Miten osoitetaan joukot samoiksi?

Samankaltaiset tiedostot
Johdatus matemaattiseen päättelyyn

(2n 1) = n 2

Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa. väite P(n) on totta kaikille n = 0,1,2,...

Yhtäpitävyys. Aikaisemmin osoitettiin, että n on parillinen (oletus) n 2 on parillinen (väite).

Vastaoletuksen muodostaminen

Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta:

-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi

Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8

Todistusmenetelmiä Miksi pitää todistaa?

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Johdatus matematiikkaan

1 sup- ja inf-esimerkkejä

Johdatus matemaattiseen päättelyyn

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx

Ensimmäinen induktioperiaate

Johdatus matemaattiseen päättelyyn

Ensimmäinen induktioperiaate

Derivaatat lasketaan komponenteittain, esimerkiksi E 1 E 2

Funktioista. Esimerkki 1

Tarkastelemme ensin konkreettista esimerkkiä ja johdamme sitten yleisen säännön, joilla voidaan tietyissä tapauksissa todeta kielen ei-säännöllisyys.

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 8. syyskuuta 2016

Ominaisvektoreiden lineaarinen riippumattomuus

1 Lineaariavaruus eli Vektoriavaruus

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton.

Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei.

Ratkaisu: a) Kahden joukon yhdisteseen poimitaan kaikki alkiot jotka ovat jommassakummassa joukossa (eikä mitään muuta).

802320A LINEAARIALGEBRA OSA I

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.

1 sup- ja inf-esimerkkejä

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Johdatus matemaattiseen päättelyyn

2017 = = = = = = 26 1

Johdatus matemaattiseen päättelyyn (5 op)

a) Mitkä seuraavista ovat samassa ekvivalenssiluokassa kuin (3, 8), eli kuuluvat joukkoon

Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. ( ) Jeremias Berg

7. Tasaisen rajoituksen periaate

b) Määritä myös seuraavat joukot ja anna kussakin tapauksessa lyhyt sanallinen perustelu.

Johdatus matemaattiseen päättelyyn

Matematiikan ja tilastotieteen laitos Reaalianalyysi I Harjoitus Malliratkaisut (Sauli Lindberg)

Matematiikan tukikurssi, kurssikerta 2

Algebra I, Harjoitus 6, , Ratkaisut

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

Lineaarikuvauksen R n R m matriisi

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

Luonnollisten lukujen ja kokonaislukujen määritteleminen

Johdatus diskreettiin matematiikkaan (syksy 2009) Harjoitus 3, ratkaisuja Janne Korhonen

Luonnollisen päättelyn luotettavuus

Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }?

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

a ord 13 (a)

Ratkaisu: Käytetään induktiota propositiolauseen A rakenteen suhteen. Alkuaskel. A = p i jollain i N. Koska v(p i ) = 1 kaikilla i N, saadaan

4.3. Matemaattinen induktio

Ekvivalenssirelaatio. Määritelmä 2 Joukon A binäärinen relaatio R on ekvivalenssirelaatio, mikäli. Jos R on ekvivalenssirelaatio ja a A, niin joukkoa

3 Lukujonon raja-arvo

Matematiikan tukikurssi, kurssikerta 5

Pysähtymisongelman ratkeavuus [Sipser luku 4.2]

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Malliratkaisut Demot

Lukuteoria. Eukleides Aleksandrialainen (n. 300 eaa)

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua.

1 Supremum ja infimum

Ortogonaalisen kannan etsiminen

3 Lukujonon raja-arvo

Näin ollen saadaan tulos rad(g) diam(g). Toisaalta huomataan, että verkon G kaikilla solmuilla x ja y pätee kolmioepäyhtälön nojalla havainto

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.

LUKUTEORIA johdantoa

5.6 Yhdistetty kuvaus

Algebra I, harjoitus 5,

Johdatus diskreettiin matematiikkaan Harjoitus 5, Ratkaise rekursioyhtälö

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Johdatus matemaattiseen päättelyyn

Diofantoksen yhtälön ratkaisut

Insinöörimatematiikka A

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Seuraava topologisluonteinen lause on nk. Bairen lause tai Bairen kategorialause, n=1

Tehtävä 4 : 2. b a+1 (mod 3)

7 Vapaus. 7.1 Vapauden määritelmä

b) Olkoon G vähintään kaksi solmua sisältävä puu. Sallitaan verkon G olevan

(iv) Ratkaisu 1. Sovelletaan Eukleideen algoritmia osoittajaan ja nimittäjään. (i) 7 = , 7 6 = = =

Johdatus matematiikkaan

Malliratkaisut Demot

811120P Diskreetit rakenteet

2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)

Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38

Johdatus yliopistomatematiikkaan. JYM, Syksy2015 1/195

d ) m d (I n ) = 2 d n d. Koska tämä pätee kaikilla

Johdatus yliopistomatematiikkaan. JYM, Syksy /197

DFA:n käyttäytyminen ja säännölliset kielet

IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n

Koodausteoria, Kesä 2014

verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari

Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne.

Determinoiruvuuden aksiooma

Matematiikan tukikurssi

Ortogonaaliprojektio äärellisulotteiselle aliavaruudelle

Vaihtoehtoinen tapa määritellä funktioita f : N R on

Transkriptio:

Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts. jos x A, niin x B, (ii) osoitetaan, että B A, ts. jos x B, niin x A. 1 / 15

Miten joukot osoitetaan samoiksi? Esimerkki 1 Osoita, että {0,1} = {x R x 2 = x}. Todistus. On osoitettava kaksi seikkaa: {0,1} {x R x 2 = x} ja {x R x 2 = x} {0,1}. Perustellaan 1. väite: Koska 0 2 = 0 ja 1 2 = 1, niin {0,1} {x R x 2 = x}, joten 1. väite on totta. Perustellaan vielä 2. väite: Jos x R on sellainen, että x 2 = x, niin 0 = x 2 x = x(x 1), mistä nähdään, että x = 0 tai x = 1. Siis 2. väite pätee. 2 / 15

Miten joukot osoitetaan samoiksi? Esimerkki 2 Olkoot A = {x R x 2 5x + 6 = 0} ja B = {n N 3 < n 2 < 10}. Osoita, että A = B. Todistus. On osoitettava, että A B ja B A. (i) Väite 1: A B, ts. jos x A, niin x B. Todistus. Olkoon x A. Tällöin x R ja x 2 5x + 6 = 0. Ratkaistaan toisen asteen yhtälö jakamalla polynomi x 2 5x + 6 tekijöihin: 0 = x 2 5x + 6 = (x 2)(x 3). Tästä nähdään, että x = 2 tai x = 3. Koska 2 N ja 3 < 2 2 < 10, niin 2 B. Koska 3 N ja 3 < 3 2 < 10, niin 3 B. Siis A B. 3 / 15

Miten joukot osoitetaan samoiksi? Esimerkin 2 todistus jatkuu (ii) Väite 2: B A, ts. jos x B, niin x A. Todistus. Olkoon n B, ts. n N ja 3 < n 2 < 10. Tällöin n = 2 tai n = 3. Sijoittamalla 2 x:n paikalle lausekkeeseen x 2 5x + 6 saadaan 2 2 5 2 + 6 = 4 10 + 6 = 0. Siis 2 A. Sijoittamalla 3 muuttujan x paikalle lausekkeeseen x 2 5x + 6 saadaan 3 2 5 3 + 6 = 9 15 + 6 = 0. Siis 3 A. Näin ollen B A. Kohdista (i) ja (ii) seuraa, että A = B. 4 / 15

Miten joukot osoitetaan samoiksi? Esimerkki 3 Osoita, että A (B C) = (A B) (A C). Todistus. (i) Väite 1: A (B C) (A B) (A C), ts. jos x A (B C), niin x (A B) (A C). Todistus. Oletetaan, että x A (B C).Tällöin x A tai x B C. Käsitellään nämä tapaukset erikseen. Jos x A, niin x A B ja x A C yhdisteen määritelmän nojalla. Siis x (A B) (A C). Jos x B C, niin x B ja x C leikkauksen määritelmän perusteella. Edelleen yhdisteen määritelmän nojalla x A B ja x A C. Siis x (A B) (A C). Koska molemmissa tapauksissa x (A B) (A C), niin väite 1 on totta. 5 / 15

Miten joukot osoitetaan samoiksi? Todistus. (ii) Väite 2: (A B) (A C) A (B C), ts. jos x (A B) (A C), niin x A (B C). Todistus. Oletetaan, että x (A B) (A C).Tällöin x A B ja x A C. Jos x A, niin yhdisteen määritelmän nojalla x A (B C). Jos taas x / A, niin koska x A B ja x A C, on x molempien joukkojen B ja C alkio. Näin ollen x B C, mistä seuraa, että x A (B C). Siis väite 2 on totta. Kohdista (i) ja (ii) seuraa, että A (B C) = (A B) (A C). 6 / 15

Miten joukot osoitetaan samoiksi? Esimerkki 4 Osoita, että (A B) C = A C B C. Todistus. (i) Väite 1: (A B) C A C B C, ts. jos x (A B) C, niin x A C B C. Todistus. Oletetaan, että x (A B) C, ts. x / A B. Perustellaan, että tästä seuraa, että x / A ja x / B. Vastaoletus: x A tai x B. Tällöin x A B, mikä on ristiriita, sillä oletuksen perusteella x / A B. Siis vastaoletus on väärä. Näin ollen x / A ja x / B, ts. x A C ja x B C. Siis x A C B C. Väite 1 on siis totta. 7 / 15

Miten joukot osoitetaan samoiksi? Todistus. (ii) Väite 2: A C B C (A B) C, ts. jos x A C B C, niin x (A B) C. Todistus. Oletetaan, että x A C B C, ts. x / A ja x / B. Perustellaan, että tästä seuraa, että x / A B. Vastaoletus: x A B. Tällöin x A tai x B, mikä on ristiriita, sillä oletuksen mukaan x / A ja x / B. Siis vastaoletus on väärä. Näin ollen x / A B, ts. x (A B) C, ja väite 2 on osoitettu todeksi. Kohdista (i) ja (ii) seuraa, että (A B) C = A C B C. 8 / 15

Joukko-oppia Määritellään seuraavaksi joukkojen äärelliset ja numeroituvat yhdisteet ja leikkaukset. Määritelmä 2 Joukkojen A 1,A 2,...,A k äärellinen yhdiste on k A i = A 1 A 2... A k i=1 = {x x A 1 tai x A 2 tai... tai x A k } ja äärellinen leikkaus on = {x x A i jollakin i = 1,...,k} k A i = A 1 A 2... A k i=1 = {x x A 1 ja x A 2 ja... ja x A k } = {x x A i kaikilla i = 1,...,k}. 9 / 15

Joukko-oppia Määritelmä 3 Joukkojen A 1,A 2,... numeroituva yhdiste on A i = {x x A i jollakin i = 1,2,...} i=1 ja numeroituva leikkaus on A i = {x x A i kaikilla i = 1,2,...}. i=1 10 / 15

Joukko-oppia Esimerkki 5 [ ] Tarkastellaan joukkoja A = ] 1,0[, B = ]0,1], C = 1 2,2 ja D = {0,3}. Mitä ovat A B, A B D, B C ja A B C D? Ratkaisu: Määritelmien perusteella saadaan A B = ] 1,0[ ]0,1]= ] 1,1] \{0}, A B D= (A[ B) ] C= [ ] 1,1] ] \{0} {0,3} = ] 1,1] {3}, B C= ]0,1] 1 2,2 = 1 2,1 ja [ ] A B C D= A (B C) D= ] 1,0[ 1 2,1 {0,3}=. 11 / 15

Joukko-oppia Esimerkki 6 Kaikilla k N määritellään A k = [k,k + 1[. Mitä ovat 4 A k, 10 A k, 10 k=5 A k ja A k? Ratkaisu: Määritelmien perusteella 4 A k = A 1 A 2 A 3 A 4 = [1,2[ [2,3[ [3,4[ [4,5[= [1,5[, 10 10 k=5 A k = A 1 A 2... A 10 = [1,2[ [2,3[... [10,11[= [1,11[, A k = A 5 A 6... A 10 = [5,6[ [6,7[... [10,11[= [5,11[ ja A k = {x R x A k jollakin k = 1,2,...}= [1, [. 12 / 15

Joukko-oppia Esimerkki 7 Kaikilla k = 1,2,... määritellään A k = [0, 1 k [. Mitä ovat 4 A k, 10 A k, 10 k=5 A k ja A k? Ratkaisu: Määritelmien perusteella 4 A k = A 1 A 2 A 3 A 4 = [0,1[ [0, 1 2 [ [0, 1 3 [ [0, 1 4 [= [0, 1 4 [, 10 10 k=5 A k = A 1 A 2... A 10 = [0,1[ [0, 1 1 1 2 [... [0, 10 [= [0, 10 [, A k = A 5 A 6... A 10 = [0, 1 5 [ [0, 1 1 1 6 [... [0, 10 [= [0, 10 [ ja A k = {x R x A k kaikilla k = 1,2,...}= {0}. 13 / 15

Joukko-oppia Esimerkki 7 jatkuu Perustellaan viimeinen yhtäsuuruus, ts. todistetaan, että A k = {0}. On siis osoitettava, että {0} A k ja A k {0}. Koska 0 [0, 1 k [ kaikilla k = 1,2,..., niin {0} A k. 14 / 15

Joukko-oppia Esimerkki 7 jatkuu Osoitetaan vielä, että Oletus: x A k {0}. A k, ts. x A k kaikilla k = 1,2,.... Väite: x = 0. Vastaoletus: x 0. Koska x A 1 ja x 0, niin 0 < x < 1. Valitaan niin suuri i = 1,2,..., että i > 1 x. Tällöin 1 i < x, joten x / A i. Tämä on ristiriita, sillä oletuksen mukaan x A i. Näin ollen vastaoletus ei ole tosi, ja siten väite pätee. 15 / 15