MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Samankaltaiset tiedostot
MS-C1340 Lineaarialgebra ja

Lineaarialgebra ja differentiaaliyhtälöt Laskuharjoitus 1 / vko 44

Matriisilaskenta Luento 12: Vektoriavaruuden kannan olemassaolo

802320A LINEAARIALGEBRA OSA I

1 Lineaariavaruus eli Vektoriavaruus

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Insinöörimatematiikka D

MS-C1340 Lineaarialgebra ja

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Avaruuden R n aliavaruus

Insinöörimatematiikka D

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista

Insinöörimatematiikka D

JAKSO 2 KANTA JA KOORDINAATIT

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Kanta ja dimensio 1 / 23

6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio

Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.

Insinöörimatematiikka D

HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta II, kesä 2015 Harjoitus 1 Ratkaisut palautettava viimeistään maanantaina klo

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

Osoita, että täsmälleen yksi vektoriavaruuden ehto ei ole voimassa.

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Lineaarialgebra ja matriisilaskenta I

Insinöörimatematiikka D

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Johdatus lineaarialgebraan

MS-C1340 Lineaarialgebra ja

Matriisialgebra harjoitukset, syksy x 1 + x 2 = a 0

Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.

2.8. Kannanvaihto R n :ssä

Johdatus lineaarialgebraan

Kertausta: avaruuden R n vektoreiden pistetulo

Vektorien virittämä aliavaruus

Matriisilaskenta, LH4, 2004, ratkaisut 1. Hae seuraavien R 4 :n aliavaruuksien dimensiot, jotka sisältävät vain

3.1 Lineaarikuvaukset. MS-A0004/A0006 Matriisilaskenta. 3.1 Lineaarikuvaukset. 3.1 Lineaarikuvaukset

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /310

2. REAALIKERTOIMISET VEKTORIAVARUUDET

2.5. Matriisin avaruudet ja tunnusluvut

Yleiset lineaarimuunnokset

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Matemaattinen Analyysi / kertaus

Lineaarialgebra ja matriisilaskenta I

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

Lineaarikuvausten. Lineaarikuvaus. Lineaarikuvauksia. Ydin. Matriisin ydin. aiheita. Aiheet. Lineaarikuvaus. Lineaarikuvauksen matriisi

Lineaarialgebra ja matriisilaskenta I. LM1, Kesä /218

1 Avaruuksien ja lineaarikuvausten suora summa

Lineaarialgebra ja matriisilaskenta I

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut

Johdatus lineaarialgebraan

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

802320A LINEAARIALGEBRA OSA II

Insinöörimatematiikka D

Sisätuloavaruudet. 4. lokakuuta 2006

1. Normi ja sisätulo

MS-A0004/A0006 Matriisilaskenta

Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila

Kanta ja Kannan-vaihto

Insinöörimatematiikka D

Lineaarikuvauksen R n R m matriisi

1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.

1 Sisätulo- ja normiavaruudet

Lineaarialgebra ja matriisilaskenta I

Kertausta: avaruuden R n vektoreiden pistetulo

7 Vapaus. 7.1 Vapauden määritelmä

8 KANNAT JA ORTOGONAALISUUS. 8.1 Lineaarinen riippumattomuus. Vaasan yliopiston julkaisuja 151

Kuvaus. Määritelmä. LM2, Kesä /160

Lineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg

1 Ominaisarvot ja ominaisvektorit

ja jäännösluokkien joukkoa

x = y x i = y i i = 1, 2; x + y = (x 1 + y 1, x 2 + y 2 ); x y = (x 1 y 1, x 2 + y 2 );

Vektoreiden virittämä aliavaruus

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

HILBERTIN AVARUUKSISTA

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

Matemaattinen Analyysi, s2016, L2

802320A LINEAARIALGEBRA OSA III

MS-C1340 Lineaarialgebra ja

MS-C1340 Lineaarialgebra ja

3 Skalaari ja vektori

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt

Päättelyn voisi aloittaa myös edellisen loppupuolelta ja näyttää kuten alkupuolella, että välttämättä dim W < R 1 R 1

Ortogonaalisen kannan etsiminen

Ominaisarvo ja ominaisvektori

Matematiikka kaikille, kesä 2017

Matriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi.

Kantavektorien kuvavektorit määräävät lineaarikuvauksen

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210

Johdatus lineaarialgebraan

Määritelmä 1. Olkoot V ja W lineaariavaruuksia kunnan K yli. Kuvaus L : V. Termejä: Lineaarikuvaus, Lineaarinen kuvaus.

Johdatus matematiikkaan

1 Tensoriavaruuksista..

Johdatus lineaarialgebraan

Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35

MS-A0002 Matriisilaskenta Luento 1:Vektorit ja lineaariyhdistelyt

Transkriptio:

MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Vektoriavaruudet Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 17 R. Kangaslampi Vektoriavaruudet

Vektoriavaruus Vektoriavaruus on matemaattinen struktuuri, joka on lineaarialgebran peruskäsite. Vektoriavaruuksia käytetään paljon erityisesti matriisilaskennassa ja funktionaalianalyysissa. Vektoriavaruutta ajatellaan joukkona, johon on määritelty kaksi laskutoimitusta: alkioiden summa ja ns. skalaarilla kertominen. Skalaarit kuuluvat tiettyyn kerroinkuntaan K, esim. R tai C. Vektoriavaruuden alkioita kutsutaan vektoreiksi (vaikka ne siis eivät ollenkaan aina ole perinteisiä vektoreita). 2 / 17 R. Kangaslampi Vektoriavaruudet

Vektoriavaruus Määritelmä 1 Joukkoa V sanotaan vektoriavaruudeksi, jos V :n alkioille on määritelty yhteenlasku + : V V V ja skalaarilla kertominen : K V V siten, että (1) (u + v) + w = u + (v + w) u, v, w V (liitäntälaki) (2) On olemassa alkio 0 V, (nolla-alkio) s.e. v + 0 = v v V (3) jokaisella v V on olemassa v V s.e. (vasta-alkio) v + ( v) = 0 (4) u + v = v + u u, v V (vaihdantalaki) (5) α (u + v) = α u + α v α K, u, v V (osittelulaki) (6) (α + β) v = α v + β v α, β K, v V (osittelulaki) (7) α (β v) = (α β) v α, β K, v V (liitäntälaki) (8) 1 v = v v V. (yksikköalkio) 3 / 17 R. Kangaslampi Vektoriavaruudet

Vektoriavaruus Esimerkki 2 (Vektoriavaruuksia) R, R 2, R n varustettuna tutuilla kerto- ja yhteenlaskuilla V = {v R 2 v 2 = mv 1 }, tavalliset tason vektorien yhteenlasku ja reaaliluvulla kertominen Kaikkien reaalisten m n -matriisien muodostama joukko R m n, matriisien yhteenlasku ja reaaliluvulla kertominen Korkeintaan toista astetta olevien x :n polynomien joukko P 2 = {p p(x) = a 0 + a 1 x + a 2 x 2, a 0, a 1, a 2 C}, polynomien yhteenlasku ja skalaarilla kertominen samoin P n, P välillä [a, b] jatkuvien reaaliarvoisten funktioiden joukko C[a, b] 4 / 17 R. Kangaslampi Vektoriavaruudet

Vektoriavaruus Esimerkki 3 (Eivät vektoriavaruuksia) V = {v R 2 v 2 = mv 1 1}, eli ne tason vektorit, jotka muodostavat suoran y = mx 1. V ei voi olla vektoriavaruus koska 0 V. W = {(x, sin(x)) x R} normaalein vektorien laskusäännöin ei ole vektoriavaruus, sillä (π/2, sin(π/2)) + (π, sin π) = (3π/2, 1) (3π/2, sin(3π/2)). 5 / 17 R. Kangaslampi Vektoriavaruudet

Vektorialiavaruus Määritelmä 4 K -kertoimisen vektoriavaruuden V ei-tyhjä osajoukko S V on V :n aliavaruus, jos pätee a) u, v S u + v S, b) v S, α K α v S, kun käytetään V :ssä määriteltyjä laskutoimituksia. Ehdot a) ja b) voidaan kirjoittaa yhteen ekvivalentiksi ehdoksi: u, v S, α, β K α u + β v S. 6 / 17 R. Kangaslampi Vektoriavaruudet

Vektorialiavaruus Esimerkki 5 Vektoriavaruuden R 3 kaikki vektorialiavaruudet ovat triviaaliavaruus {(0, 0, 0)} origon kautta kulkevat suorat origon kautta kulkevat tasot avaruus R 3 itse Esimerkki 6 Onko S = {v R 2 v 1 0} vektoriavaruuden R 2 aliavaruus? Ei, sillä S ei ole skalaarilla kertomisen suhteen suljettu: esim. 1 (1, 1) / S. 7 / 17 R. Kangaslampi Vektoriavaruudet

Vektorialiavaruus Määritelmä 7 Ei-tyhjän joukon S V viritelmä (engl. span) sp(s) on kaikkien S :n alkioista muodostettujen lineaarikombinaatioiden joukko eli sp(s) = { u V u = n a i s i, a i K, s i S, 1 n < }. i=1 Viritelmä on aina alkuperäisen joukon aliavaruus. Jos U = sp(v 1,..., v k ), vektorijoukko {v 1,..., v k } virittää U :n. 8 / 17 R. Kangaslampi Vektoriavaruudet

Kanta Määritelmä 8 Vektoriavaruuden osajoukko {v 1, v 2,..., v n } on lineaarisesti riippumaton, jos nollavektori voidaan esittää näiden lineaarikombinaationa vain siten, että kaikki kertoimet ovat nollia, eli kun c 1 = c 2 = = c n = 0 on yhtälön c 1 v 1 + c 2 v 2 +... + c n v n = 0 ainoa ratkaisu. Jos muitakin ratkaisuja on, niin joukkoa {v 1, v 2,..., v n } sanotaan lineaarisesti riippuvaksi. 9 / 17 R. Kangaslampi Vektoriavaruudet

Kanta Lause 9 Vektorijoukko {v 1, v 2,..., v n } on lineaarisesti riippuva jos ja vain jos jokin vektoreista voidaan esittää muiden vektoreiden lineaarikombinaationa. Esimerkki 10 Olkoon p 1 (t) = 1, p 2 (t) = t, p 3 (t) = 4 t. Joukko {p 1, p 2, p 3 } P 1 on lineaarisesti riippuva, sillä p 3 = 4p 1 p 2. 10 / 17 R. Kangaslampi Vektoriavaruudet

Kanta Määritelmä 11 Vektoriavaruuden V äärellistä osajoukkoa B = {b 1, b 2,..., b n } sanotaan V :n kannaksi, jos se on lineaarisesti riippumaton ja virittää V :n. Vektoriavaruuden V dimensio, dim(v ), on V :n kantavektoreiden lukumäärä. Dimension määritelmä on järkevä: vaikka kantavektorit voidaan valita monella tavalla, niitä on aina sama määrä! Tämä nähdään seuraavasta: Lause 12 Olkoon V vektoriavaruus. Jos joukko {w 1, w 2,..., w n } virittää V :n ja {v 1, v 2,..., v k } V on lineaarisesti riippumaton joukko, niin n k. 11 / 17 R. Kangaslampi Vektoriavaruudet

Kanta Sanotaan, että vektoriavaruus V on ääretönulotteinen, dim(v ) =, jos on olemassa vektorijono {v 1, v 2,... } V siten, että joukko {v 1,..., v n } on lineaarisesti riippumaton kaikilla n N. Esimerkki 13 Ääretönulotteisia vektoriavaruuksia ovat esim. kaikkien rajoitettujen lukujonojen joukko l kaikkien polynomien muodostama avaruus P kaikkien välillä [a, b] jatkuvien funktioiden vektoriavaruus C[a, b] 12 / 17 R. Kangaslampi Vektoriavaruudet

Kanta Lause 14 Jos dim(v ) = n ja {v 1,..., v n } V on lineaarisesti riippumaton, niin se on V :n kanta. Lause 15 Jos B = {b 1, b 2,..., b n } on vektoriavaruuden V kanta, niin jokainen vektori v V voidaan esittää muodossa v = c 1 b 1 + c 2 b 2 + + c n b n täsmälleen yhdellä tavalla. 13 / 17 R. Kangaslampi Vektoriavaruudet

Kannanvaihto Ongelma: tunnetaan vektorin esitys kannassa B = {b 1, b 2,..., b n } ja halutaan vaihtaa toiseen kantaan U = {u 1, u 2,..., u n }. Merkitään vektorin v koordinaatteja näissä kannoissa [v] B = (β 1,..., β n ) ja [v] U = (η 1,..., η n ). Jos b j = n i=1 s ij u i, j = 1,..., n, niin v = n η i u i = i=1 n β j b j = j=1 n j=1 β j n s ij u i = i=1 n ( n ) s ij β j u i. i=1 j=1 Vektorin koordinaatit (kannassa U ) ovat yksikäsitteiset, joten η i = n j=1 s ij β j, i = 1,..., n. 14 / 17 R. Kangaslampi Vektoriavaruudet

Kannanvaihto s 11... s 1n Merkitään S =... s n1... s nn Tällöin koordinaattien välinen yhtälö on [v] U = S [v] B. Matriisia S kutsutaan kannanvaihtomatriisiksi. Se on aina kääntyvä, joten vanhat koordinaatit saadaan uusista vastaavasti [v] B = S 1 [v] U. 15 / 17 R. Kangaslampi Vektoriavaruudet

Kannanvaihto Esimerkki 16 Tarkastellaan R 2 :n kantoja B = {b 1, b 2 } ja C = {c 1, c 2 }, missä b 1 = [ ] 9, b 1 2 = [ ] [ ] [ ] 5 1 3, c 1 1 =, c 4 2 =. 5 Etsi kannanvaihtomatriisi kannasta B kantaan C. Ratkaisu: Halutaan siis löytää kertoimet, joilla B:n kantavektorit voidaan esittää C:n kantavektorien avulla, eli kertoimet x 1, x 2, y 1, y 2 siten, että [ ] [ ] x c1 c 1 2 x 2 = b 1 ja [ ] [ ] y c1 c 1 2 = b y 2. 2 16 / 17 R. Kangaslampi Vektoriavaruudet

Kannanvaihto Yhtälöt voidaan ratkaista kerralla tekemällä liittomatriisi [ c1 c 2 b 1 b 2 ] ja käyttämällä siihen Gaussin algoritmia. Saadaan [ ] 1 3 9 5 4 5 1 1 [ ] 1 0 6 4. 0 1 5 3 [ ] 6 4 Kannanvaihtomatriisi B:stä C:hen on siis. 5 3 [ ] [ ] [ ] 1 6 4 1 Esimerkiksi, jos [v] B =, niin [v] 0 C = = 5 3 0 [ ] 6. 5 17 / 17 R. Kangaslampi Vektoriavaruudet