S Mittaustekniikan perusteet A. Esiselostustehtävät Erityisesti huomioitava
|
|
- Annika Nurmi
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 S Mittaustekniikan perusteet A Esiselostustehtävät 2006 Ryhmän tulee merkitä vastauspaperiin työn numero, ryhmän numero, työn päivämäärä ja ryhmän jäsenten nimet. Vastaukset on kirjoitettava siististi paperille, joka palautetaan assistentille. Ryhmän kannattaa kopioida vastauksensa ennen niiden luovutusta assistentille, sillä tehtäviä kannattaa kertailla töistäpääsykuulustelua varten. Erityisesti huomioitava Oskilloskoopin ja ja muiden laitteiden käyttö Koska oskilloskoopin runko on maadoitettu, on tarkistettava, että oskilloskoopin mittajohdon suojavaippa kytketään mitattavan piirin maahan, (eikä minnekään muualle) jotta ei aiheutettaisi mitattavaan piiriin oikosulkua. Samoin signaaligeneraattorin maa kytketään piirin maahan. Muut älä peitä papereilla tai muilla tavaroilla laitteita, joiden tuuletus saattaa tästä heikentyä ilmoita viallisista laitteista assistenteille pienikin jännite rikkoo väärin kytkettynä elektroniikkapiirit Työ 0: Kaksisädeoskilloskoopin käyttö Työn 0 esiselkkarit ovat raskaammasta päästä, kun verrataan loppuihin töihin, joten älä masennu, jos ensimmäiseen esiselkkariin menee paljon aikaa. Työssä 0, kuten monessa muussakin työssä, joudut soveltamaan piirianalyysi 1:ssä opittuja taitoja. 1. Tulet laboratorioon suorittamaan oskilloskooppityötä ja edellinen työryhmä on jättänyt skoopin tilaan, jossa sädettä ei näy ollenkaan, vaikka virta on kytketty. Mitä säätimiä käyttäisit säteen (=kuvan) esillesaamiseksi? Mainitse korkeintaan 5 säädintä ja niiden käyttötarkoitus. 2. Oskilloskoopissa on ottoliittimen vieressä merkintä 1 MΩ, 15 pf. Kytket 1:10 vaimentavan mittapään 1,5 m pituisella suojatulla johdolla skooppiin. Johdon kapasitanssi on 80 pf/m. Mitä ovat mittapään vastuksen ja kondensaattorin arvojen oltava, jotta askelvaste olisi mahdollisimman hyvä? Mikä on skoopin ja 1,5 m pitkän johdon muodostama impedanssi 5 khz ja 15 MHz taajuuksilla? Entä mikä on impedanssi mitattaessa em. mittapään kanssa? Miksi tulisi käyttää mittapäätä? 3. Mittaat 1,0 µf:n kondensaattorin ja 1,0 Mohm:n vastuksen muodostaman sarjaankytkennän kondensaattorin latautumisen aikavakiota oskilloskoopilla. Laske teoreettinen aikavakio. Kytket 10 V:n tasajännitteen kytkennän yli. Mihin arvoon kondensaattorin yli oleva jännite nousee, jos mittaat 1 mittapään avulla 2 ilman mittapäätä? Miten perustelisit mittapään käytön? 4. Laske RC-alipäästösuodattimen (kuva 1) kompleksinen vaste (=U out /U in ) taajuuksilla 1 khz, 10 khz, 100 khz ja 1 MHz.
2 R U in 1 kω C 1 nf U out Kuva 1 Käytä polaarikoordinaatteja, esim. 0,71 + j0,71 pitää ilmoittaa 1 /45. Mikä on piirin -3 db:n rajataajuus? Kuinka monta prosenttia rajataajuus muuttuu, jos mittaat piiristä jännitettä kondensaattorin yli edellisen tehtävän skoopilla ilman mittapäätä? Vihje: Saat tuloksen riittävällä tarkkuudella, jos huomioit vain kaapelin ja oskilloskoopin kapasitanssin. Oskilloskoopin resistanssi muutetaan siis äärettömäksi. 5. Rakentamassasi 15 V:n jännittelähteessä on puoliaaltotasasuuntauksesta johtuvaa verkkotaajuista värähtelyä, rippeliä. Mittaat tämän muutamien kymmenien millivolttien suuruusluokkaa olevan rippelin suuruuden oskilloskoopin avulla. Selitä oleellisimmat asetukset, jotta saat rippelin suuruuden mitattua mahdollisimman tarkasti. Jos rippeli on 30 mv:a, ja käytät operaatiovahvistinta, jonka vaimennus käyttöjännitteessä olevia vaihteluita vastaan on 100 db, niin kuinka suurena jännitevaihteluna rippeli näkyy operaatiovahvistimen annossa? Työ 1: Yleismittarin käyttäminen 2,5 V T -2,5V Kuva 2 1. Laske kuvan 2 signaalien tasasuunnatut keskiarvot ja tehollisarvot. Mitä Metex ja Fluke näyttävät mitattaessa oheisia signaaleja? 2. Miksei nelipistemittauksessa virtalähteen ja mitattavan vastuksen R välissä olevilla vastuksilla R1 ja R2 ole vaikutusta resistanssin R mittaustulokseen (kuva 3)? R1 R3 R2 R R4 V Kuva 3 Onko jännitemittarin (V) ja mitattavan vastuksen R välissä olevilla johdinvastuksilla R3 ja R4 ( < 1 Ω ) vaikutusta mittaustulokseen? Volttimittarin sisäinen vastus on 10 MΩ.
3 3. Haluat mitata kuvan 4 mukaisen piirin vastuksen R1 resistanssin. Käytössäsi on sekä virta- että jännitemittari. Kuva 4 Piirrä kaaviot mittausjärjestelystä sekä esitä kaavat vastuksen laskemiseksi mittaustuloksista. Voit kytkeä käytössäsi olevat laitteet solmuihin N1, N2, N3 ja N4. 4. Epäilet käytettävän yleismittarin jännitemittausasennossa kuormittavan mitattavaa piiriä. Päätät mitata yleismittarin sisäänmenoresistanssin voidaksesi varmistua asiasta. Helposti saatavilla on paristo ja 4,7 Mohmin vastus. Miten mittaat mittarin sisäänmenoresistanssin näiden avulla? Piirrä kuva. Jos pariston mitattu napajännite on 1,50 V ja vastuksen kanssa mitattuna 0,22 V niin paljonko on mittarin sisäänmenoresistanssi? Työ 2: Spektrin mittaaminen 1. Laske alla olevan kuvan 5 signaalista sen perustaajuisen sinikomponentin ( ω o ) amplitudi. Laske amplitudit myös DC-komponentille sekä harmonisille sinikomponenteille taajuuksilla 2ω o, 3ω o, 4ω o ja 5ω o. Laskut näkyviin. 2 V U 0 V t 1 µ s Kuva 5 2. Hahmottele tai selitä, miltä yllä oleva signaali (kuva 5) näyttää, jos: a) se suodatetaan ideaalisella alipäästösuodattimella, jonka rajataajuus on 1.5MHz. b) se suodatetaan ideaalisella ylipäästösuodattimella, jonka rajatuujuus on 0.5MHz. c) se suodatetaan ideaalisella ylipäästösuodattimella, jonka rajataajuus on 1.5MHz. 3. a) Laske 2 MΩ:n vastuksen lämpökohinajännite, kun kaista on 10 MHz, T = 373K. b) Laske raekohinavirta, kun diodin virta on 40 ma ja kaista on 200 khz.
4 4. Haluat erottaa toisistaan 1 MHz:n välein olevat taajuuskomponentit. Taajuuspyyhkäisy kattaa 10 MHz:n kaistan. Kuinka kauan tulee yhden pyyhkäisyn vähintään kestää? 5. Mitä tarkoitetaan signaalin säröytymisellä? Anna yksi käytännön esimerkki, missä tilanteessa sinisignaali säröytyy. Työ 3: Taajuuslaskuri 1. Mitattava signaalitaajuus on 1 MHz ja mittausaika 100 ms. Mikä on mittauksen suhteellinen erottelukyky? 2. Mittaat taajuutta mittarilla, jonka kellotaajuus on 1 MHz ja suurin mittausaika 10 sekuntia. Mikä on rajataajuus, jonka toisella puolella kannattaa käyttää periodimittausta ja toisella puolella suoraa mittausta? Mittauksessa ei ole mahdollista keskiarvoistaa useampaa pulssia (n=1). Ilmoita myös, kummalla puolella tätä taajuutta kannattaa käyttää mitäkin menetelmää. 3. Mikä periaatteellinen ero on suorassa taajuusmittauksessa ja periodimittauksessa? Miten taajuuslaskurin toiminta eroaa näissä kahdessa tapauksessa? 4. Seuraavan taulukon kahden muuttujan aineistosta on laskettu lineaarisen regressiosuoran kertoimet a ja b; korrelaatiokerroin, muuttujan y hajonta sekä jäännöshajonta. Tuloksiksi saatiin: Selvitä käyttämäsi laskimen tilastolaskenta-ominaisuuksia käyttäen mikä arvo on mikin. Huomaa myös kirjan kaava (3.8). ( ellei laskimessasi ole tilastolaskentaa, selvitä kaavat ja jätä ne näkyville) X Y Työ 4: Anturimittauksia 1. Kuvassa 6 oleva käyrä kuvaa erään termistorin resistanssin muuttumista lämpötilan funktiona. Selitä minkä tyyppinen termistori on kyseessä sekä laske sille ominaisen kertoimen β arvo. Kopioi kuva summittaisesti vastauspaperiin ja hahmottele saman kuvaan Pt-100 anturin resistanssin riippuvuus lämpötilasta ja selitä näiden kahden käyrän perusteella termistorin ja Pt- 100 anturin merkittävimmät edut ja heikkoudet toisiinsa nähden.
5 Resistanssi [Ohm] Lämpötila [ºC] Kuva 6 2. Anturin lämpövastus ilmaan on 18,1 K/W ja veteen 0,66 K/W. Anturin lämpökapasiteetti on 11 J/K. Laske aikavakiot mitattaessa ilman ja veden lämpötilaa. Selitä kuvan avulla miten voit määrittää aikavakion lämpötila-aika kuvaajasta. 3. Edellisen tehtävän anturi on tyypiltään pt-100 vastusanturi (n. 100 Ω mittauslämpötilassa). Mittausvirtana käytetään 5 ma:a. Mittausvirta siis lämmittää anturia. Mikä on mittausvirhe ilmassa ja vedessä, kun anturin lämpötila on ehtinyt asettua? Mitä tekijöitä tulee ottaa huomioon sopivaa mittausvirtaa valittaessa? 4. Kirjan kuvan 38 (9. painos: kuva 39) kaltaisessa asetelmassa rautatankoa väännetään alas niin, että anturin kohdalla tangon yläpuolen suhteellinen venymä on 10-4 ja alapuolen kokoonpuristuminen on samansuuruinen. Sähköinen kytkentä on kuvan 39 (9. painos: kuva 40) kaltainen. Laske kuinka suuri on jännite operaatiovahvistimen ulostulossa. Venymäliuskaanturien K=2,04 ja vahvistimen G=100. Työ 5: Oskilloskoopin XY-asento 1. Saat XY-asennossa seuraavanlaisen kuvion (kuva 7). Esitä menetelmä, jonka avulla voit laskea x- ja y-kanavien signaalien välisen vaihe-eron Y x Kuva 7
6 2. Mittaat kuvan 8 mukaista kelan ja vastuksen muodostamaa piiriä. Olet mitannut vaihe-eroksi 60, vastus R on 1 Ω ja R L on 0,2 Ω. Taajuus on 1 khz. Laske kelan induktanssi. Kela varastoi energiaa magneettikenttäänsä ja kelan hyvyysluku on määritelty magneettikenttään varastoituneen energian ja häviötehon suhteeksi kerrottuna kulmataajuudella. Laske kelan induktanssin ja sisäisen resistanssin avulla kelan hyvyysluku 1 khz taajuudella. u y - R R L L + u x Kuva 8 3. Piirrä diodin ja zenerdiodin virta-jännite käyrät ja selitä komponenttien toiminta ja toiminnan erot näiden käyrien avulla. Määritä kuvasta käsitteet kynnysjännite ja läpilyöntijännite. 4. Laske, kuinka suuri valodiodin kynnysjännitteen tulee vähintään olla, kun ottaa huomioon, että yksi elektroni saa aikaan yhden fotonin. Punaisen valon aallonpituus on 650 nm, vihreän 550 nm. Fotonin energia on hf, missä h on Planckin vakio 6, Js ja f on valon taajuus. Työ 6: Sähköisten häiriöiden tutkiminen 1. Kertaus. Piirrä kytkentä jossa jännite/virtalähteen ja vastuksen muodostamaa piiriä mitataan sekä jännite- että virtamittarilla. 2. Tehovahvistus desibeleinä määritellään: 10lg(Pout/Pin). Miten määritellään jännitevahvistus desibeleinä kun U=RI; P=UI ja Rout=Rin=R. 3. Elektroniikkalaitteen analogia- ja digitaaliosia sisältävällä piirilevyllä kulkee foliovetoa pitkin digitaalinen kellosignaali, jonka taajuus on 1 MHz. Signaali on sakara-aaltoa, jonka voi ajatella siniaaltokomponenttien summaksi (1, 3, 5, 7 MHz, jne.) Laske, kuinka suuret jännitekomponentit kytkeytyvät digitaalivedosta 1, 3 ja 5 MHz taajuuksilla vieressä kulkevaan analogiasignaalia välittävään foliovetoon. Taajuuskomponentteja vastaavat jännitearvot digitaalivedossa ovat 4,5 V, 1,5 V ja 0,9 V. Digitaali- ja analogiavedon välinen kapasitanssi on 2 pf. Analogiavedon kapasitanssi maahan nähden on 10 pf (sisältäen vetoon liittyvien lähtöjen ja tulojen kapasitanssit). Vastaavasti resistanssi maahan on 5 kω. 4. Mitkä ovat tehtävän 3 analogiavetoon kytkeytyvät jännitekomponentit jos digitaalinen kellosignaali vedetään maadoittamattomaan koaksiaalikaapeliin jonka signaalijohtimen ja vaipan välinen kapasitanssi on 2 pf ja vaipan ja analogiavedon välinen kapasitanssi myös 2 pf? Analogiavedon ja maan väliset arvot säilyvät ennallaan.
7 Työ 7: Optisen tietoliikennetekniikan mittauksia 1. Laske oheisen kuvan 9 linkistä : Mikä lähettimen teho tarvitaan, kun haluttu tehomarginaali on 8 db ja kuidun pituus on 5 km? Käytetään lähettimenä lediä. Kuinka suuri sen spektrin leveys saa korkeintaan olla, jotta linkissä pystytään siirtämään 100 Mbit/s signaalia? Kuidun materiaalidispersio on D=45 ps/nm/km ja γ=0.25. Huom: Kirjan sivun 108 τ R(TOT) on kuidun nousuaika, josta sivulla 107 käytetään symbolia τ F. Lähetin Kuva 9 Kuitu Liitin Liitin 0.5 db α=3 db/km 0.5 db Vastaanotin Herkkyys = 1µ W 2. Optisen kuidun pituus voidaan mitata lähettämällä sinimuotoisesti moduloitu laserin signaali sen läpi. Tämä signaali otetaan vastaan ja mitataan oskilloskoopilla. Liipaisu tehdään laseria moduloivalla signaalilla. Siniaallon taajuutta säädetään ja etsitään oskilloskoopin näytöltä liipaisukohta (tämä on se kohta jossa kuidun läpi edenneen siniaallon vaihe pysyy paikallaan taajuudesta riippumatta). Liipaisukohta etsitään sekä tuntemattoman mittaiselle kuidulle että 1 m:n mittaiselle referenssikuidulle, koska laserin elektroniikka aiheuttaa signaaliin tuntemattoman vakioviiveen. Määritä kaava, jolla voidaan laskea tuntemattoman kuidun pituus kun tunnetaan aika-akselin pisteet joissa vaihe pysyy vakiona. 3. Monimuotokuidun datalehdestä löytyvät seuraavat tiedot: BW L=250 MHz 850 nm ja BW L=1150 MHz 1300 nm. Laske suurin mahdollinen bittinopeus 5 km:n kuidun läpi molemmille aallonpituuksille.
S Mittaustekniikan perusteet A. Esiselostustehtävät Erityisesti huomioitava
S-108.1010 Mittaustekniikan perusteet A Esiselostustehtävät 2007 Ryhmän tulee merkitä vastauspaperiin työn numero, ryhmän numero, työn päivämäärä ja ryhmän jäsenten nimet. Vastaukset on kirjoitettava siististi
S Mittaustekniikan perusteet A. Esiselostustehtävät Erityisesti huomioitava
S-108.195 Mittaustekniikan perusteet A Esiselostustehtävät 2002 Ryhmän tulee merkitä vastauspaperiin työn numero, ryhmän numero, työn päivämäärä ja ryhmän jäsenten nimet. Vastaukset on kirjoitettava siististi
S Mittaustekniikan perusteet A. Esiselostustehtävät Erityisesti huomioitava
S-108.1010 Mittaustekniikan perusteet A Esiselostustehtävät 2014 Ryhmän tulee merkitä vastauspaperiin työn numero, ryhmän numero, työn päivämäärä ja ryhmän jäsenten nimet. Vastaukset on kirjoitettava siististi
S Mittaustekniikan perusteet A. Esiselostustehtävät Erityisesti huomioitava
S-108.195 Mittaustekniikan perusteet A Esiselostustehtävät 2001 Ryhmän tulee merkitä vastauspaperiin työn numero, ryhmän numero, työn päivämäärä ja ryhmän jäsenten nimet. Vastaukset on kirjoitettava siististi
S-108.1010 Mittaustekniikan perusteet A Tentti
S-108.1010 Mittaustekniikan perusteet A Tentti 15.12.06 / Kärhä Tehtävät 1-2 käsittelevät luentoja ja ne hyvitetään vuoden 2006 luentokuulustelupisteiden perusteella. Tehtävät 3-5 käsittelevät laboratoriotöitä
Elektroniikan perusteet, Radioamatööritutkintokoulutus
Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 30.10.2014 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:
Elektroniikan perusteet, Radioamatööritutkintokoulutus
Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 14.11.2013 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:
FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa
FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva
LABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN
LABORATORIOTYÖ 3 VAIHELUKITTU VAHVISTIN Päivitetty: 23/01/2009 TP 3-1 3. VAIHELUKITTU VAHVISTIN Työn tavoitteet Työn tavoitteena on oppia vaihelukitun vahvistimen toimintaperiaate ja käyttömahdollisuudet
Kapasitiivinen ja induktiivinen kytkeytyminen
Kapasitiivinen ja induktiivinen kytkeytyminen EMC - Kaapelointi ja kytkeytyminen Kaapelointi merkittävä EMC-ominaisuuksien kannalta yleensä pituudeltaan suurin elektroniikan osa > toimii helposti antennina
FYS206/5 Vaihtovirtakomponentit
FYS206/5 Vaihtovirtakomponentit Tässä työssä pyritään syventämään vaihtovirtakomponentteihin liittyviä käsitteitä. Tunnetusti esimerkiksi käsitteet impedanssi, reaktanssi ja vaihesiirto ovat aina hyvin
Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan
VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan
Mittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014
Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella
MITTALAITTEIDEN OMINAISUUKSIA ja RAJOITUKSIA
KAJAANIN AMMATTIKORKEAKOL Tekniikan ja liikenteen ala TYÖ 21 ELEKTRONIIKAN LABORAATIOT H.Honkanen MITTALAITTEIDEN OMINAISKSIA ja RAJOITKSIA TYÖN TAVOITE: Tässä laboratoriotyössä tutustumme mittalaitteiden
FYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto
FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteet o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva
Supply jännite: Ei kuormaa Tuuletin Vastus Molemmat DC AC Taajuus/taajuudet
S-108.3020 Elektroniikan häiriökysymykset 1/5 Ryhmän nro: Nimet/op.nro: Tarvittavat mittalaitteet: - Oskilloskooppi - Yleismittari, 2 kpl - Ohjaus- ja etäyksiköt Huom. Arvot mitataan pääasiassa lämmityksen
RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi
Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa
FYSP105 / K3 RC-SUODATTIMET
FYSP105 / K3 R-SODATTIMET Työn tavoitteita tutustua R-suodattimien toimintaan oppia mitoittamaan tutkittava kytkentä laiterajoitusten mukaisesti kerrata oskilloskoopin käyttöä vaihtosähkömittauksissa Työssä
OPERAATIOVAHVISTIN. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö. Elektroniikan laboratoriotyö. Työryhmä Selostuksen kirjoitti 11.11.
Oulun seudun ammattikorkeakoulu Tekniikan yksikkö Elektroniikan laboratoriotyö OPERAATIOVAHVISTIN Työryhmä Selostuksen kirjoitti 11.11.008 Kivelä Ari Tauriainen Tommi Tauriainen Tommi 1 TEHTÄVÄ Tutustuimme
IMPEDANSSIMITTAUKSIA. 1 Työn tavoitteet
1 IMPEDANSSIMITTAUKSIA 1 Työn tavoitteet Tässä työssä tutustut vaihtojännitteiden ja virtojen sekä vaihtovirtapiirissä olevien komponenttien impedanssien suuruuksien eli vaihtovirtavastusten mittaamiseen.
33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ
TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien
VAIHTOVIRTAPIIRI. 1 Työn tavoitteet
Oulun yliopisto Fysiikan opetuslaboratorio Sähkö- ja magnetismiopin laboratoriotyöt AHTOTAP Työn tavoitteet aihtovirran ja jännitteen suunta vaihtelee ajan funktiona. Esimerkiksi Suomessa käytettävä verkkovirta
OPERAATIOVAHVISTIMET 2. Operaatiovahvistimen ominaisuuksia
KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala TYÖ 11 ELEKTRONIIKAN LABORAATIOT H.Honkanen OPERAATIOVAHVISTIMET 2. Operaatiovahvistimen ominaisuuksia TYÖN TAVOITE Tutustua operaatiovahvistinkytkentään
LOPPURAPORTTI 19.11.2007. Lämpötilahälytin. 0278116 Hans Baumgartner xxxxxxx nimi nimi
LOPPURAPORTTI 19.11.2007 Lämpötilahälytin 0278116 Hans Baumgartner xxxxxxx nimi nimi KÄYTETYT MERKINNÄT JA LYHENTEET... 3 JOHDANTO... 4 1. ESISELOSTUS... 5 1.1 Diodi anturina... 5 1.2 Lämpötilan ilmaisu...
Ongelmia mittauksissa Ulkoiset häiriöt
Ongelmia mittauksissa Ulkoiset häiriöt Häiriöt peittävät mitattavia signaaleja Häriölähteitä: Sähköverkko 240 V, 50 Hz Moottorit Kytkimet Releet, muuntajat Virtalähteet Loisteputkivalaisimet Kännykät Radiolähettimet,
YLEISMITTAREIDEN KÄYTTÄMINEN
FYSP104 / K1 YLEISMITTAREIDEN KÄYTTÄMINEN Työn tavoitteita Oppia yleismittareiden oikea ja rutiininomainen käyttö. Soveltaa Ohmin lakia mittaustilanteissa Sähköisiin ilmiöihin liittyvissä laboratoriotöissä
R = Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen on tällöin jännitteenjako = 1
Fysiikan mittausmenetelmät I syksy 206 Laskuharjoitus 4. Merkitään kaapelin resistanssin ja kuormaksi kytketyn piirin sisäänmenoimpedanssia summana R 000.2 Ω. Jännite R:n yli suhteessa sisäänmenojännitteeseen
S-108.1020 Mittaustekniikan perusteet Y - Tentti
S-108.1020 Mittaustekniikan perusteet Y - Tentti 15.12.06/Kärhä Merkitse vastauspaperiin laboratoriotöiden suoritusvuosi. 1. Ohessa on 12 väittämää antureista. Ovatko väittämät oikein vai väärin? Oikeasta
Kondensaattorin läpi kulkeva virta saadaan derivoimalla yhtälöä (2), jolloin saadaan. cos sin.
VAIHTOVIRTAPIIRI 1 Johdanto Vaihtovirtapiirien käsittely perustuu kolmen peruskomponentin, vastuksen (resistanssi R), kelan (induktanssi L) ja kondensaattorin (kapasitanssi C) toimintaan. Tarkastellaan
S-108.3020 Elektroniikan häiriökysymykset. Laboratoriotyö, kevät 2010
1/7 S-108.3020 Elektroniikan häiriökysymykset Laboratoriotyö, kevät 2010 Häiriöiden kytkeytyminen yhteisen impedanssin kautta lämpötilasäätimessä Viimeksi päivitetty 25.2.2010 / MO 2/7 Johdanto Sähköisiä
S-108.180 Elektroniset mittaukset ja elektroniikan häiriökysymykset. Vanhoja tenttitehtäviä
S-18.18 Elektroniset mittaukset ja elektroniikan häiriökysymykset 1. Vastaa lyhyesti: a) Mitä on kohina (yleisesti)? b) Miten määritellään kohinaluku? c) Miten / missä syntyy raekohinaa? Vanhoja tenttitehtäviä
EVTEK/ Antti Piironen & Pekka Valtonen 1/6 TM01S/ Elektroniikan komponentit ja järjestelmät Laboraatiot, Syksy 2003
EVTEK/ Antti Piironen & Pekka Valtonen 1/6 TM01S/ Elektroniikan komponentit ja järjestelmät Laboraatiot, Syksy 2003 LABORATORIOTÖIDEN OHJEET (Mukaillen työkirjaa "Teknillisten oppilaitosten Elektroniikka";
d) Jos edellä oleva pari vie 10 V:n signaalia 12 bitin siirtojärjestelmässä, niin aiheutuuko edellä olevissa tapauksissa virheitä?
-08.300 Elektroniikan häiriökysymykset Kevät 006 askari 3. Kierrettyyn pariin kytkeytyvä häiriöjännite uojaamaton yksivaihejohdin, virta I, kulkee yhdensuuntaisesti etäisyydellä r instrumentointikaapelin
Taitaja2004/Elektroniikka Semifinaali 19.11.2003
Taitaja2004/Elektroniikka Semifinaali 19.11.2003 Teoriatehtävät Nimi: Oppilaitos: Ohje: Tehtävät ovat suurimmaksi osaksi vaihtoehtotehtäviä, mutta tarkoitus on, että lasket tehtävät ja valitset sitten
LABORATORIOTYÖ 1 MITTAUSVAHVISTIMET
Työ 1 Mittausvahvistimet LABORATORIOTYÖ 1 MITTAUSVAHVISTIMET Päivitetty: 5/01/010 TP 1 1 Työ 1 Mittausvahvistimet 1. MITTAUSVAHVISTIMET Työn tarkoitus: Työn tarkoituksena on tutustua operaatiovahvistimen
Operaatiovahvistimen vahvistus voidaan säätää halutun suuruiseksi käyttämällä takaisinkytkentävastusta.
TYÖ 11. Operaatiovahvistin Operaatiovahvistin on mikropiiri ( koostuu useista transistoreista, vastuksista ja kondensaattoreista juotettuna pienelle piipalaselle ), jota voidaan käyttää useisiin eri kytkentöihin.
Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi
Sivu 1/10 Fysiikan laboratoriotyöt 1 Työ numero 3 Vastksen ja diodin virta-jännite-ominaiskäyrät sekä valodiodi Työn suorittaja: Antero Lehto 1724356 Työ tehty: 24.2.2005 Uudet mittaus tulokset: 11.4.2011
a) I f I d Eri kohinavirtakomponentit vahvistimen otossa (esim. http://www.osioptoelectronics.com/)
a) C C p e n sn V out p d jn sh C j i n V out Käytetyt symbolit & vakiot: P = valoteho [W], λ = valodiodin ilmaisuvaste eli responsiviteetti [A/W] d = pimeävirta [A] B = kohinakaistanleveys [Hz] T = lämpötila
1. a) Piiri sisältää vain resistiivisiä komponentteja, joten jännitteenjaon tulos on riippumaton taajuudesta.
Fysiikan mittausmenetelmät I syksy 2013 Malliratkaisut 3 1. a) Piiri sisältää vain resistiivisiä komponentteja, joten jännitteenjaon tulos on riippumaton taajuudesta. b) Ulostulo- ja sisäänmenojännitteiden
OSKILLOSKOOPIN SYVENTÄVÄ KÄYTTÖ
FYSP110/K2 OSKILLOSKOOPIN SYVENTÄVÄ KÄYTTÖ 1 Johdanto Työn tarkoituksena on tutustua oskilloskoopin käyttöön perusteellisemmin ja soveltaa työssä Oskilloskoopin peruskäyttö hankittuja taitoja. Ko. työn
TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT
TASA- JA VAIHTOVIRTAPIIRIEN LABORAATIOTYÖ 5 SUODATINPIIRIT Työselostuksen laatija: Tommi Tauriainen Luokka: TTE7SN1 Ohjaaja: Jaakko Kaski Työn tekopvm: 02.12.2008 Selostuksen luovutuspvm: 16.12.2008 Tekniikan
Työ 31A VAIHTOVIRTAPIIRI. Pari 1. Jonas Alam Antti Tenhiälä
Työ 3A VAIHTOVIRTAPIIRI Pari Jonas Alam Antti Tenhiälä Selostuksen laati: Jonas Alam Mittaukset tehty: 0.3.000 Selostus jätetty: 7.3.000 . Johdanto Tasavirtapiirissä sähkövirta ja jännite käyttäytyvät
Pynnönen 1.5.2000. Opiskelija: Tarkastaja: Arvio:
EAOL 1/5 Opintokokonaisuus : Jakso: Harjoitustyö: Passiiviset komponentit Pvm : vaihtosähköpiirissä Opiskelija: Tarkastaja: Arvio: Tavoite: Välineet: Opiskelija oppii ymmärtämään vastuksen, kondensaattorin
Ledien kytkeminen halpis virtalähteeseen
Ledien kytkeminen halpis virtalähteeseen Ledien valovoiman kasvu ja samanaikaisen voimakkaan hintojen lasku on innostuttanut monia rakentamaan erilaisia tauluja. Tarkoitan niillä erilaista muoveista tehtyjä
PERMITTIIVISYYS. 1 Johdanto. 1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla . (1) , (2) (3) . (4) Permittiivisyys
PERMITTIIVISYYS 1 Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä Siirretään varausta levystä toiseen, jolloin levyissä on varaukset ja ja levyjen välillä
2. Vastuksen läpi kulkee 50A:n virta, kun siihen vaikuttaa 170V:n jännite. Kuinka suuri resistanssi vastuksessa on?
SÄHKÖTEKNIIKKA LASKUHARJOITUKSIA; OHMIN LAKI, KIRCHHOFFIN LAIT, TEHO 1. 25Ω:n vastuksen päiden välille asetetaan 80V:n jännite. Kuinka suuri virta alkaa kulkemaan vastuksen läpi? 2. Vastuksen läpi kulkee
Aineopintojen laboratoriotyöt I. Ominaiskäyrät
Aineopintojen laboratoriotyöt I Ominaiskäyrät Aki Kutvonen Op.nmr 013185860 assistentti: Tommi Järvi työ tehty 31.10.2008 palautettu 28.11.2008 Tiivistelmä Tutkittiin elektroniikan peruskomponenttien jännite-virtaominaiskäyriä
83950 Tietoliikennetekniikan työkurssi Monitorointivastaanottimen perusmittaukset
TAMPEREEN TEKNILLINEN KORKEAKOULU 83950 Tietoliikennetekniikan työkurssi Monitorointivastaanottimen perusmittaukset email: ari.asp@tut.fi Huone: TG 212 puh 3115 3811 1. ESISELOSTUS Vastaanottimen yleisiä
kipinäpurkauksena, josta salama on esimerkki.
Sähkö 25 Esineet saavat sähkövarauksen hankauksessa kipinäpurkauksena, josta salama on esimerkki. Hankauksessa esineet voivat varautua sähköisesti. Varaukset syntyvät, koska hankauksessa kappaleesta siirtyy
7. Resistanssi ja Ohmin laki
Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi
1. Tasavirta. Virtapiirin komponenttien piirrosmerkit. Virtapiiriä havainnollistetaan kytkentäkaaviolla
Fy3: Sähkö 1. Tasavirta Virtapiirin komponenttien piirrosmerkit Virtapiiriä havainnollistetaan kytkentäkaaviolla Sähkövirta I Sähkövirran suunta on valittu jännitelähteen plusnavasta miinusnapaan (elektronit
Laitteita - Yleismittari
Laitteita - Yleismittari Yleistyökalu mittauksissa Yleensä digitaalisia Mittaustoimintoja Jännite (AC ja DC) Virta (AC ja DC) Vastus Diodi Lämpötila Transistori Kapasitanssi Induktanssi Taajuus 1 Yleismittarin
Fluke 170 -sarjan digitaaliset True-RMS-yleismittarit
TEKNISET TIEDOT Fluke 170 -sarjan digitaaliset True-RMS-yleismittarit Digitaaliset Fluke 170 -sarjan yleismittarit ovat alan ammattilaisten luottolaitteet sähkö- ja elektroniikkajärjestelmien vianhakuun
RG-58U 4,5 db/30m. Spektrianalysaattori. 0,5m. 60m
1. Johtuvia häiiöitä mitataan LISN:n avulla EN55022-standadin mukaisessa johtuvan häiiön mittauksessa. a. 20 MHz taajuudella laite tuottaa 1.5 mv suuuista häiiösignaalia. Läpäiseekö laite standadin B-luokan
Tietoliikennesignaalit & spektri
Tietoliikennesignaalit & spektri 1 Tietoliikenne = informaation siirtoa sähköisiä signaaleja käyttäen. Signaali = vaihteleva jännite (tms.), jonka vaihteluun on sisällytetty informaatiota. Signaalin ominaisuuksia
TYÖ 58. VAIMENEVA VÄRÄHTELY, TASASUUNTAUS JA SUODATUS. Tehtävänä on vaimenevan värähtelyn, tasasuuntauksen ja suodatuksen tutkiminen oskilloskoopilla.
TYÖ 58. VAIMENEVA VÄRÄHTELY, TASASUUNTAUS JA SUODATUS Tehtävä Välineet Tehtävänä on vaimenevan värähtelyn, tasasuuntauksen ja suodatuksen tutkiminen oskilloskoopilla. Kaksoiskanavaoskilloskooppi KENWOOD
Analogiapiirit III. Keskiviikko , klo , TS127. Jatkuva-aikaiset IC-suodattimet ja PLL-rakenteet
Oulun yliopisto Sähkötekniikan osasto Analogiapiirit III Harjoitus 8. Keskiviikko 5.2.2003, klo. 12.15-14.00, TS127. Jatkuva-aikaiset IC-suodattimet ja PLL-rakenteet 1. Mitoita kuvan 1 2. asteen G m -C
Kaksi yleismittaria, tehomittari, mittausalusta 5, muistiinpanot ja oppikirjat. P = U x I
Pynnönen 1/3 SÄHKÖTEKNIIKKA Kurssi: Harjoitustyö : Tehon mittaaminen Pvm : Opiskelija: Tark. Arvio: Tavoite: Välineet: Harjoitustyön tehtyäsi osaat mitata ja arvioida vastukseen jäävän tehohäviön sähköisessä
Kuva 1: Vaihtovirtapiiri, jossa on sarjaan kytkettynä resistanssi, kapasitanssi ja induktanssi
31 VAIHTOVIRTAPIIRI 311 Lineaarisen vaihtovirtapiirin impedanssi ja vaihe-ero Tarkastellaan kuvan 1 mukaista vaihtovirtapiiriä, jossa on resistanssi R, kapasitanssi C ja induktanssi L sarjassa Jännitelähde
Sähköstatiikan laskuissa useat kaavat yksinkertaistuvat hieman, jos vakio C kirjoitetaan muotoon
30 SÄHKÖVAKIO 30 Sähkövakio ja Coulombin laki Coulombin lain mukaan kahden tyhjiössä olevan pistevarauksen q ja q 2 välinen voima F on suoraan verrannollinen varauksiin ja kääntäen verrannollinen varausten
Käytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely)
Käytännön radiotekniikkaa: Epälineaarinen komponentti ja signaalien siirtely taajuusalueessa (+ laboratoriotyön 2 esittely) ELEC-C5070 Elektroniikkapaja, 21.9.2015 Huom: Kurssissa on myöhemmin erikseen
MIKROAALTOMITTAUKSET 1
MIKROAALTOMITTAUKSET 1 1. TYÖN TARKOITUS Tässä harjoituksessa tutkit virran ja jännitteen käyttäytymistä gunn-oskillaattorissa. Piirrät jännitteen ja virran avulla gunn-oskillaattorin toimintakäyrän. 2.
Johdatus vaihtosähköön, sinimuotoiset suureet. DEE Piirianalyysi Risto Mikkonen
DEE-11000 Piirianalyysi Johdatus vaihtosähköön, sinimuotoiset suureet 1 Vaihtovirta vs tasavirta Sähkömagneettinen induktio tuottaa kaikissa pyörivissä generaattoreissa vaihtojännitettä. Vaihtosähköä on
= vaimenevan värähdysliikkeen taajuus)
Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 7: MEKAANINEN VÄRÄHTELIJÄ Teoriaa Vaimeneva värähdysliike y ŷ ŷ ŷ t T Kuva. Vaimeneva värähdysliike ajan funktiona.
S-108.3020. Elektroniikan häiriökysymykset. Laboratoriotyö 1
1/8 S-108.3020 Elektroniikan häiriökysymykset Laboratoriotyö 1 Häiriöiden kytkeytyminen yhteisen impedanssin kautta lämpötilasäätimessä 13.9.2007 TJ 2/8 3/8 Johdanto Sähköisiä häiriöitä on kaikkialla ja
1.1 Tyhjiön permittiivisyyden mittaaminen tasokondensaattorilla
PERMITTIIVISYYS Johdanto Tarkastellaan tasokondensaattoria, joka koostuu kahdesta yhdensuuntaisesta metallilevystä. Siirretään varausta levystä toiseen, jolloin levyissä on varaukset +Q ja Q ja levyjen
1 f o. RC OSKILLAATTORIT ja PASSIIVISET SUODATTIMET. U r = I. t τ. t τ. 1 f O. KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala
KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala TYÖ 7 ELEKTRONIIKAN LABORAATIOT H.Honkanen RC OSKILLAATTORIT ja PASSIIVISET SUODATTIMET TYÖN TAVOITE - Mitoittaa ja toteuttaa RC oskillaattoreita
Kannattaa opetella parametrimuuttujan käyttö muidenkin suureiden vaihtelemiseen.
25 Mikäli tehtävässä piti määrittää R3:lle sellainen arvo, että siinä kuluva teho saavuttaa maksimiarvon, pitäisi variointirajoja muuttaa ( ja ehkä tarkentaa useampaankin kertaan ) siten, että R3:ssä kulkeva
IIZE3010 Elektroniikan perusteet Harjoitustyö. Pasi Vähämartti, C1303, IST4SE
IIZE3010 Elektroniikan perusteet Harjoitustyö Pasi Vähämartti, C1303, IST4SE 2 (11) Sisällysluettelo: 1. Tehtävänanto...3 2. Peruskytkentä...4 2.1. Peruskytkennän käyttäytymisanalyysi...5 3. Jäähdytyksen
RAIDETESTERIN KÄYTTÖOHJE
RAIDETESTERIN KÄYTTÖOHJE Yleiskuvaus Mittalaite tutkiin virtapiirin johtavuutta ja ilmaisee virtapiirissä olevan puhtaasti resistiivisen vastuksen. Mittalaitteen toiminnallisuus on parhaimmillaan, kun
YLEISMITTAREIDEN KÄYTTÄMINEN
FYSP104 / K1 YLEISMITTAREIDEN KÄYTTÄMINEN Työn tavoitteita oppia tuntemaan analogisen ja digitaalisen yleismittarin tärkeimmät erot ja niiden suorituskyvyn rajat oppia yleismittareiden oikea ja rutiininomainen
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.00 SÄHKÖTKNIIKKA JA KTONIIKKA Tentti 9..006: tehtävät,3,5,7,9. välikoe: tehtävät,,3,4,5. välikoe: tehtävät 6,7,8,9,0 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo Silvonen.
Pinces AC/DC-virtapihti ampèremetriques pour courant AC
MH-SARJA MH60-virtapihti on suunniteltu mittaamaan DC ja AC-virtoja jopa 1 MHz:n kaistanleveydellä, käyttäen kaksoislineaarista Hall-ilmiötä/ Muuntajateknologiaa. Pihti sisältää ladattavan NiMh-akun, jonka
Analogiapiirit III. Keskiviikko 4.12.2002, klo. 12.15-14.00, TS128. Operaatiovahvistinrakenteet
Oulun yliopisto Sähkötekniikan osasto Analogiapiirit III Harjoitus 2. Keskiviikko 4.12.2002, klo. 12.15-14.00, TS128. Operaatiovahvistinrakenteet 1. Analysoi kuvan 1 operaatiotranskonduktanssivahvistimen
SMG-2100: SÄHKÖTEKNIIKKA
SMG-2100: SÄHKÖTEKNIIKKA Vastusten kytkennät Energialähteiden muunnokset sarjaankytkentä rinnankytkentä kolmio-tähti-muunnos jännitteenjako virranjako Käydään läpi vastusten keskinäisten kytkentöjen erilaiset
Perusmittalaitteet 2. Yleismittari Taajuuslaskuri
Mittaustekniikan perusteet / luento 4 Perusmittalaitteet 2 Digitaalinen yleismittari Yleisimmin sähkötekniikassa käytetty mittalaite. Yleismittari aajuuslaskuri Huomaa mittareiden toisistaan poikkeaat
Häiriöt ja mittaaminen. OH3TR:n radioamatöörikurssi Kalvot: Eero Alkkiomäki (OH6GMT), 2003 Tiiti Kellomäki (OH3HNY), 2009
Häiriöt ja mittaaminen OH3TR:n radioamatöörikurssi Kalvot: Eero Alkkiomäki (OH6GMT), 2003 Tiiti Kellomäki (OH3HNY), 2009 Häiriötyypit sähkömagneettisesti kytkeytyvät puutteellinen kotelointi huonot liitokset
1 db Compression point
Spektrianalysaattori mittaukset 1. Työn tarkoitus Työssä tutustutaan vahvistimen ja mixerin perusmittauksiin ja spektrianalysaattorin toimintaan. 2. Teoriaa RF- vahvistimen ominaisuudet ja käyttäytyminen
Perusmittalaitteet 3. Yleismittari. Mittaustekniikan perusteet / luento 5. Digitaalinen yleismittari. Digitaalinen yleismittari.
Mittaustekniikan perusteet / luento 5 Perusmittalaitteet 3 Yleismittari Yleisimmin sähkötekniikassa käytetty mittalaite. Kahta perustyyppiä: Analogimittari Kiertokäämimittari Ei enää juurikaan käytössä
Radioamatöörikurssi 2013
Radioamatöörikurssi 2013 Polyteknikkojen Radiokerho Radiotekniikka 21.11.2013 Tatu, OH2EAT 1 / 19 Vahvistimet Vahvistin ottaa signaalin sisään ja antaa sen ulos suurempitehoisena Tehovahvistus, db Jännitevahvistus
ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen.
ELEC-C6001 Sähköenergiatekniikka, laskuharjoitukset oppikirjan lukuun 10 liittyen. X.X.2015 Tehtävä 1 Bipolaaritransistoria käytetään alla olevan kuvan mukaisessa kytkennässä, jossa V CC = 40 V ja kuormavastus
LABORATORIOTYÖ 2 A/D-MUUNNOS
LABORATORIOTYÖ 2 A/D-MUUNNOS Päivitetty: 23/01/2009 TP 2-1 2. A/D-muunnos Työn tarkoitus Tässä työssä demotaan A/D-muunnoksen ominaisuuksia ja ongelmia. Tarkoitus on osoittaa käytännössä, miten bittimäärä
EMC Mittajohtimien maadoitus
EMC Mittajohtimien maadoitus Anssi Ikonen EMC - Mittajohtimien maadoitus Mittajohtimet ja maadoitus maapotentiaalit harvoin samassa jännitteessä => maadoitus molemmissa päissä => maavirta => häiriöjännite
LABORATORIOTYÖ 2 A/D-MUUNNOS
LABORATORIOTYÖ 2 A/D-MUUNNOS 2-1 2. A/D-muunnos Työn tarkoitus Tässä työssä demotaan A/D-muunnoksen ominaisuuksia ja ongelmia. Tarkoitus on osoittaa käytännössä, miten bittimäärä ja näytteenottotaajuus
FYSP104 / K2 RESISTANSSIN MITTAAMINEN
FYSP104 / K2 RESISTANSSIN MITTAAMINEN Työn tavoite tutustua erilaisiin menetelmiin, jotka soveltuvat pienten, keskisuurten ja suurten vastusten mittaamiseen Työssä tutustutaan useisiin vastusmittauksen
Oikosulkumoottorikäyttö
Oikosulkumoottorikäyttö 1 DEE-33040 Sähkömoottorikäyttöjen laboratoriotyöt TTY Oikosulkumoottorikäyttö T. Kantell & S. Pettersson 2 Laboratoriomittauksia suorassa verkkokäytössä 2.1 Käynnistysvirtojen
LABORAATIO 1, YLEISMITTARI JA PERUSMITTAUKSET
KAJAANIN AMMATTIKORKEAKOULU Tekniikan ja liikenteen ala VAHVAVIRTATEKNIIKAN LABORAATIOT H.Honkanen LABORAATIO 1, YLEISMITTARI JA PERUSMITTAUKSET YLEISTÄ YLEISMITTARIN OMINAISUUKSISTA: Tässä laboratoriotyössä
Kuva 1. Ohmin lain kytkentäkaavio. DC; 0 6 V.
TYÖ 37. OHMIN LAKI Tehtävä Tutkitaan metallijohtimen päiden välille kytketyn jännitteen ja johtimessa kulkevan sähkövirran välistä riippuvuutta. Todennetaan kokeellisesti Ohmin laki. Välineet Tasajännitelähde
Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät
Fysiikan laboratoriotyöt 1, työ nro: 3, Vastuksen ja diodin virta-jänniteominaiskäyrät Tekijä: Mikko Laine Tekijän sähköpostiosoite: miklaine@student.oulu.fi Koulutusohjelma: Fysiikka Mittausten suorituspäivä:
Radioamatöörikurssi 2018
Radioamatöörikurssi 2018 Polyteknikkojen Radiokerho Mittalaitteet 15.11.2018 Juha, OH2EAN 1 / 28 Illan aiheet Yleisimmät mittalaitteet Radioamatööreille tärkeitä laitteita 2 / 28 Miksi mittalaitteita?
Kaikki kytkennät tehdään kytkentäalustalle (bimboard) ellei muuta mainita.
FYSE300 Elektroniikka 1 (FYSE301 FYSE302) Elektroniikka 1:n (FYSE300) laboratorioharjoitukset sisältävät kaksi työtä, joista ensimmäinen sisältyy A-osaan (FYSE301) ja toinen B-osaan (FYSE302). Pelkän A-osan
Fy06 Koe 20.5.2015 Kuopion Lyseon lukio (KK) 1/7
Fy06 Koe 0.5.015 Kuopion Lyseon lukio (KK) 1/7 alitse kolme tehtävää. 6p/tehtävä. 1. Mitä mieltä olet seuraavista väitteistä. Perustele lyhyesti ovatko väitteet totta vai tarua. a. irtapiirin hehkulamput
SÄHKÖTEKNIIKKA. NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015
SÄHKÖTEKNIIKKA NBIELS13 Tasasähköpiirit Jussi Hurri syksy 2015 1. PERSKÄSITTEITÄ 1.1. VIRTAPIIRI Virtapiiri on johtimista ja komponenteista tehty reitti, jossa sähkövirta kulkee. 2 Virtapiirissä on vähintään
Taitaja2007/Elektroniikka
1. Jännitelähteiden sarjakytkentä a) suurentaa kytkennästä saatavaa virtaa b) rikkoo jännitelähteet c) pienentää kytkennästä saatavaa virtaa d) ei vaikuta jännitelähteistä saatavan virran suuruuteen 2.
DEE-11110 Sähkötekniikan perusteet
DEE-11110 Sähkötekniikan perusteet Antti Stenvall Passiiviset piirikomponentit Luennon keskeinen termistö ja tavoitteet vastus käämi kondensaattori puolijohdekomponentit Tarkoitus on esitellä piiriteorian
S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA
S-55.1100 SÄHKÖTKNIIKKA A KTONIIKKA Tentti 0.1.006: tehtävät 1,3,4,6,8 1. välikoe: tehtävät 1,,3,4,5. välikoe: tehtävät 6,7,8,9,10 Saat vastata vain neljään tehtävään/koe; ne sinun pitää itse valita! Kimmo
SÄHKÖSUUREIDEN MITTAAMINEN
FYSP107 / K3 Sähkösuureiden mittaaminen yleismittarilla - 1 - FYSP107 / K3 YLEISMITTARILLA SÄHKÖSUUREIDEN MITTAAMINEN Työn tavoitteita oppia tuntemaan digitaalisen yleismittarin suorituskyvyn rajat oppia
FY6 - Soveltavat tehtävät
FY6 - Soveltavat tehtävät 21. Origossa on 6,0 mikrocoulombin pistevaraus. Koordinaatiston pisteessä (4,0) on 3,0 mikrocoulombin ja pisteessä (0,2) 5,0 mikrocoulombin pistevaraus. Varaukset ovat tyhjiössä.
Tehtävään on varattu aikaa 8:30 10:00. Seuraavaan tehtävään saat siirtyä aiemminkin. Välipalatarjoilu työpisteisiin 10:00
LUE KOKO OHJE HUOLELLA LÄPI ENNEN KUIN ALOITAT!!! Tehtävä 1a Tehtävään on varattu aikaa 8:30 10:00. Seuraavaan tehtävään saat siirtyä aiemminkin. Välipalatarjoilu työpisteisiin 10:00 MITTAUSMODULIN KOKOAMINEN