-108.3020. Elektroniikan häiriökysymykset. Laboratoriotyö 1
1/8 S-108.3020 Elektroniikan häiriökysymykset Laboratoriotyö 1 Häiriöiden kytkeytyminen yhteisen impedanssin kautta lämpötilasäätimessä 13.9.2007 TJ 2/8 3/8 Johdanto Sähköisiä häiriöitä on kaikkialla ja
LisätiedotT Sähkömittaustekniikka, osa 2
T140103 Sähkömittaustekniikka, osa 2 Pekka Rantala Kevät 2015 3. Kohina ja häiriöt 1 Kohina Kohina on satunnaismuuttuja, joka voidaan määritellä ainoastaan tilastollisesti. Kohinan käyttäytymistä ei voida
LisätiedotSÄHKÖMAGNEETTINEN KYTKEYTYMINEN
SÄHKÖMAGNEETTINEN KYTKEYTYMINEN H. Honkanen SÄHKÖMAGNEETTISEN KYTKEYTYMISEN TEORIAA Sähkömagneettinen kytkeytyminen on häiiöiden siitymistä sähkömagneettisen aaltoliikkeen välityksellä. Sähkömagneettisen
LisätiedotLABORATORIOTYÖ 2 A/D-MUUNNOS
LABORATORIOTYÖ 2 A/D-MUUNNOS 2-1 2. A/D-muunnos Työn tarkoitus Tässä työssä demotaan A/D-muunnoksen ominaisuuksia ja ongelmia. Tarkoitus on osoittaa käytännössä, miten bittimäärä ja näytteenottotaajuus
LisätiedotRG-58U 4,5 db/30m. Spektrianalysaattori. 0,5m. 60m
1. Johtuvia häiiöitä mitataan LISN:n avulla EN55022-standadin mukaisessa johtuvan häiiön mittauksessa. a. 20 MHz taajuudella laite tuottaa 1.5 mv suuuista häiiösignaalia. Läpäiseekö laite standadin B-luokan
LisätiedotKojemeteorologia. Sami Haapanala syksy 2013. Fysiikan laitos, Ilmakehätieteiden osasto
Kojemeteorologia Sami Haapanala syksy 2013 Fysiikan laitos, Ilmakehätieteiden osasto Datan käsittely ja tallentaminen Käytännössä kaikkien mittalaitteiden ensisijainen signaali on analoginen Jotta tämä
LisätiedotMITTALAITTEIDEN OMINAISUUKSIA ja RAJOITUKSIA
KAJAANIN AMMATTIKORKEAKOL Tekniikan ja liikenteen ala TYÖ 21 ELEKTRONIIKAN LABORAATIOT H.Honkanen MITTALAITTEIDEN OMINAISKSIA ja RAJOITKSIA TYÖN TAVOITE: Tässä laboratoriotyössä tutustumme mittalaitteiden
Lisätiedot2003 Eero Alkkiomäki (OH6GMT) 2009 Tiiti Kellomäki (OH3HNY)
Häiriöt ja mittaaminen 2003 Eero Alkkiomäki (OH6GMT) 2009 Tiiti Kellomäki (OH3HNY) Häiriötyypit sähkömagneettisesti kytkeytyvät puutteellinen kotelointi huonot liitokset puutteelliset suodatukset kapasitiivisesti
Lisätiedotd) Jos edellä oleva pari vie 10 V:n signaalia 12 bitin siirtojärjestelmässä, niin aiheutuuko edellä olevissa tapauksissa virheitä?
-08.300 Elektroniikan häiriökysymykset Kevät 006 askari 3. Kierrettyyn pariin kytkeytyvä häiriöjännite uojaamaton yksivaihejohdin, virta I, kulkee yhdensuuntaisesti etäisyydellä r instrumentointikaapelin
LisätiedotTiedonkeruu ja analysointi
Tiedonkeruu ja analysointi ViDRoM Virtual Design of Rotating Machines Raine Viitala 30.9.2015 ViDRoM Virtual Design of Rotating Machines Mitataan dynaamista käyttäytymistä -> nopeuden funktiona Puhtaat
LisätiedotFYSP105 / K3 RC-SUODATTIMET
FYSP105 / K3 R-SODATTIMET Työn tavoitteita tutustua R-suodattimien toimintaan oppia mitoittamaan tutkittava kytkentä laiterajoitusten mukaisesti kerrata oskilloskoopin käyttöä vaihtosähkömittauksissa Työssä
LisätiedotAnalogiapiirit III. Tentti 15.1.1999
Oulun yliopisto Elektroniikan laboratorio nalogiapiirit III Tentti 15.1.1999 1. Piirrä MOS-differentiaalipari ja johda lauseke differentiaaliselle lähtövirralle käyttäen MOS-transistorin virtayhtälöä (huom.
LisätiedotVahvistimet. Käytetään kvantisointi alue mahdollisimman tehokkaasti Ei anneta signaalin leikkautua. Mittaustekniikka
Vahvistimet Vahvistaa pienen jännitteen tai virran suuremmaksi Vahvistusta voidaan tarvita monessa kohtaa mittausketjua (lähetys- ja vastaanottopuolella) Vahvistuksen valinta Käytetään kvantisointi alue
LisätiedotS-108.1010 Mittaustekniikan perusteet A Tentti
S-108.1010 Mittaustekniikan perusteet A Tentti 15.12.06 / Kärhä Tehtävät 1-2 käsittelevät luentoja ja ne hyvitetään vuoden 2006 luentokuulustelupisteiden perusteella. Tehtävät 3-5 käsittelevät laboratoriotöitä
LisätiedotSähköstatiikka ja magnetismi Sähkömagneetinen induktio
Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Antti Haarto.05.013 Magneettivuo Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alavektorin A pistetulo Φ B A BAcosθ missä θ on
LisätiedotRadioamatöörikurssi 2015
Radioamatöörikurssi 2015 Polyteknikkojen Radiokerho Putket, häiriöt 17.11.2015 Tatu, OH2EAT 1 / 19 Putket Ensimmäisiä vahvistinkomponentteja, ei juuri käytetä enää nykyään Edelleen käytössä mm. suuritehoisissa
LisätiedotTiedonkeruu ja analysointi
Tiedonkeruu ja analysointi ViDRoM Virtual Design of Rotating Machines Raine Viitala ViDRoM Virtual Design of Rotating Machines Mitataan dynaamista käyttäytymistä -> nopeuden funktiona Puhtaat laakerit,
LisätiedotLABORAATIO 1, YLEISMITTARI JA PERUSMITTAUKSET
KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala VAHVAVIRTATEKNIIKAN LABORAATIOT H.Honkanen LABORAATIO 1, YLEISMITTARI JA PERUSMITTAUKSET YLEISTÄ YLEISMITTARIN OMINAISUUKSISTA: Tässä laboratoriotyössä
LisätiedotRadiotekniikan perusteet BL50A0301
Radiotekniikan perusteet BL50A0301 1. Luento Kurssin sisältö ja tavoitteet, sähkömagneettinen aalto Opetusjärjestelyt Luentoja 12h, laskuharjoituksia 12h, 1. periodi Luennot Juhamatti Korhonen Harjoitukset
LisätiedotR = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1
Fysiikan mittausmenetelmät I syksy 206 Laskuharjoitus 4. Merkitään kaapelin resistanssin ja kuormaksi kytketyn piirin sisäänmenoimpedanssia summana R 000.2 Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen
LisätiedotM2A.1000. Suomenkielinen käyttöohje. www.macrom.it
M2A.000 Suomenkielinen käyttöohje www.macrom.it Vahvistimen säätimet ja liitännät 2 3 4 5 6 7 8 9 0 2 3 4 5 6 7 8 2 Ω 2 3 4 5 6 7 8 9 0 2 3 4 5 7 6 8 RCA-tuloliitäntä matalatasoiselle signaalille Kaiutintasoinen
Lisätiedot4. SÄHKÖMAGNEETTINEN INDUKTIO
4. SÄHKÖMAGNEETTINEN INDUKTIO Magneettivuo Magneettivuo Φ määritellään vastaavalla tavalla kuin sähkövuo Ψ Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alan A pistetulo Φ= B A= BAcosθ
LisätiedotSMG-5250 Sähkömagneettinen yhteensopivuus, EMC
TAMPEREEN TEKNILLINEN YLIOPISTO Elektroniikan laitos Sähkömagnetiikka SMG-5250 Sähkömagneettinen yhteensopivuus, EMC Kevät 2009 Kurssimateriaali Jukka-Pekka Uusitalo (Pieni päivitys, 29.01.09 J. Kangas)
LisätiedotRadioamatöörikurssi 2014
Radioamatöörikurssi 2014 Polyteknikkojen Radiokerho Radiotekniikka 4.11.2014 Tatu, OH2EAT 1 / 25 Vahvistimet Vahvistin ottaa signaalin sisään ja antaa sen ulos suurempitehoisena Tehovahvistus, db Jännitevahvistus
LisätiedotM2A.2000. Suomenkielinen käyttöohje. www.macrom.it
M2A.2000 Suomenkielinen käyttöohje www.macrom.it Vahvistimen säätimet ja liitännät 2 3 5 6 7 8 9 0 2 3 5 6 7 8 9 2 3 5 6 7 8 9 0 2 3 5 6 7 8 9 RCA-tuloliitäntä matalatasoiselle signaalille High Level -kaiutintasoinen
LisätiedotVIRTAPIIRILASKUT II Tarkastellaan sinimuotoista vaihtojännitettä ja vaihtovirtaa;
VITAPIIIASKUT II Tarkastellaan sinimutista vaihtjännitettä ja vaihtvirtaa; u sin π ft ja i sin π ft sekä vaihtvirtapiiriä, jssa n sarjaan kytkettyinä vastus, käämi ja kndensaattri (-piiri) ulkisen vastuksen
LisätiedotSignaalit ja järjestelmät aika- ja taajuusalueissa
Signaalit ja järjestelmät aika- ja taajuusalueissa Signaalit aika ja taajuusalueissa Muunnokset aika ja taajuusalueiden välillä Fourier sarja (jaksollinen signaali) Fourier muunnos (jaksoton signaali)
Lisätiedot1 Määrittele seuraavat langattoman tiedonsiirron käsitteet.
1 1 Määrittele seuraavat langattoman tiedonsiirron käsitteet. Radiosignaalin häipyminen. Adaptiivinen antenni. Piilossa oleva pääte. Radiosignaali voi edetä lähettäjältä vastanottajalle (jotka molemmat
LisätiedotSpektri- ja signaalianalysaattorit
Spektri- ja signaalianalysaattorit Pyyhkäisevät spektrianalysaattorit Suora pyyhkäisevä Superheterodyne Reaaliaika-analysaattorit Suora analoginen analysaattori FFT-spektrianalysaattori DFT FFT Analysaattoreiden
LisätiedotRATKAISUT: 22. Vaihtovirtapiiri ja resonanssi
Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa
LisätiedotSupply jännite: Ei kuormaa Tuuletin Vastus Molemmat DC AC Taajuus/taajuudet
S-108.3020 Elektroniikan häiriökysymykset 1/5 Ryhmän nro: Nimet/op.nro: Tarvittavat mittalaitteet: - Oskilloskooppi - Yleismittari, 2 kpl - Ohjaus- ja etäyksiköt Huom. Arvot mitataan pääasiassa lämmityksen
LisätiedotKondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan. cos sin.
VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan
LisätiedotSISÄVERKKOMÄÄRÄYS 65 A/2014 M ASETTAA VAATIMUKSIA ANTENNIURAKOINNILLE
SISÄVERKKOMÄÄRÄYS 65 A/2014 M ASETTAA VAATIMUKSIA ANTENNIURAKOINNILLE Toiminnanjohtaja Tauno Hovatta www.sant.fi Antenniasennukset kiinteistössä Sisältö: Määräys 65 A asettaa vaatimuksia antennien ja verkkojen
LisätiedotJohtuvat häiriöt. eli galvaanisesti kytkeytyvät häiriöt
Johtuvat häiriöt eli galvaanisesti kytkeytyvät häiriöt Tavoitteet Osaa selittää johtuvan häiriön synnyn ja kytkeytymismekanismin Tuntee maadoitukseen liittyviä keskeisiä käytäntöjä Tunnistaa yhteis-ja
LisätiedotEsimerkki 1a. Stubisovituksen (= siirtokaapelisovitus) laskeminen Smithin kartan avulla
Esimerkkejä Smithin kartan soveltamisesta Materiaali liittyy OH3AB:llä keväällä 2007 käytyihin tekniikkamietintöihin. 1.5.2007 oh3htu Esimerkit on tehty käyttäen Smith v 1.91 demo-ohjelmaa. http://www.janson-soft.de/seminare/dh7uaf/smith_v191.zip
LisätiedotRadioastronomian käsitteitä
Radioastronomian käsitteitä allonpituusalue ~ 100 m - 1 mm MHz 300 GHz Leveä aallonpituusalue: erilaisia antenneja, monenlaista tekniikkaa Ei (suoraan) kuvia Signaali yleensä
LisätiedotRadiokurssi. Modulaatiot, arkkitehtuurit, modulaattorit, ilmaisimet ja muut
Radiokurssi Modulaatiot, arkkitehtuurit, modulaattorit, ilmaisimet ja muut Modulaatiot CW/OOK Continous Wave AM Amplitude Modulation FM Frequency Modulation SSB Single Side Band PM Phase Modulation ASK
LisätiedotPinces AC/DC-virtapihti ampèremetriques pour courant AC
MH-SARJA MH60-virtapihti on suunniteltu mittaamaan DC ja AC-virtoja jopa 1 MHz:n kaistanleveydellä, käyttäen kaksoislineaarista Hall-ilmiötä/ Muuntajateknologiaa. Pihti sisältää ladattavan NiMh-akun, jonka
LisätiedotOperaatiovahvistimen vahvistus voidaan säätää halutun suuruiseksi käyttämällä takaisinkytkentävastusta.
TYÖ 11. Operaatiovahvistin Operaatiovahvistin on mikropiiri ( koostuu useista transistoreista, vastuksista ja kondensaattoreista juotettuna pienelle piipalaselle ), jota voidaan käyttää useisiin eri kytkentöihin.
LisätiedotSignaalien datamuunnokset
Signaalien datamuunnokset Datamuunnosten teoriaa Muunnosten taustaa Muunnosten teoriaa Muunnosten rajoituksia ja ongelmia Petri Kärhä 06/02/2004 Luento 4a: Signaalien datamuunnokset 1 Digitaalitekniikan
LisätiedotLuento 8. Suodattimien käyttötarkoitus
Luento 8 Lineaarinen suodatus Ideaaliset alipäästö, ylipäästö ja kaistanpäästösuodattimet Käytännölliset suodattimet 8..006 Suodattimien käyttötarkoitus Signaalikaistan ulkopuolisen kohinan ja häiriöiden
LisätiedotELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen.
ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. X.X.2015 Tehtävä 1 Bipolaaritransistoria käytetään alla olevan kuvan mukaisessa kytkennässä, jossa V CC = 40 V ja kuormavastus
LisätiedotAnalogiapiirit III. Keskiviikko 4.12.2002, klo. 12.15-14.00, TS128. Operaatiovahvistinrakenteet
Oulun yliopisto Sähkötekniikan osasto Analogiapiirit III Harjoitus 2. Keskiviikko 4.12.2002, klo. 12.15-14.00, TS128. Operaatiovahvistinrakenteet 1. Analysoi kuvan 1 operaatiotranskonduktanssivahvistimen
LisätiedotRadioamatöörikurssi 2013
Radioamatöörikurssi 2013 Polyteknikkojen Radiokerho Radiotekniikka 21.11.2013 Tatu, OH2EAT 1 / 19 Vahvistimet Vahvistin ottaa signaalin sisään ja antaa sen ulos suurempitehoisena Tehovahvistus, db Jännitevahvistus
Lisätiedot1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla
PERMITTIIVISYYS Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä. Siirretään varausta levystä toiseen, jolloin levyissä on varaukset +Q ja Q ja levyjen
LisätiedotELEKTRONISET TOIMINNOT
LUENTO 2 ALUKSI OLI... EHKÄ MIELENKIINTOISIN SUUNNITTELIJAN TEHTÄVÄ ON TOTEUTTAA LAITE (JA EHKÄ MENETELMÄKIN) JONKIN ONGELMAN RATKAISEMISEEN PUHTAALTA PÖYDÄLTÄ EI (AINAKAAN SAMALLA PERIAATTEELLA) VALMIITA
LisätiedotHarmonisten yliaaltojen vaikutus johtojen mitoitukseen
Harmonisten yliaaltojen vaikutus johtojen mitoitukseen Pienjännitesähköasennukset standardin osassa SFS6000-5-5 esitetään johtojen mitoitusperusteet johtimien ja kaapelien kuormitettavuudelle. Lähtökohtana
LisätiedotLaitteita - Yleismittari
Laitteita - Yleismittari Yleistyökalu mittauksissa Yleensä digitaalisia Mittaustoimintoja Jännite (AC ja DC) Virta (AC ja DC) Vastus Diodi Lämpötila Transistori Kapasitanssi Induktanssi Taajuus 1 Yleismittarin
Lisätiedot20 Kollektorivirta kun V 1 = 15V 10. 21 Transistorin virtavahvistus 10. 22 Transistorin ominaiskayrasto 10. 23 Toimintasuora ja -piste 10
Sisältö 1 Johda kytkennälle Theveninin ekvivalentti 2 2 Simuloinnin ja laskennan vertailu 4 3 V CE ja V BE simulointituloksista 4 4 DC Sweep kuva 4 5 R 2 arvon etsintä 5 6 Simuloitu V C arvo 5 7 Toimintapiste
LisätiedotSÄHKÖSTATIIKKA JA MAGNETISMI. NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013
SÄHKÖSTATIIKKA JA MAGNETISMI NTIETS12 Tasasähköpiirit Jussi Hurri syksy 2013 1. RESISTANSSI Resistanssi kuvaa komponentin tms. kykyä vastustaa sähkövirran kulkua Johtimen tai komponentin jännite on verrannollinen
Lisätiedota) I f I d Eri kohinavirtakomponentit vahvistimen otossa (esim. http://www.osioptoelectronics.com/)
a) C C p e n sn V out p d jn sh C j i n V out Käytetyt symbolit & vakiot: P = valoteho [W], λ = valodiodin ilmaisuvaste eli responsiviteetti [A/W] d = pimeävirta [A] B = kohinakaistanleveys [Hz] T = lämpötila
LisätiedotRadioamatöörikurssi 2014
Radioamatöörikurssi 2014 Polyteknikkojen Radiokerho Putket, häiriöt, sähköturvallisuus 13.11.2014 Tatu, OH2EAT 1 / 18 Putket Ensimmäisiä vahvistinkomponentteja, ei juuri käytetä enää nykyään Edelleen käytössä
LisätiedotSMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas Tampereen teknillinen yliopisto Elektroniikan laitos
SMG-5250 Sähkömagneettinen yhteensopivuus (EMC) Jari Kangas jari.kangas@tut.fi Tampereen teknillinen yliopisto Elektroniikan laitos Sähkömagnetiikka 2009 1 Ei-ideaaliset piirikomponentit Tarkastellaan
LisätiedotSignaalien datamuunnokset. Digitaalitekniikan edut
Signaalien datamuunnokset Datamuunnosten teoriaa Muunnosten taustaa Muunnosten teoriaa Muunnosten rajoituksia ja ongelmia Petri Kärhä 09/02/2009 Signaalien datamuunnokset 1 Digitaalitekniikan edut Tarkoituksena
LisätiedotSähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon
30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten
LisätiedotRadioamatöörikurssi 2015
Radioamatöörikurssi 2015 Polyteknikkojen Radiokerho Radiotekniikka 5.11.2015 Tatu Peltola, OH2EAT 1 / 25 Vahvistimet Vahvistin ottaa signaalin sisään ja antaa sen ulos suurempitehoisena Tehovahvistus,
Lisätiedot1 Olkoon suodattimen vaatimusmäärittely seuraava:
Olkoon suodattimen vaatimusmäärittely seuraava: Päästökaistan maksimipoikkeama δ p =.5. Estokaistan maksimipoikkeama δ s =.. Päästökaistan rajataajuus pb = 5 Hz. Estokaistan rajataajuudet sb = 95 Hz Näytetaajuus
LisätiedotVAIHTOVIRTAPIIRI. 1 Työn tavoitteet
Oulun yliopisto Fysiikan opetuslaboratorio Sähkö- ja magnetismiopin laboratoriotyöt AHTOTAP Työn tavoitteet aihtovirran ja jännitteen suunta vaihtelee ajan funktiona. Esimerkiksi Suomessa käytettävä verkkovirta
Lisätiedot521124S Anturit ja mittausmenetelmät (5 op/3 ov) Koe 27.1.2006
521124S Anturit ja mittausmenetelmät (5 op/3 ov) Koe 27.1.2006 1. Reluktiivisia differentiaalimuuntimia (LVDT ja RVDT) käytetään siirtymän mittauksessa. Esitä molempien toimintaperiaate ja tyypillisiä
LisätiedotIMPEDANSSIMITTAUKSIA. 1 Työn tavoitteet
1 IMPEDANSSIMITTAUKSIA 1 Työn tavoitteet Tässä työssä tutustut vaihtojännitteiden ja virtojen sekä vaihtovirtapiirissä olevien komponenttien impedanssien suuruuksien eli vaihtovirtavastusten mittaamiseen.
LisätiedotJohdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Johdatus vaihtosähköön, sinimuotoiset suureet 1 Vaihtovirta vs tasavirta Sähkömagneettinen induktio tuottaa kaikissa pyörivissä generaattoreissa vaihtojännitettä. Vaihtosähköä on
LisätiedotPientaajuisten kenttien lähteitä teollisuudessa
Pientaajuisten kenttien lähteitä teollisuudessa Sähkö- ja magneettikentät työpaikoilla -seminaari, Pori 11.10.2006 Sami Kännälä, STUK RADIATION AND NUCLEAR SAFETY AUTHORITY TYÖNANTAJAN VELVOITTEET EU:N
LisätiedotRadioamatöörikurssi 2018
Radioamatöörikurssi 2018 Radioiden toimintaperiaatteet ja lohkokaaviot 20.11.2018 Tatu Peltola, OH2EAT 1 / 13 Sisältö Lähettimien ja vastaanottimien rakenne eri modulaatiolla Superheterodyne-periaate Välitaajuus
LisätiedotLABORATORIOTYÖ 2 SPEKTRIANALYSAATTORI
LABORATORIOTYÖ 2 SPEKTRIANALYSAATTORI Päivitetty: 25/02/2004 MV 2-1 2. SPEKTRIANALYSAATTORI Työn tarkoitus: Työn tarkoituksena on tutustua spektrianalysaattorin käyttöön, sekä oppia tuntemaan erilaisten
LisätiedotLähettimet ja vastaanottimet
Aiheitamme tänään Lähettimet ja vastaanottimet OH3TR:n radioamatöörikurssi Kaiken perusta: värähtelijä eli oskillaattori Vastaanottimet: värähtelijän avulla alas radiotaajuudelta eri lähetelajeille sama
Lisätiedot