SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa

Samankaltaiset tiedostot
Muodonmuutostila hum

Analysoidaan lämpöjännitysten, jännityskeskittymien, plastisten muodonmuutosten ja jäännösjännityksien vaikutus

10. Jännitysten ja muodonmuutosten yhteys; vaurioteoriat

Ratkaisut 2. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa a) ja b) sekä laske c) kohdan tehtävä.

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},

Määritetään vääntökuormitetun sauvan kiertymä kimmoisella kuormitusalueella Tutkitaan staattisesti määräämättömiä vääntösauvoja

Materiaali on lineaarinen, jos konstitutiiviset yhtälöt ovat jännitys- ja muodonmuutostilan suureiden välisiä lineaarisia yhtälöitä.

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

Laskuharjoitus 2 Ratkaisut

Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Matematiikan tukikurssi

KJR-C2002 Kontinuumimekaniikan perusteet

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

normaali- ja leikkaus jännitysten laskemiseen pisteessä Määritetään ne tasot, joista suurimmat normaali- ja leikkausjännitykset löytyvät

l 1 2l + 1, c) 100 l=0

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

Ota tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,

Matematiikan tukikurssi

Laskuharjoitus 1 Ratkaisut

Ratkaise tehtävä 1 ilman teknisiä apuvälineitä! 1. a) Yhdistä oikea funktio oikeaan kuvaajaan. (2p)

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

Havainnollistuksia: Merkitään w = ( 4, 3) ja v = ( 3, 2). Tällöin. w w = ( 4) 2 + ( 3) 2 = 25 = 5. v = ( 3) = 13. v = v.

RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.

Harjoitus 1. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016. Tehtävä 1 Selitä käsitteet kohdissa [a), b)] ja laske c) kohdan tehtävä.

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

VEKTORIT paikkavektori OA

Jonot. Lukujonolla tarkoitetaan ääretöntä jonoa reaalilukuja a n R, kun indeksi n N. Merkitään. (a n ) n N = (a n ) n=1 = (a 1, a 2, a 3,... ).

Luento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

1. Olkoot vektorit a, b ja c seuraavasti määritelty: a) Määritä vektori. sekä laske sen pituus.

Luento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike

Ratkaisut 3. KJR-C2001 Kiinteän aineen mekaniikan perusteet, IV/2016

Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle

Derivaatan sovellukset (ääriarvotehtävät ym.)

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!

1.7 Gradientti ja suunnatut derivaatat

Kone- ja rakentamistekniikan laboratoriotyöt KON-C3004. Koesuunnitelma: Paineen mittaus venymäliuskojen avulla. Ryhmä C

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009

Pyramidi 9 Trigonometriset funktiot ja lukujonot HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Laskuharjoitus 3 Ratkaisut

Sini- ja kosinifunktio

Tekijä Pitkä matematiikka

a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. ( )

2) Kaksi lentokonetta lähestyy toisiaan samalla korkeudella kuvan osoittamalla tavalla. Millä korkeudella ja kuinka kaukana toisistaan ne ovat?

3 TOISEN ASTEEN POLYNOMIFUNKTIO

Funktion derivoituvuus pisteessä

Mb8 Koe Kuopion Lyseon lukio (KK) sivu 1/2

766334A Ydin- ja hiukkasfysiikka

Läpäisyehto: Kokeesta saatava 5. Uusintakoe: Arvosana määräytyy yksin uusintakokeen perusteella.

MUODONMUUTOKSET. Lähtöotaksumat:

derivaatta pisteessä (YOS11) a) Näytä, että a n+1 > a n, kun n = 1, 2, 3,.

(a) Potentiaali ja virtafunktiot saadaan suoraan summaamalla lähteen ja pyörteen funktiot. Potentiaalifunktioksi

Äärettömät raja-arvot

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

b) Määritä/Laske (ei tarvitse tehdä määritelmän kautta). (2p)

Johdatus materiaalimalleihin

SISÄLTÖ 1. Veto-puristuskoe 2. Jännitys-venymäpiirros 3. Sitkeitten ja hauraitten materiaalien jännitysvenymäkäyttäytyminen

MS-A0202 Differentiaali- ja integraalilaskenta 2 (SCI) Luento 2: Usean muuttujan funktiot

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018

Ratkaisuja, Tehtävät

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma.

Muista tutkia ihan aluksi määrittelyjoukot, kun törmäät seuraaviin funktioihin:

4.1 Kaksi pistettä määrää suoran

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Braggin ehdon mukaan hilatasojen etäisyys (111)-tasoille on

Matematiikan tukikurssi

Matemaattisen analyysin tukikurssi

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Differentiaalilaskennan tehtäviä

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Lineaarialgebra MATH.1040 / trigonometriaa

JATKUVUUS. Funktio on jatkuva jos sen kuvaaja voidaan piirtää nostamatta kynää paperista.

Tekijä Pitkä matematiikka Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

Mb8 Koe Kuopion Lyseon lukio (KK) sivu 1/3

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto:

Matematiikan tukikurssi

MS-A0207 Differentiaali- ja integraalilaskenta 2 (CHEM) Luento 2: Usean muuttujan funktiot

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016


KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Lukujoukot. Luonnollisten lukujen joukko N = {1, 2, 3,... }.

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 7: Pintaintegraali ja vuointegraali

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota.

Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on

Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Pinta-alojen ja tilavuuksien laskeminen 1/6 Sisältö ESITIEDOT: määrätty integraali

0. Kertausta. Luvut, lukujoukot (tavalliset) Osajoukot: Yhtälöt ja niiden ratkaisu: N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut

A B = (1, q, q 2 ) (2, 0, 2) = 2 2q q 2 = 0 q 2 = 1 q = ±1 A(±1) = (1, ±1, 1) A(1) A( 1) = (1, 1, 1) (1, 1, 1) = A( 1) A(1) A( 1) = 1

Transkriptio:

SISÄLTÖ Venymän käsite Liukuman käsite Venymä ja liukuma lujuusopin sovelluksissa 1 SISÄLTÖ 1. Siirtymä 2 1

2.1 MUODONMUUTOS Muodonmuutos (deformaatio) Tapahtuu, kun kappaleeseen vaikuttaa voima/voimia Voi olla selvästi havaittavissa tai lähes näkymätön Voi johtua myös lämpötilamuutoksesta Ei ole välttämättä tasainen koko kappaleessa. Siten kappaleesta leikatun viiva-alkion geometriamuutos voi vaihdella sen pituussuunnassa. 3 2.1 MUODONMUUTOS Muodonmuutostarkastelun yksinkertaistaminen Oleta viivojen olevan hyvin lyhyitä ja sijaitsevan tutkittavan pisteen läheisyydessä Ota huomioon viiva-alkion suunta tutkittavan pisteen suhteen 4 2

2.2 VENYMÄ Venymä Määritetään viiva-alkion pituuden muutoksena Tarkastellaan viiva-alkiota AB kuvan kappaleessa Muodonmuutoksen jälkeen s muuttuu s 5 2.2 VENYMÄ Venymä Määritetään keskimääräinen venymä käyttäen symbolia ε avg (epsilon) ε avg = kun s 0, s 0 s s s lim s s ε = B A linjaa n s 6 3

2.2 VENYMÄ Venymä (normaalivenymä) Kun normaalivenymä (jatkossa venymä) ε tunnetaan, käytetään oheista approksimatiivista yhtälöä määrittämään lyhyen viiva-alkion n- suuntaisesta pituudesta muodonmuutoksen jälkeen s (1 + ε) s Kun ε on positiivinen, viiva-alkio venyy ja päinvastoin 7 2.2 VENYMÄ Yksiköt Venymä on dimensioton suure, koska se on kahden pituuden välinen suhde Usein kuitenkin venymän yksikkö esitetään muodossa metri/metri (m/m) ε on hyvin pieni useimmissa teknisissä sovelluksissa, joten usein sen yksikkö esitetään muodossa mikrometri per metri (µm/m) jossa 1 µm = 10 6 Venymä voidaan esittää myös prosentuaalisena suureena, esim. 0.001 m/m = 0.1 % 8 4

2.3 LIUKUMA Liukuma (leikkausvenymä) Liukuma määritetään kulmamuutoksena kahden viiva-alkion välillä, jotka alunperin olivat kohtisuorassa toisiaan vastaan Kulmamuutos merkitään kirjaimella γ (gamma) ja se mitataan radiaaneissa (rad). 9 2.3 LIUKUMA Liukuma (leikkausvenymä) Tutkitaan viiva-alkioita AB ja AC, jotka lähtevät samasta pisteestä A ja ovat kohtisuorassa toisiaan vastaan suunnissa n ja t Muodonmuutoksen tapahduttua viiva-alkiot ovat käyriä ja niiden välinen kulma pisteessä A on θ 10 5

2.3 LIUKUMA Liukuma (leikkausvenymä) Siten liukukulma pisteessä A suuntien n ja t suhteen on γ nt = π 2 lim B A pitkin n θ C A pitkin t Mikäli θ on suurempi kuin π/2, liukuma on postiivinen ja päinvastoin 11 2.4 KOKONAISVENYMÄ Karteesiset venymäkomponentit Käytetään edellä olleita määrityksiä ja kuvataan niillä kappaleen pisteen muodonmuutos Jaetaan kappale differentiaalielementteihin, joiden dimensiot ovat x, y ja z 12 6

2.4 KOKONAISVENYMÄ Karteesiset venymäkomponentit Muodonmuutoksen tapahduttua on elementti paralleelipipedi Sivujen aproksimoidut pituudet ovat (1 + ε x ) x (1 + ε y ) y (1 + ε z ) z 13 2.4 KOKONAISVENYMÄ Karteesiset venymäkomponentit Sivujen likimääräiset kulmat ovat π 2 γ π xy 2 γ yz π 2 γ xz Venymät aiheuttavat kappaleen tilavuudenmuutoksen Liukumat aiheuttavat kappaleen muodonmuutoksen Yhteenvetona: pisteessä pitää määrittää 3 venymää; ε x, ε y, ε z ja 3 liukumaa; γ xy, γ yz, γ xz 14 7

2.4 KOKONAISVENYMÄ Pienten venymien analyysi Useimmissa tekniikan sovelluksissa sallitaan vain kappaleen pienet siirtymät Oletetaan kappaleen muodonmuutosten olevan lähes infinitesimaalisia, jolloin normaalivenymät materiaalissa ovat hyvin pieniä yksikkövenymään nähden, ts. ε << 1. 15 2.4 KOKONAISVENYMÄ Pienten venymien analyysi Tämä oletus on laajalti sovellettua tekniikassa, jolloin puhutaan pienten venymien analyysista tai pienten siirtymien analyysista Silloin voidaan approksimoida esimerkiksi kulmien trigonometrisistä funktioista sin θ = θ, cos θ = θ ja tan θ = θ kun θ on hyvin pieni. 16 8

ESIMERKKI 2.1 Kuvan sauvaan vaikuttaa lämpötilan muutos, joka aiheuttaa aksiaalisuunnassa venymän ε z = 40(10 3 )z 1/2,, missä z on annettu metreissä. Määritä (a) pisteen B siirtymä johtuen lämpötilan noususta (b) Sauvan keskimääräinen venymä. 17 ESIMERKKI 2.1 (RATKAISU) (a) Differentiaalipalasen dz, joka sijaitsee pisteessä z, pituuden muutos on : dz = [1 + 40(10 3 )z 1/2 ] dz Integroimalla (summaamalla) yli koko sauvan, saadaan pituuden muutosten yhteisvaikutus eli 0.2 m z = 0 [1 + 40(10 3 )z 1/2 ] dz = z + 40(10 3 )(⅔ z 3/2 0.2 m ) 0 = 0,20239 m Siirtymä pisteessä B on siis B = 0,20239 m 0,2 m = 2,39 mm 18 9

ESIMERKKI 2.1 (RATKAISU) (b) Oleta sauva tai viiva-alkio, jolla on alkupituus 200 mm ja pituuden muutos 2,39 mm. Siten ε avg = s s s = 2.39 mm 200 mm = 0.0119 mm/mm 19 ESIMERKKI 2.2 Levyn muodonmuutos on esitetty kuvassa. Muodonmuutoksessa levyjen sivut pysyvät suorina eikä niiden pituus muutu. Määritä (a) Sivun AB keskimääräinen venymä ja (b) levyn liukuma (keskimääräinen leikkausvenymä) suhteessa x ja y akseleihin 20 10

ESIMERKKI 2.2 (RATKAISU) (a) Viivasta AB, joka on y akselin suuntainen, tulee AB muodonmuutoksen jälkeen. Viivan AB pituus on AB = (250 2) 2 + (3) 2 = 248.018 mm 21 ESIMERKKI 2.2 (RATKAISU) (a) Siten keskimääräinen normaalivenymä suoralla AB on (ε AB ) avg = AB AB AB = 248.018 mm 250 mm 250 mm = 7.93(10 3 ) mm/mm Negatiivinen etumerkki tarkoittaa, että materiaali puristuu ko. suoralla. 22 11

ESIMERKKI 2.2 (RATKAISU)) (b) Kun piste B siirtyy pisteeseen B, kulma BAC akselien x ja y välillä muuttuu arvoon θ. Koska γ xy = π/2 θ, saadaan liukumaksi γ xy = tan 1 ( ) 3 mm 250 mm 2 mm = 0.0121 rad 23 YHTEENVETO Kuormitukset muuttavat kappaleen muotoa, siten kappaleen pisteet saavat siirtymiä eli paikkamuutoksia Venymällä tarkoitetaan kappaleen lyhyen viiva-alkion pituudenmuutosta Liukumalla tarkoitetaan kappaleen kahden lyhyen, toisiaan vastaan kohtisuoran, viiva-alkion kulmamuutosta 24 12

YHTEENVETO Pisteen venymätila määritetään kuudella muodonmuutoskomponentilla: a) Kolme venymäkomponenttia: ε x, ε y, ε z b) Kolme liukumakomponenttia: γ xy, γ xz, γ yz Venymä on geometrinen suure, joka mitataan kokeellisesti. Kappaleessa oleva jännitystila määritetään sitten materiaaliominaisuuksien perusteella (konstitutiiviset yhteydet). 25 YHTEENVETO Useimmat teknisissä sovelluksissa käytettävät materiaalit ovat perustana koneille/laitteille/rakennuksille, jotka kuormitettuina saavat pieniä siirtymiä, siten ε << 1. Tämä ns. pienten siirtymien oletus sallii laskelmien yksinkertaistamisen eli ns. ensimmäisen kertaluvun teorian soveltamisen ja siihen liittyvät approksimaatiot 26 13