Inversio-ongelmien laskennallinen peruskurssi Luento 3
|
|
- Kimmo Niemi
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 Inversio-ongelmien laskennallinen peruskurssi Luento 3 Kevät Singulaariarvohajotelma (Singular Value Decomposition, SVD) Olkoon A R m n matriisi 1. Tällöin A voidaan esittää muodossa A = UΣV T, missä U R m m on ortogonaalinen (kompleksitapauksessa unitaarinen), eli UU T = U T U = I, V R n n on ortogonaalinen ja Σ R m n on diagonaalinen siten, että sen diagonaalielementit ovat ei-negatiivisia. Toisin sanoen { σ ii 0, i = 1, 2,..., min(m, n) Σ = 0 muulloin. Tätä hajotelmaa kutsutaan matriisin A singulaariarvohajotelmaksi ja matriisin Σ diagonaalialkioita σ ii matriisin A singulaariarvoiksi. Lineaarisen yhtälöryhmän m = Ax, A R m n, m R m, x R n ratkaisu voidaan esittää SVD:n avulla muodossa x = x 0 + min(m,n) i=1 1 σ i m, u i v i, 1 Singulaarihajotelma on voimassa myös kompleksisille matriiseille. Tällöin transpoosi korvataan konjugaattitanspoosilla A = A T 1
2 missä x 0 ker(a) on mielivaltainen matriisin A ytimen alkio, σ i ovat A:n singulaariarvot ja vektorit u i sekä v i ovat matriisien U ja V i:nnet sarakevektorit. Jos matriisi A on kääntyvä, niin tämä voidaan kirjoittaa matriisimuodossa x = V Σ 1 U T. Myös matriisin A pseudoinverssi voidaan lausua SVD:n avulla: M + = V Σ + U T, missä Σ + on matriisin Σ psudoinverssi, joka muodostetaan korvaamalla jokainen Σ:n nollasta eroava alkio käänteisluvullaan ja transponoimalla. Esimerkiksi, jos 1 0 Σ = 0 3, 0 0 niin Σ + = ( Huomautus 1.1. Numeerisissa sovelluksissa lähellä nollaa olevat singulaariarvot yleensä asetetaan nolliksi pyöristysvirheiden välttämiseksi. Esimerkiksi MATLAB käyttää pseudoinverssin lakevassa funktiossa pinv oletustoleranssina arvoa ). TOL = MAX(SIZE(A))*NORM(A)*EPS(CLASS(A)). Voihtoehtoisesti voi käyttää muotoa pinv(a,tol), missä TOL on haluttu toleranssi. 2 Pseudoinverssi käyttäen QR-hajotelmaa Määritelmä 2.1. Olkoon A R m n, m n. Tällöin se voidaan esittää muodossa [ ] R A = Q, missä Q R m m on ortogonaalinen (unitaarinen), R R k n, k = rank(a), on yläkolmiomatriisi, jonka diagonaalielementit ovat ei-negatiivisiä, ja 0 R R (m k) n on nollamatriisi. Tätä hahotelmaa kutsutaan matriisin A QRhajotelmaksi. MATLABilla matriisin QR-hajotelma voidaan laskea käskyllä 0 R [Q,R] = qr(a). 2
3 Jos matriisi A R n n on käänytvä, niin sen QR-hajotelma on muotoa Tällöin ongelma A = QR. m = Ax voidaan ratkaista numeerisesti helposti käyttämällä takaisinsijoitusta yhtälölle Rx = Q T m, jolloin matriisin R käänteismatriisia ei tarvitse eksplisiittisesti laskea. Matriisin A pseudoinverssi voidaan lausua QR-hajotelman avulla seuraavasti: jos niin [ R A = Q 0 R A + = [ R + 0 T R ], ] Q T, missä R + on matriisin R pseudoinverssi ja Q T R n (m k) on nollamatriisi. Huomaa, että nyt matriisi RR T on kääntyvä, joten R + = R T (RR T ) 1. 3 Numeerisesta tarkkuudesta 3.1 Absoluuttinen virhe Oletetaan, että matriisi A R n n on kääntyvä. Tarkastellaan lineaarista ongelmaa m = Ax. Jos mittausta m muutetaan termin m verran, m = m + m, niin tällöin uusi ratkaisu x on muotoa x = x + x, eli eli josta saadaan m + m = A(x + x), A 1 (m + m) = x + x, x = A 1 m. Täten käyttämällä matriisi- ja vektorinormeja, saadaan absoluuttisen virheen ylärajaksi x A 1 m. Toisin sanoen, 3
4 jos A 1 on pieni, niin ratkaisun absoluutinen virhe x on pieni, jos mittauksen absoluuttinen virhe m on pieni, ja jos A 1 on suuri, niin x saattaa olla suuri, vaikka m olisi pieni. 3.2 Suhteellinen virhe Oletetaan edelleen, että matriisi A on kääntyvä. Tällöin ratkaisun suhteelliselle virheelle / x saadaan yläraja x x A A 1 m Tämä seuraa epäyhtälöistä x A 1 m ja m A x. Nyt matriisin A ehtoluku määritellään kaavalla κ(a) = A A 1, joten yllä oleva epäyhtälö voidaan kirjoittaa muodossa x x κ(a) m Huomaa, että ehtoluku κ(a) 1 kaikille kääntyville matriiseille A, koska yhtälöstä I = A 1 A seuraa, että 1 = I A A 1 = κ(a). Kun κ(a) on lähellä ykköstä, on ratkaisun suhteellinen virhe samaa suuruusluokkaa kuin mittauksen suhteellinen virhe, ja ongelman sanotaan olevan hyvin asetettu. Jos taas κ(a) on suuri, saattaa ratkaisun suhteellinen virhe olla suuri, vaikka mittauksen suhteellinen virhe olisikin pieni. Tällöin ongelma on huonosti asetettu. 3.3 Pseudoinverssi ja virhe Huomaa, että yllä oleva yleistyy myös tapaukseen, jossa haetaan approksimatiivista ratkaisua pseudoinverssin avulla: tarkastellaan ongelmaa m = Ax, missä A R m n. Tällöin approksimatiivinen ratkaisu saadaan käyttämällä pseudoinverssiä: x = A + m. Samoin kuin edellä olevassa tapauksessa x A + m 4
5 ja x x A A + m m = κ(a) m Myös pseudoinverssin avulla määritellylle ehtoluvulle pätee κ(a) = A A + 1, sillä voidaan osoittaa, että pseudoinverssille pätee A + = A + AA +, josta saadaan eli A + A + A A + 1 A + A. 5
Inversio-ongelmien laskennallinen peruskurssi Luento 2
Inversio-ongelmien laskennallinen peruskurssi Luento 2 Kevät 2012 1 Lineaarinen inversio-ongelma Määritelmä 1.1. Yleinen (reaaliarvoinen) lineaarinen inversio-ongelma voidaan esittää muodossa m = Ax +
Inversio-ongelmien laskennallinen peruskurssi Luento 4
Inversio-ongelmien laskennallinen peruskurssi Luento 4 Kevät 20 Regularisointi Eräs keino yrittää ratkaista (likimääräisesti) huonosti asetettuja ongelmia on regularisaatio. Regularisoinnissa ongelmaa
MS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Matriisinormi Matriisinormi Matriiseille
MS-C1340 Lineaarialgebra ja
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt QR-hajotelma ja pienimmän neliösumman menetelmä Riikka Kangaslampi Kevät 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto PNS-ongelma PNS-ongelma
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt ja pienimmän neliösumman menetelmä Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 18 R. Kangaslampi QR ja PNS PNS-ongelma
MS-A0003/A Matriisilaskenta Laskuharjoitus 6
MS-A3/A - Matriisilaskenta Laskuharjoitus 6 Ratkaisuehdotelmia. Diagonalisointi on hajotelma A SΛS, jossa diagonaalimatriisi Λ sisältää matriisin A ominaisarvot ja matriisin S sarakkeet ovat näitä ominaisarvoja
Inversio-ongelmien laskennallinen peruskurssi Luento 7 8
Inversio-ongelmien laskennallinen peruskurssi Luento 7 8 Kevät 2011 1 Iteratiivisista menetelmistä Tähän mennessä on tarkasteltu niin sanottuja suoria menetelmiä, joissa (likimääräinen) ratkaisu saadaan
Ratkaisuehdotukset LH 8 / vko 47
Ratkaisuehdotukset LH 8 / vko 47 Tehtävä 1: Olkoot A R n n matriisi, jonka singulaariarvohajotelma on A [ ] [ ] Σ U 1 U r 0 [V1 ] T 2 V 0 0 2 Jossa Σ r on kääntyvä matriisi, [ U 1 U 2 ] ja [ V1 V 2 ] ovat
Esimerkki 19. Esimerkissä 16 miniminormiratkaisu on (ˆx 1, ˆx 2 ) = (1, 0).
Esimerkki 9 Esimerkissä 6 miniminormiratkaisu on (ˆx, ˆx (, 0 Seuraavaksi näytetään, että miniminormiratkaisuun siirtyminen poistaa likimääräisongelman epäyksikäsitteisyyden (mutta lisääntyvän ratkaisun
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Matriisinormi, häiriöalttius Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 14 R. Kangaslampi matriisiteoriaa Matriisinormi
Matriisihajotelmat. MS-A0007 Matriisilaskenta. 5.1 Diagonalisointi. 5.1 Diagonalisointi
MS-A0007 Matriisilaskenta 5. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 25.11.2015 Laskentaongelmissa käsiteltävät matriisit ovat tyypillisesti valtavia.
Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 41
MS-A0004/MS-A0006 Matriisilaskenta, I/06 Matriisilaskenta Laskuharjoitus 5 - Ratkaisut / vko 4 Tehtävä 5 (L): a) Oletetaan, että λ 0 on kääntyvän matriisin A ominaisarvo. Osoita, että /λ on matriisin A
Käänteismatriisi 1 / 14
1 / 14 Jokaisella nollasta eroavalla reaaliluvulla on käänteisluku, jolla kerrottaessa tuloksena on 1. Seuraavaksi tarkastellaan vastaavaa ominaisuutta matriiseille ja määritellään käänteismatriisi. Jokaisella
MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42
MS-A0004/MS-A0006 Matriisilaskenta Laskuharjoitus 6 / vko 42 Tehtävät 1-4 lasketaan alkuviikon harjoituksissa ryhmissä, ja ryhmien ratkaisut esitetään harjoitustilaisuudessa (merkitty kirjaimella L = Lasketaan).
Numeeriset menetelmät TIEA381. Luento 4. Kirsi Valjus. Jyväskylän yliopisto. Luento 4 () Numeeriset menetelmät / 44
Numeeriset menetelmät TIEA381 Luento 4 Kirsi Valjus Jyväskylän yliopisto Luento 4 () Numeeriset menetelmät 21.3.2013 1 / 44 Luennon 4 sisältö Lineaarisen yhtälöryhmän ratkaisemisesta: Choleskyn menetelmä
Talousmatematiikan perusteet: Luento 10. Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi
Talousmatematiikan perusteet: Luento 10 Lineaarikuvaus Matriisin aste Determinantti Käänteismatriisi Lineaarikuvaus Esim. Yritys tekee elintarviketeollisuuden käyttämää puolivalmistetta, jossa käytetään
Numeeriset menetelmät
Numeeriset menetelmät Luento 5 Ti 20.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 5 Ti 20.9.2011 p. 1/40 p. 1/40 Choleskyn menetelmä Positiivisesti definiiteillä matriiseilla kolmiohajotelma
Numeeriset menetelmät
Numeeriset menetelmät Luento 4 To 15.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 4 To 15.9.2011 p. 1/38 p. 1/38 Lineaarinen yhtälöryhmä Lineaarinen yhtälöryhmä matriisimuodossa Ax = b
Johdatus tekoälyn taustalla olevaan matematiikkaan
Johdatus tekoälyn taustalla olevaan matematiikkaan Informaatioteknologian tiedekunta Jyväskylän yliopisto 5. luento.2.27 Lineaarialgebraa - Miksi? Neuroverkon parametreihin liittyvät kaavat annetaan monesti
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot
Ratkaisuehdotukset LH 7 / vko 47
MS-C34 Lineaarialgebra, II/7 Ratkaisuehdotukset LH 7 / vko 47 Tehtävä : Olkoot M R symmetrinen ja positiividefiniitti matriisi (i) Näytä, että m > ja m > (ii) Etsi Eliminaatiomatriisi E R siten, että [
Kohdeyleisö: toisen vuoden teekkari
Julkinen opetusnäyte Yliopisto-opettajan tehtävä, matematiikka Klo 8:55-9:15 TkT Simo Ali-Löytty Aihe: Lineaarisen yhtälöryhmän pienimmän neliösumman ratkaisu Kohdeyleisö: toisen vuoden teekkari 1 y y
Talousmatematiikan perusteet: Luento 11. Lineaarikuvaus Matriisin aste Käänteismatriisi
Talousmatematiikan perusteet: Luento 11 Lineaarikuvaus Matriisin aste Käänteismatriisi Viime luennolla Käsittelimme matriisien peruskäsitteitä ja laskutoimituksia Vakiolla kertominen, yhteenlasku ja vähennyslasku
LU-hajotelma. Esimerkki 1 Matriisi on yläkolmiomatriisi ja matriisi. on alakolmiomatriisi. 3 / 24
LU-hajotelma 1 / 24 LU-hajotelma Seuravassa tarkastellaan kuinka neliömatriisi voidaan esittää kahden kolmiomatriisin tulona. Käytämme alkeismatriiseja tälläisen esityksen löytämiseen. Edellä mainittua
Numeeriset menetelmät TIEA381. Luento 5. Kirsi Valjus. Jyväskylän yliopisto. Luento 5 () Numeeriset menetelmät / 28
Numeeriset menetelmät TIEA381 Luento 5 Kirsi Valjus Jyväskylän yliopisto Luento 5 () Numeeriset menetelmät 3.4.2013 1 / 28 Luennon 5 sisältö Luku 4: Ominaisarvotehtävistä Potenssiinkorotusmenetelmä QR-menetelmä
Matriisilaskenta Luento 8: LU-hajotelma
Matriisilaskenta Luento 8: LU-hajotelma Antti Rasila 2016 Matriisihajotelmat 1/2 Usein matriisiyhtälön Ax = y ratkaiseminen on epäkäytännöllistä ja hidasta. Siksi numeerisessa matriisilaskennassa usein
Lineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 30.5.2013 HY / Avoin yliopisto Jokke Häsä, 1/19 Käytännön asioita Kurssi on suunnilleen puolessa välissä. Kannattaa tarkistaa tavoitetaulukosta, mitä on oppinut ja
Numeeriset menetelmät
Numeeriset menetelmät Luento 6 To 22.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 6 To 22.9.2011 p. 1/38 p. 1/38 Ominaisarvotehtävät Monet sovellukset johtavat ominaisarvotehtäviin Yksi
Matematiikka B2 - TUDI
Matematiikka B2 - TUDI Miika Tolonen 3. syyskuuta 2012 Miika Tolonen Matematiikka B2 - TUDI 1 Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus
Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus 1 / 51 Lineaarikombinaatio Johdattelua seuraavaan asiaan (ei tarkkoja määritelmiä): Millaisen kuvan muodostaa joukko {λv λ R, v R 3 }? Millaisen
Lineaarialgebra II, MATH.1240 Matti laaksonen, Lassi Lilleberg
Vaasan yliopisto, syksy 218 Lineaarialgebra II, MATH124 Matti laaksonen, Lassi Lilleberg Tentti T1, 284218 Ratkaise 4 tehtävää Kokeessa saa käyttää laskinta (myös graafista ja CAS-laskinta), mutta ei taulukkokirjaa
(0 desimaalia, 2 merkitsevää numeroa).
NUMEERISET MENETELMÄT DEMOVASTAUKSET SYKSY 20.. (a) Absoluuttinen virhe: ε x x ˆx /7 0.4 /7 4/00 /700 0.004286. Suhteellinen virhe: ρ x x ˆx x /700 /7 /00 0.00 0.%. (b) Kahden desimaalin tarkkuus x ˆx
Matematiikka B2 - Avoin yliopisto
6. elokuuta 2012 Opetusjärjestelyt Luennot 9:15-11:30 Harjoitukset 12:30-15:00 Tentti Kurssin sisältö (1/2) Matriisit Laskutoimitukset Lineaariset yhtälöryhmät Gaussin eliminointi Lineaarinen riippumattomuus
Likimääräisratkaisut ja regularisaatio
Luku 3 Likimääräisratkaisut ja regularisaatio Käytännön inversio-ongelmissa annettu data y ei aina ole tarkkaa, vaan sisältää häiriöitä. Tuntemattomasta x on annettu häiriöinen data y F (x + }{{}}{{} ε.
Liittomatriisi. Liittomatriisi. Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä. 1) i+j det A ij.
Liittomatriisi Määritelmä 16 Olkoon A 2 M(n, n). Matriisin A liittomatriisi on cof A 2 M(n, n), missä (cof A) ij =( 1) i+j det A ij kaikilla i, j = 1,...,n. Huomautus 8 Olkoon A 2 M(n, n). Tällöin kaikilla
Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen.
Pns ratkaisu (Kr. 20.5, Lay 6.5 C-II/KP-II, 20, Kari Eloranta Monissa käytännön ongelmissa ei matriisiyhtälölle Ax = b saada ratkaisua, mutta approksimaatio on silti käyttökelpoinen. Määritelmä Jos A on
Singulaariarvohajotelma ja pseudoinverssi
HELSINGIN YLIOPISTO Pro gradu -tutkielma Niko Kaitarinne Singulaariarvohajotelma ja pseudoinverssi Matematiikan ja tilastotieteen laitos Matematiikka Helmikuu 01 Helsingin yliopisto Matematiikan ja tilastotieteen
Likimääräisratkaisut ja regularisaatio
48 Luku 4 Likimääräisratkaisut ja regularisaatio Ryhdytään tarkastelemaan klassisia approksimatiivisia ratkaisumenetelmiä huonosti asetetuille tai häiriöherkille äärellisulotteisille lineaarisille ongelmille
Matemaattinen Analyysi / kertaus
Matemaattinen Analyysi / kertaus Ensimmäinen välikoe o { 2x + 3y 4z = 2 5x 2y + 5z = 7 ( ) x 2 3 4 y = 5 2 5 z ) ( 3 + y 2 ( 2 x 5 ( 2 7 ) ) ( 4 + z 5 ) = ( 2 7 ) yhteys determinanttiin Yhtälöryhmän ratkaiseminen
9 Matriisit. 9.1 Matriisien laskutoimituksia
9 Matriisit Aiemmissa luvuissa matriiseja on käsitelty siinä määrin kuin on ollut tarpeellista yhtälönratkaisun kannalta. Matriiseja käytetään kuitenkin myös muihin tarkoituksiin, ja siksi on hyödyllistä
5 OMINAISARVOT JA OMINAISVEKTORIT
5 OMINAISARVOT JA OMINAISVEKTORIT Ominaisarvo-ongelma Käsitellään neliömatriiseja: olkoon A n n-matriisi. Luku on matriisin A ominaisarvo (eigenvalue), jos on olemassa vektori x siten, että Ax = x () Yhtälön
Paikannuksen matematiikka MAT
TA M P E R E U N I V E R S I T Y O F T E C H N O L O G Y M a t h e m a t i c s Paikannuksen matematiikka MAT-45800 4..008. p.1/4 Käytännön järjestelyt Kotisivu: http://math.tut.fi/courses/mat-45800/ Luennot:
Sisätuloavaruudet. 4. lokakuuta 2006
Sisätuloavaruudet 4. lokakuuta 2006 Tässä esityksessä vektoriavaruudet V ja W ovat kompleksisia ja äärellisulotteisia. Käydään ensin lyhyesti läpi määritelmiä ja perustuloksia. Merkitään L(V, W ) :llä
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi A. Lepistö alepisto@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2016 M. Hirvensalo V. Junnila A. Lepistö
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 3 /
MS-A3/A5 Matriisilaskenta, II/27 MS-A3/A5 Matriisilaskenta Laskuharjoitus 3 / 3. 7..27 Tehtävä (L): Etsi kaikki yhtälön Ax = b ratkaisut, kun 3 5 4 A = 3 2 4 ja b = 6 8 7 4. Ratkaisu : Koetetaan ratkaista
Ennakkotehtävän ratkaisu
Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] 1 3 4 3 A = ja B =. 1 4 1 1 [ ] [ ] 4 3 12 12 1 0 a) BA = =. 1 + 1 3 + 4 0 1 [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] 4 3 1 4 9 5 c) Bb
1 Kertaus. Lineaarinen optimointitehtävä on muotoa:
1 Kertaus Lineaarinen optimointitehtävä on muotoa: min c 1 x 1 + c 2 x 2 + + c n x n kun a 11 x 1 + a 12 x 2 + + a 1n x n b 1 a 21 x 1 + a 22 x 2 + + a 2n x n b 2 (11) a m1 x 1 + a m2 x 2 + + a mn x n
Ominaisarvot ja ominaisvektorit 140 / 170
Ominaisarvot ja ominaisvektorit 140 / 170 Seuraavissa luvuissa matriisit ja vektori ajatellaan kompleksisiksi, ts. kertojakuntana oletetaan olevan aina kompleksilukujoukko C Huomaa, että reaalilukujoukko
1. Normi ja sisätulo
Kurssimateriaalia K3/P3-kursille syksyllä 3 83 Heikki Apiola Sisältää otteita Timo Eirolan L3-kurssin lineaarialgebramonisteesta, jonka lähdekoodin Timo on ystävällisesti antanut käyttööni Normi ja sisätulo
5 Ominaisarvot ja ominaisvektorit
5 Ominaisarvot ja ominaisvektorit Olkoon A = [a jk ] n n matriisi. Tarkastellaan vektoriyhtälöä Ax = λx, (1) missä λ on luku. Sellaista λ:n arvoa, jolla yhtälöllä on ratkaisu x 0, kutsutaan matriisin A
MS-A0003/A0005 Matriisilaskenta Malliratkaisut 5 / vko 48
MS-A3/A5 Matriisilaskenta Malliratkaisut 5 / vko 48 Tehtävä (L): a) Onko 4 3 sitä vastaava ominaisarvo? b) Onko λ = 3 matriisin matriisin 2 2 3 2 3 7 9 4 5 2 4 4 ominaisvektori? Jos on, mikä on ominaisarvo?
3.2.2 Tikhonovin regularisaatio
3 Tikhonovin regularisaatio Olkoon x 0 R n tuntematon, M R m n teoriamatriisi ja y Mx + ε R m (316 annettu data Häiriöherkässä ongelmassa pienimmän neliösumman miniminormiratkaisu x M + y Q N (M x + M
Matriisilaskenta (TFM) MS-A0001 Hakula/Vuojamo Ratkaisut, Viikko 47, 2017
Matriisilaskenta (TFM) MS-A1 Hakula/Vuojamo Ratkaisut, Viikko 47, 17 R Alkuviikko TEHTÄVÄ J1 Mitkä matriisit E 1 ja E 31 nollaavat sijainnit (, 1) ja (3, 1) matriiseissa E 1 A ja E 31 A kun 1 A = 1. 8
Insinöörimatematiikka D
Insinöörimatematiikka D M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M Hirvensalo mikhirve@utufi V Junnila viljun@utufi Luentokalvot 5 1
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a 21
Numeeriset menetelmät TIEA381. Luento 6. Kirsi Valjus. Jyväskylän yliopisto. Luento 6 () Numeeriset menetelmät / 33
Numeeriset menetelmät TIEA381 Luento 6 Kirsi Valjus Jyväskylän yliopisto Luento 6 () Numeeriset menetelmät 4.4.2013 1 / 33 Luennon 6 sisältö Interpolointi ja approksimointi Polynomi-interpolaatio: Vandermonden
2. Teoriaharjoitukset
2. Teoriaharjoitukset Demotehtävät 2.1 Todista Gauss-Markovin lause. Ratkaisu. Oletetaan että luentokalvojen standardioletukset (i)-(v) ovat voimassa. Huomaa että Gauss-Markovin lause ei vaadi virhetermien
Ratkaisuehdotukset LH 3 / alkuvko 45
Ratkaisuehdotukset LH 3 / alkuvko 45 Tehtävä : Olkoot A, B, X R n n, a, b R n ja jokin vektorinormi. Kätetään vektorinormia vastaavasta operaattorinormista samaa merkintää. Nätä, että. a + b a b, 2. A
Luento 5: Suurten lineaaristen yhtälöryhmien ratkaiseminen iteratiivisilla menetelmillä
Luento 5: Suurten lineaaristen yhtälöryhmien ratkaiseminen iteratiivisilla menetelmillä Matriisit voivat olla kooltaan niin suuria, että LU-hajotelman laskeminen ei ole järkevä tapa ratkaista lineaarista
1 Singulaariarvohajoitelma
1 Singulaariarvohajoitelma Tähän mennessä on tutkittu yhtälöryhmän Ax = y ratkaisuja ja törmätty tapauksiin joissa yhtälöryhmällä on yksikäsitteinen ratkaisu ("helppo"tapaus) yhtälöryhmällä on ääretön
Numeeriset menetelmät TIEA381. Luento 3. Kirsi Valjus. Jyväskylän yliopisto. Luento 3 () Numeeriset menetelmät / 45
Numeeriset menetelmät TIEA381 Luento 3 Kirsi Valjus Jyväskylän yliopisto Luento 3 () Numeeriset menetelmät 20.3.2013 1 / 45 Luennon 3 sisältö Luku 2: Epälineaarisen yhtälön ratkaiseminen Polynomin reaaliset
2.5. Matriisin avaruudet ja tunnusluvut
2.5. Matriisin avaruudet ja tunnusluvut m n-matriisi A Lineaarikuvaus A : V Z, missä V ja Z ovat sopivasti valittuja, dim V = n, dim Z = m (yleensä V = R n tai C n ja Z = R m tai C m ) Kuva-avaruus ja
Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / Ratkaisut
MS-C34 Lineaarialgebra ja differentiaaliyhtälöt, IV/26 Lineaarialgebra ja differentiaaliyhtälöt Harjoitus 4 / t Alkuviikon tuntitehtävä Hahmottele matriisia A ( 2 6 3 vastaava vektorikenttä Matriisia A
Numeeriset menetelmät TIEA381. Luento 8. Kirsi Valjus. Jyväskylän yliopisto. Luento 8 () Numeeriset menetelmät / 35
Numeeriset menetelmät TIEA381 Luento 8 Kirsi Valjus Jyväskylän yliopisto Luento 8 () Numeeriset menetelmät 11.4.2013 1 / 35 Luennon 8 sisältö Interpolointi ja approksimointi Funktion approksimointi Tasainen
BM20A0700, Matematiikka KoTiB2
BM20A0700, Matematiikka KoTiB2 Luennot: Matti Alatalo, Harjoitukset: Oppikirja: Kreyszig, E.: Advanced Engineering Mathematics, 8th Edition, John Wiley & Sons, 1999, luku 7. 1 Kurssin sisältö Matriiseihin
Kanta ja Kannan-vaihto
ja Kannan-vaihto 1 Olkoon L vektoriavaruus. Äärellinen joukko L:n vektoreita V = { v 1, v 2,..., v n } on kanta, jos (1) Jokainen L:n vektori voidaan lausua v-vektoreiden lineaarikombinaationa. (Ts. Span(V
3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä
1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a
Numeeriset menetelmät
Numeeriset menetelmät Luento 3 Ti 13.9.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 3 Ti 13.9.2011 p. 1/37 p. 1/37 Epälineaariset yhtälöt Newtonin menetelmä: x n+1 = x n f(x n) f (x n ) Sekanttimenetelmä:
Determinantti 1 / 30
1 / 30 on reaaliluku, joka on määritelty neliömatriiseille Determinantin avulla voidaan esimerkiksi selvittää, onko matriisi kääntyvä a voidaan käyttää käänteismatriisin määräämisessä ja siten lineaarisen
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45
MS-A0003/A0005 Matriisilaskenta Laskuharjoitus / vko 5 Tehtävä 1 (L): Hahmottele kompleksitasoon ne pisteet, jotka toteuttavat a) z 3 =, b) z + 3 i < 3, c) 1/z >. Yleisesti: ehto z = R, z C muodostaa kompleksitasoon
3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset. 3.2 Matriisien laskutoimitukset
32 Idea: Lineaarikuvausten laskutoimitusten avulla määritellään vastaavat matriisien laskutoimitukset Vakiolla kertominen ja summa Olkoon t R ja A, B R n m Silloin ta, A + B R n m ja määritellään ta ta
Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2
Ortogonaaliset matriisit, määritelmä 1
, määritelmä 1 Määritelmä (a). Neliömatriisi Q on ortogonaalinen, jos Q T Q = I. Määritelmästä voidaan antaa samaa tarkoittavat, mutta erilaiselta näyttävät muodot: Määritelmä (b). n n neliömatriisi Q,
Osittaistuenta Gaussin algoritmissa: Etsitään 1. sarakkeen itseisarvoltaan suurin alkio ja vaihdetaan tämä tukialkioiksi (eli ko. rivi 1. riviksi).
Liukuluvut Tietokonelaskuissa käytetään liukulukuja: mikä esittää lukua ± α α α M β k ± ( M α i β i )β k, i= β on järjestelmän kantaluku, α α M liukuluvun mantissa, α,, α M lukuja,,,, β, siten että α Esimerkki
Matriisien tulo. Matriisit ja lineaarinen yhtälöryhmä
Matriisien tulo Lause Olkoot A, B ja C matriiseja ja R Tällöin (a) A(B + C) =AB + AC, (b) (A + B)C = AC + BC, (c) A(BC) =(AB)C, (d) ( A)B = A( B) = (AB), aina, kun kyseiset laskutoimitukset on määritelty
Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:
8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden
2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio. 2.2 Gaussin eliminaatio
x = x 2 = 5/2 x 3 = 2 eli Ratkaisu on siis x = (x x 2 x 3 ) = ( 5/2 2) (Tarkista sijoittamalla!) 5/2 2 Tämä piste on alkuperäisten tasojen ainoa leikkauspiste Se on myös piste/vektori jonka matriisi A
Matriisiteoria Harjoitus 1, kevät Olkoon. cos α sin α A(α) = . sin α cos α. Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?
Harjoitus 1, kevät 007 1. Olkoon [ ] cos α sin α A(α) =. sin α cos α Osoita, että A(α + β) = A(α)A(β). Mikä matriisi A(α)A( α) on?. Olkoon a x y A = 0 b z, 0 0 c missä a, b, c 0. Määrää käänteismatriisi
Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =
ax + y + 2z = 0 2x + y + az = b 2. Kuvassa alla on esitetty nesteen virtaus eräässä putkistossa.
BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 7, Syksy 206 Tutkitaan yhtälöryhmää x + y + z 0 2x + y + az b ax + y + 2z 0 (a) Jos a 0 ja b 0 niin mikä on yhtälöryhmän ratkaisu? Tulkitse ratkaisu
MS-A0003/A0005 Matriisilaskenta Malliratkaisut 4 / vko 47
MS-A3/A5 Matriisilaskenta Malliratkaisut 4 / vko 47 Tehtävä 1 (L): Oletetaan, että AB = AC, kun B ja C ovat m n-matriiseja. a) Näytä, että jos A on kääntyvä, niin B = C. b) Seuraako yhtälöstä AB = AC yhtälö
Numeeriset menetelmät
Numeeriset menetelmät Keijo Ruotsalainen Division of Mathematics Kurssitiedot Luennot alkavat ke 11.1.2012 Ke 12-14 L3 To 14-16 L6 Kurssin viimeinen luento To 22.3 2012 Kurssin suorittaminen välikokein:
Matriisilaskenta. Harjoitusten 3 ratkaisut (Kevät 2019) 1. Olkoot AB = ja 2. Osoitetaan, että matriisi B on matriisin A käänteismatriisi.
Matriisilaskenta Harjoitusten ratkaisut (Kevät 9). Olkoot ja A = B = 5. Osoitetaan, että matriisi B on matriisin A käänteismatriisi. Tapa Käänteismatriisin määritelmän nojalla riittää osoittaa, että AB
Lineaarialgebra ja matriisilaskenta II Syksy 2009 Laskuharjoitus 1 ( ) Ratkaisuehdotuksia Vesa Ala-Mattila
Lineaarialgebra ja matriisilaskenta II Syksy 29 Laskuharjoitus (9. - 3..29) Ratkaisuehdotuksia Vesa Ala-Mattila Tehtävä. Olkoon V vektoriavaruus. Todistettava: jos U V ja W V ovat V :n aliavaruuksia, niin
s = 11 7 t = = 2 7 Sijoittamalla keskimmäiseen yhtälöön saadaan: k ( 2) = 0 2k = 8 k = 4
BM0A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 5, Syksy 05. (a) i. Jotta vektori c sijaitsisi a:n ja b:n virittämällä tasolla, c on voitava esittää a:n ja b:n lineaarikombinaationa. c ta + sb
Ortogonaalisen kannan etsiminen
Ortogonaalisen kannan etsiminen Lause 94 (Gramin-Schmidtin menetelmä) Oletetaan, että B = ( v 1,..., v n ) on sisätuloavaruuden V kanta. Merkitään V k = span( v 1,..., v k ) ja w 1 = v 1 w 2 = v 2 v 2,
MS-A0004/A0006 Matriisilaskenta
4. MS-A4/A6 Matriisilaskenta 4. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto..25 Tarkastellaan neliömatriiseja. Kun matriisilla kerrotaan vektoria, vektorin
Insinöörimatematiikka D
Insinöörimatematiikka D Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2014 Mika Hirvensalo mikhirve@utu.fi Luentokalvot 3 1 of 16 Kertausta Lineaarinen riippuvuus
1 Matriisit ja lineaariset yhtälöryhmät
1 Matriisit ja lineaariset yhtälöryhmät 11 Yhtälöryhmä matriisimuodossa m n-matriisi sisältää mn kpl reaali- tai kompleksilukuja, jotka on asetetettu suorakaiteen muotoiseksi kaavioksi: a 11 a 12 a 1n
Pienimmän neliösumman menetelmä (PNS)
neliösumman Perusongelman kuvaus 1 Tarkastellaan neljää pitkää aikasarjaa q 1 = (q 11,q 21,...,q 10,1 ) T, q 2 = (q 12,q 22,...,q 10,2 ) T, q 3 = (q 13,q 23,...,q 10,3 ) T, ja p 1 = (p 11,p 21,...,p 10,1
Pienimmän neliösumman menetelmä (PNS)
neliösumman Perusongelman kuvaus 1 Tarkastellaan neljää pitkää aikasarjaa q 1 = (q 11,q 21,...,q 10,1 ) T, q 2 = (q 12,q 22,...,q 10,2 ) T, q 3 = (q 13,q 23,...,q 10,3 ) T, ja p 1 = (p 11,p 21,...,p 10,1
Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16
MS-A0204 Differentiaali- ja integraalilaskenta 2 (ELEC2) Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio. Antti Rasila Matematiikan ja systeemianalyysin laitos
Lineaarialgebra, kertausta aiheita
Lineaarialgebra, kertausta aiheita Matriisitulo käänteismatriisi determinantin kehittäminen determinantin ominaisuudet adjungaatti ja Cramerin kaavat yhtälöryhmän eri esitystavat Gauss-Jordan -algoritmi
Lineaarialgebra ja matriisilaskenta I
Lineaarialgebra ja matriisilaskenta I 6.6.2013 HY / Avoin yliopisto Jokke Häsä, 1/22 Kertausta: Kääntyvien matriisien lause Lause 1 Oletetaan, että A on n n -neliömatriisi. Seuraavat ehdot ovat yhtäpitäviä.
Lineaariset yhtälöryhmät ja matriisit
Lineaariset yhtälöryhmät ja matriisit Lineaarinen yhtälöryhmä a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2. a m1 x 1 + a m2 x 2 + + a mn x n = b m, (1) voidaan esittää
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I
MS-A0207 Differentiaali- ja integraalilaskenta 2 (Chem) Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 21. tammikuuta 2016 G. Gripenberg (Aalto-yliopisto) MS-A0207 Differentiaali- ja integraalilaskenta
110. 111. 112. 113. 114. 4. Matriisit ja vektorit. 4.1. Matriisin käsite. 4.2. Matriisialgebra. Olkoon A = , B = Laske A + B, 5 14 9, 1 3 3
4 Matriisit ja vektorit 4 Matriisin käsite 42 Matriisialgebra 0 2 2 0, B = 2 2 4 6 2 Laske A + B, 2 A + B, AB ja BA A + B = 2 4 6 5, 2 A + B = 5 9 6 5 4 9, 4 7 6 AB = 0 0 0 6 0 0 0, B 22 2 2 0 0 0 6 5
Laskennallinen data-analyysi II
Laskennallinen data-analyysi II Saara Hyvönen, Saara.Hyvonen@cs.helsinki.fi Kevät 2007 Ulottuvuuksien vähentäminen, SVD, PCA Laskennallinen data-analyysi II, kevät 2007, Helsingin yliopisto visualisointi
Lineaariset kongruenssiyhtälöryhmät
Lineaariset kongruenssiyhtälöryhmät LuK-tutkielma Jesse Salo 2309369 Matemaattisten tieteiden laitos Oulun yliopisto Sisältö Johdanto 2 1 Kongruensseista 3 1.1 Kongruenssin ominaisuuksia...................
Insinöörimatematiikka D
Insinöörimatematiikka D M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2015 M. Hirvensalo mikhirve@utu.fi V. Junnila viljun@utu.fi Luentokalvot