BM30A0240, Fysiikka L osa 4. Värähtelyfysiikkaa. Luennot: Heikki Pitkänen
|
|
- Ari Sala
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 BM30A0240, Fysiikka L osa 4 Värähtelyfysiikkaa 1 Luennot: Heikki Pitkänen Oppikirja: Young & Freedman: University Physics Periodic motion Mechanical waves Sound and hearing Muuta - Diffraktio, interferenssi, perusoptiikkaa
2 Kurssin sisältö Harmoninen värähtelijä 2 Periodinen aalto, matemaattinen malli Seisova aalto Ääni (Doppler, interferenssi, huojunta) Optiikkaa (diffraktio, reflektio, refraktio)
3 1 Värähtely (Oscillation) Värähtely on jonkin suureen toistuvaa variaatiota (yleensä ajan suhteen) jonkin keskiarvon välillä (joka yleensä on systeemin tasapainotila). Värähtelyä esiintyy paitsi mekaanisissa systeemeissä, myös monissa muissa dynaamisissa systeemeissä. 3 Joitain esimerkkejä värähtelevästä systeemistä: Jousi-massa -systeemit, heilurit Analoginen oskillaattori, vaihtovirta Tietyt tähdet: Punainen jättiläinen, kefeidi Ihmissydän Peto-saalis -dynamiikka Kaikki materia Aallot: vedessä, maanjäristysaallot, ääni, säteily
4 4 Systeemin värähtely ei välttämättä ole sinimuotoista, mutta tällä kurssilla keskitymme niihin. Ei-sinimuotoisia systeemejä voidaan usein mallintaa sinimuotoisilla.
5 1.1 Harmoninen värähtelijä (Harmonic oscillator) 5 Klassisessa mekaniikassa harmoninen värähtelijä (harmonic oscillator) on systeemi, mikä poikkeutettuna tasapainoasemastaan kokee voiman joka pyrkii palauttamaan systeemin tasapainoasemaansa. Kuvassa on esimerkillisin harmoninen värähtelijä, jousi-massa -systeemi.
6 1.1.1 Vaimentamaton harmoninen värähtelijä (Simple harmonic oscillator) 6 Tarkastellaan jousi-massa -systeemiä jossa kappale (massa m) makaa vaakasuoralla kitkattomalla alustalla, ja kappale on kiinnitetty toisesta sivustaan tukevaan seinään massattomalla jousella, jonka jousivakio on k. Systeemi on levossa vain, jos se on tasapainotilassaan (equilibrium state). Jos systeemi poikkeutetaan tasapainotilastaan, kohdistaa jousi kappaleeseen voiman joka pyrkii palauttamaan systeemin tasapainotilaansa.tämä voima on suoraan verrannollinen poikkeutukseen: F = ky. Tämä palauttava voima (restoring force) on yksi värähtelevien systeemien määritteleviä tekijöitä.
7 Kappaleen paikkaa merkitään usein symbolilla y tapahtui värähtely sitten vaaka- tai pystysuunnassa. Näin vältetään sekaannusta seuraavassa aihepiirissä, jossa värähtelevän hiukkasen siirtymä y on sekä ajan että paikan funktio, y = y(x, t). 7 Huomataan myös että pystysuuntaisen jousi-massa -systeemin kohdalla meidän ei tarvitse välittää siitä että jousella on tietty lepopituus ja se venyy kun massa kiinnitetään jouseen; värähtelijä värähtelee joka tapauksessa tasapainopisteen y 0 ympärillä, joten sitä voidaan käsitellä samoilla yhtälöillä.
8 Äsken todettiin F = ky. 8 Kun muistetaan saadaan Tämä voidaan kirjoittaa F = ma ja a = ÿ = d2 y dt 2, m d2 y dt 2 = ky. d 2 y dt 2 = k m y = ω2 y, k missä ω = m on systeemin kulmataajuus (angular frequency). Tästä käsitteestä lisää hetken päästä.
9 9
10 Jos kappaleen paikkaa ajan funktiona merkitään y(t):llä, voidaan muodostaa harmonisen värähtelijän liikeyhtälö. Tämä kirjoitetaan tyypillisesti muodossa y(t) = A cos (ωt + φ), 0 missä ω on edellä mainittu kulmataajuus ja φ on vaihekulma, joka kertoo missä pisteessä kappale oli ajanhetkellä t = 0. φ:n arvo määräytyy systeemin alkuehdoista. A on systeemin amplitudi (amplitude). Amplitudi on suurin etäisyys jolla kappale käy tasapainoasemastaan. Kun katsotaan yllä olevaa yhtälöä, huomataan että systeemin taajuus ei riipu sen amplitudista. Jokaisella systeemillä on siis oma ominaisvärähtelytaajuutensa (natural frequency). Esimerkiksi jousi-massa -systeemin ominaisvärähtelytaajuuden sanelevat m ja k, jotka ovat systeemin parametrejä.
11 Usein halutaan tietää systeemin taajuus (frequency), eli se, kuinka monta kokonaista värähdystä systeemi tekee sekunnissa. Se saadaan yhtälöstä ω = 2πf. Taajuuden yksikkö on hertsi (hertz) [Hz]. 1 Hertsin tulkinta on siis värähdystä sekunnissa, eli 1 Hz = 1 1 s. Usein halutaan tietää myös systeemin jaksonaika (period) T, eli se, aika mikä värähtelijältä menee yhden kokonaisen jakson liikkumiseen. Jaksonajan ja taajuuden keskinäinen riippuvuus on yksinkertaisesti T = 1 f. Jaksonajan yksikkö on sekunti [s].
12 Kulmataajuuden ω, taajuuden f ja jaksonajan T riippuvuus toisistaan voidaan siis kirjoittaa muotoihin 2 f = 1 T = ω 2π = 1 2π k m T = 1 f = 2π ω = 2π m k Käsitellään seuraavaksi kulmataajuudelle ω kouriintuntuva määritelmä.
13 Pyörivän liikkeen ja harmonisen värähtelijän yhteys
14 Edestakaisin liikuvan (värähtelevän) kappaleen tapauksessa kulmanopeudella ω ei ole välittömästi itsestäänselvää tulkintaa, kuten olisi pyörivän kappaleen tapauksessa. Merkintä on kuitenkin järkeenkäypä; tutkitaan seuraavaa esimerkkiä idean valottamiseksi. 4 Tietynmittaisen kepin (vektorin r) päässä on piste Q. Vektori r pyörii origon ympäri kulmanopeudella ω (kulmanopeuden ollessa siis yhtä sekunnissa, eli radiaania sekunnissa). Kullakin ajanhetkellä vektori r muodostaa kulman θ = ωt positiivisen x-akselin kanssa. Kun tarkastellaan pisteen Q projektiota x-akselille tai y-akselille, nähdään että kumpikin projektio tekee edestakaista harmonista liikettä. Pisteen Q projektio x-akselille on x(t) = r cos (ωt) = A cos (ωt). Vektorin r pituus on siis systeemin värähtelyn amplitudi, r = A.
15 1.1.3 Nopeus, kiihtyvyys Kun harmonisen värähtelijän paikka ajan funktiona tiedetään, niin sen nopeus ja kiihtyvyys saadaan tästä yhtälöstä ajan suhteen derivoimalla. Eli kun tiedetään 5 y(t) = r cos (ωt) = A cos (ωt + φ), saadaan nopeus derivoimalla kerran v(t) = ẏ(t) = dy dt ja kiihtyvyys derivoimalla toisen kerran = ωa sin (ωt + φ) a(t) = ÿ(t) = dv dt = d2 y dt 2 = ω2 A cos (ωt + φ) = ω 2 y(t).
16 1.1.4 Harmonisen värähtelijän energia 6 Harmonisen värähtelijän energia vaihtelee kineettisen energian ja potentiaalienergian välillä. Kun kappale on tasapainoaseman kohdalla, potentiaalienergia on nolla, ja kineettinen energia on suurimmillaan. Vastaavasti kun kappale on poikkeutettu niin kauaksi kuin se menee (ts. y = A, niin kappale on levossa (ei kineettistä energiaa), ja potentiaalienergia on suurimmillaan.
17 Systeemin kineettinen energia K ajanhetkellä t on K(t) = 1 2 mv2 = 1 2 mω2 A 2 sin 2 (ωt ϕ) = 1 2 ka2 sin 2 (ωt ϕ). Vastaavasti potentiaalienergia U(t) = 1 2 ky2 = 1 2 ka2 cos 2 (ωt ϕ). 7 Systeemin kokonaisenergia voidaan laskea vaikka määrittelemällä mikä on systeemin potentiaalienergia suurimmillaan (kun x = A): E = K + U = 1 2 ka2. Muistetaan vielä että systeemin kokonaisenergia säilyy (vaimentamattoman värähtelyn tapauksessa) kaikilla ajanhetkillä, eli E = 1 2 ky mv2 = 1 2 ka2.
18 8 Kuvassa on esitettynä harmonisen värähtelijän kineettinen energia ja potentiaalienergia värähdyksen eri vaiheissa. Punainen käyrä, potentiaalienergia, on suurimmillaan kun kappale on mahdollisimman kaukana tasapainopisteestä, kun taas kineettinen energia, sininen käyrä, on suurimmillaan kun kappale ohittaa tasapainopisteen (nopeus on tässä pisteessä suurin). Musta käyrä edustaa kokonaisenergiaa, ja se on koko ajan vakio. Toisin sanoen, värähtelijä ei menetä energiaansa.
19 1.1.5 Matemaattinen heiluri Klassinen esimerkki vaimentamattomasta harmonisesta värähtelijästä on matemaattinen heiluri (Simple pendulum). 9 Heilurin muodostaa massaton, L:n mittainen jäykkä keppi, joka on ylhäältä nivelletty, ja sen päähän on ripustettu kappale jonka massa on m. Nivelen kitkaa tai ilmanvastusta ei tarvitse ottaa huomioon, eli systeemin värähtely ei vaimene. Kun systeemi poikkeutetaan tasapainoasemastaan, on palauttava voima F = mg sin(θ). Jos poikkeama θ on pieni, sin(θ) θ = x L, jolloin palauttava voima on F = mgθ = mg L x
20 0
21 1 Liikeyhtälö saadaan siis muotoon F = ma = mg L x Kun tätä verrataan edellä käytyyn harmonisen värähtelijän liikeyhtälöön, huomataan yhteys k mg L jolloin värähtelijän kulmataajuudeksi saadaan Heilahdusaika on siis ω = k m = g L. T = 2π ω = 2π L g.
22 1.1.6 Kiertoheiluri (Torsion pendulum) 2 Kiertoheiluri on yhtä yksinkertainen harmoninen värähtelijä kuin jousi-massa -systeemikin. Ainoa ero on siinä, että edestakaisen translaatioliikkeen sijaan kiertoheiluri tekee edestakaista rotaatioliikettä. Kun korvataan siirtymä y kiertymällä θ, massa m inertialla I, voima F väännöllä (torque) τ, ja jousivakio k vääntövakiolla (torsion constant) κ, voidaan käyttää samoja yhtälöitä. κ ω = θ = Θ cos(ωt + φ) I
23 1.1.7 LC-piiri 3 Sähköinen piiri joka koostuu vain kelasta ja kondensaattorista noudattaa harmonisen värähtelijän yhtälöä samoin kuin jousi-massa -systeemikin. Piirissä ei siis ole ollenkaan vastusta, eli systeemi ei menetä energiaansa (ja näin ollen värähtelee ikuisesti).
24 4 Oletetaan että kondensaattorissa on jokin varaus, ja piiri on avoin. Ajanhetkellä t = 0 kytkin kytketään kiinni. Kondensaattorin varaus virtaa kelaan, jonka magneettikenttään näin ollen varastoituu energiaa. Kondensaattorin varauksen purkauduttua virta jatkaa kulkemistaan; kelan magneettikenttään varastoitunut energia toimii piirissä samassa roolissa kuin massan liike-energia jousi-massa -systeemissä. Kela syöttää virtaa niin kauan kunnes sen magneettikenttä on nollassa, ja tässä vaiheessa systeemin koko energia on jälleen kondensaattorin varauksessa. Tämän jälkeen alkaa värähdys toiseen suutaan.
25 1.2 Vaimennettu värähtelijä (Damped oscillator) 5 Reaalimaailman systeemeissä on aina mukana voima/ilmiö joka vaimentaa värähtelijää. Kuvassa on esitettynä klassinen mekaaninen vaimennettu värähtelijä; systeemi on sama kuin tähän asti käsitelty, mutta nyt dynamiikassa on lisänä jarruttava tekijä. Kuvassa se on esitetty nestejarrulla. Vaimentava tekijä voisi olla myös kitka kappaleen ja pinnan välillä, kaasun/nesteen vastus, tai kaikkien näiden summa.
26 Kaikki jarruttavat ilmiöt symboloidaan tässä käsittelyssä vaimentavaan tekijään (damping factor) b. Edellä kappaleen liikeyhtäköksi saatiin F = ma = kx. Kun yhtälöön lisätään vaimentava voima (joka on miltei aina suoraan verrannollinen kappaleen nopeuteen) F = bv, saadan liikeyhtälöksi F = ma = kx bv. 6 Kun muistetaan saadaan v = ẏ = dy dt ja a = ÿ = d2 y dt 2, m d2 y dt 2 + bdy + ky = 0. dt Tämä on vaimennetun harmonisen värähtelijän yleinen yhtälö. Kyseistä differentiaaliyhtälöä ei kuitenkaan käydä kuitenkaan ratkaisemaan tässä.
27 Jos vaimentava voima on pieni, niin silloin kappaleen paikka ajan funktiona saadaa yhtälöstä y(t) = A 0 e δt cos(ω t + φ), 7 missä ja ω = δ = 1 τ = b 2m k m b2 4m 2. Huomataan että funktio joka ratkaisee vaimennetun värähtelijän differentiaaliyhtälön on eksponenttifunktion ja kosinifunktion tulo (katso ensi sivun kuva). Kosinifunktio kertoo kuinka systeemi värähtelee, ja eksponenttifunktio kertoo kuinka värähtely vaimenee ajan funktiona.
28 Kuvassa on esitetty värähtelijän paikka ajan funktiona kahdella eri b:n arvolla (k ja m samat). 8 Värähtelijän amplitudi, ja näin ollen myös värähtelijän energia, tippuvat hitaasti kohti nollaa.
29 Systeemin aikavakio τ (tau) määrittää systeemin vaimenemisen. τ on se aika, joka systeemin amplitudilta kuluu tippua 1 e -osaan alkuperäisestä amplitudista. 9 Yhtälöissä käytetään usein τ:n käänteislukua δ. Jousi-massa -systeemeille δ = 1 τ = b 2m (kuten jo mainittiin).
30 Kun tarkastellaan termiä 0 ω = k m b2 4m 2 huomataan että vaimennus muuttaa myös värähtelevän systeemin ominaisvärähtelytaajuutta. Huomataan että ω = 0 jos k m = b2 4m eli b = 2 km. Tällöin 2 systeemi ei enää värähtele ollenkaan, vaan poikkeutettuna tasapainoasemastaan palautuu hitaasti tasapainopisteeseensä. Tälläistä systeemiä sanotaan kriittisesti vaimennetuksi (critical damping).
31 Sähköinen piiri joka käyttäytyy vaimennetun värähtelijän tavoin on RLC-piiri. 1 Huomataan että kytkentä näyttää täysin samalta kuin LC-piiri, mutta nyt piirissä on mukana myös vastus.
32 Mitä tulee vaimennetun värähtelijän energiaan, muistetaan vaimenemattoman värähtelyn tapauksesta että systeemin energia vaihtelee kineettisen energian ja potentiaalienergian välillä, mutta kokonaisenergian saneli aina yhtälö 2 E = 1 2 ky mv2 = 1 2 ka2. Nyt kun systeemin amplitudin tiedetään tippuvan aikavakion sanelemalla tavalla, eli A(t) = A 0 e δt = A 0 e t τ, saadaan E(t) = 1 2 k [A(t)]2 = 1 2 k(a 0e δt ) 2.
33 1.3 Pakotettu värähtelijä (Driven oscillator) 3 Vaimennetun värähtelijän liike pysähtyy ennenpitkää kokonaan. Mutta jos systeemiä on syöttämässä ajan suhteen varioiva voima, voi vaimennetunkin systeemin värähtely jatkua. Tälläisessä tapauksessa värähtelijän taajuudeksi muodostuu syöttävän, ajan suhteen varioivan voiman taajuus, eikä systeemin ominaisvärähtelytaajuus. Tälläistä systeemiä kutsutaan pakotetuksi värähtelijäksi (driven oscillator).
34 Tutkitaan systeemiä jossa massasta, jousesta ja jarruttavasta tekijästä koostuvaa systeemiä, jonka ominaiskulmataajuus on ω, syöttää ulkoinen voima, jonka kulmataajuus on ω d. 4 Mitä lähempänä syöttävän voiman taajuus ja systeemin ominaisvärähtelytaajuus ovat toisiaan, sitä suuremmaksi muodostuu systeemin amplitudi. Tätä ilmiötä kutsutaan resonanssiksi (resonance).
35 5 Kuvassa on pakotetun värähtelijän amplitudi ajavan voiman kulmataajuuden ω d ja systeemin ominaiskulmataajuuden suhteen funktiona. Huomataan että kun ω d /ω = 1, on amplitudi suurimmillaan. Eri käyrät edustavat eri b:n arvoja.
36 6 Esimerkkejä pakotetusta värähtelijästä ja resonanssista: Keinu jolle annetaan vauhtia Radiovastaanotin (kanavavalitsin muuttaa RLC-piirin ominaisvärähtelytaajuutta) Vanha rämisevä auto; riippuen moottorin kierrosluvusta resonoivaa räminää kuuluu eri puolilta autoa. Laite jolla testataan auton iskunvaimentimet katsastusasemalla. Juuri tietyllä taajuudella koko auto heiluu syöttävän voiman mukana. Tuuli ja tehtaiden savupiiput. Piiput rakennetaan kartiokkaiksi tai niihin pistetään tuulta ohjaavat kierteet, koska muuten juuri sopivan nopeuksinen tuuli saa piipun resonoimaan, ja voi rikkoa sen.
BM30A0240, Fysiikka L osa 4
BM30A0240, Fysiikka L osa 4 Luennot: Heikki Pitkänen 1 Oppikirja: Young & Freedman: University Physics Luku 14 - Periodic motion Luku 15 - Mechanical waves Luku 16 - Sound and hearing Muuta - Diffraktio,
LisätiedotLuento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r
Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic
LisätiedotLuento 13: Periodinen liike
Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos Ajankohtaista
LisätiedotLuento 11: Periodinen liike
Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä θ F t m g F r Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä Johdanto Tarkastellaan
LisätiedotLuento 11: Periodinen liike
Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r Konseptitesti 1 Tehtävänanto Kuvassa on jouseen kytketyn massan sijainti ajan funktiona. Kuvaile
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 7 Harmonisen värähdysliikkeen energia Jousen potentiaalienergia on U k( x ) missä k on jousivakio ja Dx on poikkeama tasapainosta. Valitaan
LisätiedotJakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina
Jakso 6: Värähdysliikkeet Tämän jakson tehtävät on näytettävä viimeistään torstaina 31.5.2012. T 6.1 (pakollinen): Massa on kiinnitetty pystysuoran jouseen. Massaa poikkeutetaan niin, että se alkaa värähdellä.
LisätiedotPakotettu vaimennettu harmoninen värähtelijä Resonanssi
Pakotettu vaimennettu harmoninen värähtelijä Resonanssi Tällä luennolla tavoitteena Mikä on pakkovoiman aiheuttama vaikutus vaimennettuun harmoniseen värähtelijään? Mikä on resonanssi? Kertaus: energian
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys102 Kevät 2010 Jukka Maalampi LUENTO 6 Yksinkertainen harmoninen liike yhteys ympyräliikkeeseen energia dynamiikka Värähdysliike Knight Ch 14 Heilahtelut pystysuunnassa ja gravitaation
LisätiedotHARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE
HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE Harmoninen voima on voima, jonka suuruus on suoraan verrannollinen poikkeamaan tasapainoasemasta
Lisätiedot- suurempi voima aiheuttaa nopeampaa liikettä kuin pieni voima - samanlainen voima aiheuttaa samalle kappaleelle aina samanlaisen vaikutuksen
3 Dynamiikka 3.1 Voima (force) - Jos työnnät jotain kevyttä kappaletta, se alkaa liikkua - jos työnnät sitä kovemmin, se liikkuu nopeammin Kyseinen suure on voima - suurempi voima aiheuttaa nopeampaa liikettä
LisätiedotKERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1
KERTAUSTEHTÄVIÄ KURSSIIN 766323A-01 Mekaniikka, osa 1 Tässä materiaalissa on ensin helpompia laskuja, joiden avulla voi kerrata perusasioita, ja sen jälkeen muutamia vaikeampia laskuja. Laskujen jälkeen
LisätiedotMekaniikan jatkokurssi Fys102
Meaniian jatourssi Fys10 Sysy 009 Jua Maalampi LUENTO 6 Harmonisen värähdysliieen energia Jousen potentiaalienergia on U ( x missä on jousivaio ja Dx on poieama tasapainosta. Valitaan origo tasapainopisteeseen,
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys10 Kevät 010 Jukka Maalampi LUENTO 8 Vaimennettu värähtely Elävässä elämässä heilureiden ja muiden värähtelijöiden liike sammuu ennemmin tai myöhemmin. Vastusvoimien takia värähtelijän
LisätiedotLuento 14: Periodinen liike, osa 2. Vaimennettu värähtely Pakkovärähtely Resonanssi F t F r
Luento 14: Periodinen liike, osa 2 Vaimennettu värähtely Pakkovärähtely Resonanssi θ F µ F t F r m g 1 / 20 Luennon sisältö Vaimennettu värähtely Pakkovärähtely Resonanssi 2 / 20 Vaimennettu värähtely
LisätiedotLiikemäärän säilyminen Vuorovesivoimat Jousivoima
Liikemäärän säilyminen Vuorovesivoimat Jousivoima Tämän luennon tavoitteet Liikemäärän säilyminen Vuorovesivoimat ja binomiapproksimaatio gravitaatio jatkuu viime viikolta Jousivoima: mikä se on ja miten
LisätiedotHARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE
HARMONISEN VÄRÄHTELIJÄN JAKSONAIKA JA HEILURIEN HEILAHDUSAJAT - johtaminen 1) VAIMENEMATON HARMONINEN VÄRÄHDYSLIIKE Harmoninen voima on voima, jonka suuruus on suoraan verrannollinen poikkeamaan tasapainoasemasta
LisätiedotVärähdysliikkeet. q + f (q, q, t) = 0. q + f (q, q) = F (t) missä nopeusriippuvuus kuvaa vaimenemista ja F (t) on ulkoinen pakkovoima.
Torstai 18.9.2014 1/17 Värähdysliikkeet Värähdysliikkeet ovat tyypillisiä fysiikassa: Häiriö oskillaatio Jaksollinen liike oskillaatio Yleisesti värähdysliikettä voidaan kuvata yhtälöllä q + f (q, q, t)
Lisätiedot= vaimenevan värähdysliikkeen taajuus)
Fysiikan laboratoriotyöohje Tietotekniikan koulutusohjelma OAMK Tekniikan yksikkö TYÖ 7: MEKAANINEN VÄRÄHTELIJÄ Teoriaa Vaimeneva värähdysliike y ŷ ŷ ŷ t T Kuva. Vaimeneva värähdysliike ajan funktiona.
LisätiedotFYSA220/K2 (FYS222/K2) Vaimeneva värähtely
FYSA/K (FYS/K) Vaimeneva värähtely Työssä tutkitaan vaimenevaa sähköistä värähysliikettä. Erityisesti pyritään havainnollistamaan kelan inuktanssin, konensaattorin kapasitanssin ja ohmisen vastuksen suuruuksien
Lisätiedoton radan suuntaiseen komponentti eli tangenttikomponentti ja on radan kaarevuuskeskipisteeseen osoittavaan komponentti. (ks. kuva 1).
H E I L U R I T 1) Matemaattinen heiluri = painottoman langan päässä heilahteleva massapiste (ks. kuva1) kuva 1. - heilurin pituus l - tasapainoasema O - ääriasemat A ja B - heilahduskulma - heilahdusaika
LisätiedotEpähomogeenisen yhtälön ratkaisu
Epähomogeenisen yhtälön ratkaisu Lause Olkoot a = a(x), b = b(x) ja f = f(x) jatkuvia funktioita välillä I R ja olkoot y 1 = y 1 (x) ja y 2 = y 2 (x) eräs homogeeniyhtälön y + a(x)y + b(x)y = 0 ratkaisujen
LisätiedotDerivoimalla kerran saadaan nopeus ja toisen kerran saadaan kiihtyvyys Ña r
Vuka HT 4 Tehtävä. Lyhyenä alustuksena tehtävään johdetaan keskeiskiihtyvyys tasaisessa pyörimisessä. Meillä on ympyräradalla liikkuva kappale joka pyörii vakiokulmanopeudella ω dϕ säteellä r origosta.
LisätiedotMekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys12 Kevät 21 Jukka Maalampi LUENTO 11 Mekaaninen aaltoliike alto = avaruudessa etenevä järjestäytynyt häiriö. alto altoja on kahdenlaisia: Poikittainen aalto - poikkeamat kohtisuorassa
LisätiedotW el = W = 1 2 kx2 1
7.2 Elastinen potentiaalienergia Paitsi gravitaatioon, myös materiaalien deformaatioon (muodonmuutoksiin) liittyy systeemin rakenneosasten keskinäisiin paikkoihin liittyvää potentiaalienergiaa Elastinen
LisätiedotDissipatiiviset voimat
Dissipatiiviset voimat Luennon tavoitteena Mitä on energian dissipaatio? Ilmanvastus ja muita vastusvoimia, analyyttinen käsittely Toinen tärkeä differentiaaliyhtälö: eksponentiaalinen vaimeneminen Vaimennettu
LisätiedotYLEINEN AALTOLIIKEOPPI
YLEINEN AALTOLIIKEOPPI KEVÄT 2017 1 Saana-Maija Huttula (saana.huttula@oulu.fi) Maanantai Tiistai Keskiviikko Torstai Perjantai Vk 8 Luento 1 Mekaaniset aallot 1 Luento 2 Mekaaniset aallot 2 Ääni ja kuuleminen
LisätiedotLuento 15: Mekaaniset aallot. Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot
Luento 15: Mekaaniset aallot Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot 1 / 40 Luennon sisältö Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa
LisätiedotLuento 18: Kertausluento
Luento 18: Kertausluento Värähdysliike Harmoninen värähtely Vaimennettu värähtely Pakkovärähtely Mekaaniset aallot Eteneminen Seisovat aallot Ääniaallot Luennon sisältö Värähdysliike Harmoninen värähtely
LisätiedotVoima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori!
6.1 Työ Voima F tekee työtä W vaikuttaessaan kappaleeseen, joka siirtyy paikasta r 1 paikkaan r 2. Työ on skalaarisuure, EI vektori! Siirtymä s = r 2 r 1 Kun voiman kohteena olevaa kappaletta voidaan kuvata
LisätiedotLuento 10: Työ, energia ja teho. Johdanto Työ ja kineettinen energia Teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho 1 / 23 Luennon sisältö Johdanto Työ ja kineettinen energia Teho 2 / 23 Johdanto Energia suure, joka voidaan muuttaa muodosta toiseen,
LisätiedotLuento 9: Potentiaalienergia
Luento 9: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Laskettuja esimerkkejä Luennon sisältö Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 24.3.2016 Susanna Hurme Rotaatioliikkeen liike-energia, teho ja energiaperiaate (Kirjan luku 18) Osaamistavoitteet Ymmärtää, miten liike-energia määritetään kiinteän
Lisätiedot3.4 Liike-energiasta ja potentiaalienergiasta
Työperiaatteeksi (the work-energy theorem) kutsutaan sitä että suljetun systeemin liike-energian muutos Δ on voiman systeemille tekemä työ W Tämä on yksi konservatiivisen voiman erityistapaus Työperiaate
LisätiedotLuku 8. Mekaanisen energian säilyminen. Konservatiiviset ja eikonservatiiviset. Potentiaalienergia Voima ja potentiaalienergia.
Luku 8 Mekaanisen energian säilyminen Konservatiiviset ja eikonservatiiviset voimat Potentiaalienergia Voima ja potentiaalienergia Mekaanisen energian säilyminen Teho Tavoitteet: Erottaa konservatiivinen
LisätiedotLuento 15: Mekaaniset aallot
Luento 15: Mekaaniset aallot Mekaaniset aallot Eteneminen Aallon nopeus väliaineessa Energia Aallon heijastuminen Seisovat aallot Ajankohtaista Luennon sisältö Mekaaniset aallot Eteneminen Aallon nopeus
LisätiedotVoima ja potentiaalienergia II Energian kvantittuminen
Voima ja potentiaalienergia II Energian kvantittuminen Mene osoitteeseen presemo.helsinki.fi/kontro ja vastaa kysymyksiin Tavoitteena tällä luennolla Miten määritetään voima kun potentiaalienergia U(x,y,z)
LisätiedotLuento 11: Potentiaalienergia. Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia
Luento 11: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia 1 / 22 Luennon sisältö Potentiaalienergia Konservatiiviset voimat
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 16.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinetiikka (Kirjan luvut 12.6, 13.1-13.3 ja 17.3) Oppimistavoitteet Ymmärtää, miten Newtonin toisen lain
LisätiedotEsimerkki 1 Ratkaise differentiaaliyhtälö
Esimerkki 1 Ratkaise differentiaaliyhtälö x 2 y xy =1/x. 1 / K. Tuominen kimmo.i.tuominen@helsinki.fi MApu II 1/20 20 Esimerkki 2 Ratkaise differentiaaliyhtälö x(ln y)y y ln x =0. 2 / K. Tuominen kimmo.i.tuominen@helsinki.fi
LisätiedotSinin muotoinen signaali
Sinin muotoinen signaali Pekka Rantala.. Sini syntyy tasaisesta pyörimisestä Sini-signaali syntyy vakio-nopeudella pyörivän osoittimen y-suuntaisesta projektiosta. y u û α positiivinen pyörimissuunta x
Lisätiedot2 Mekaaninen aalto. Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium).
2 Mekaaninen aalto Mekaaniset aallot kulkevat jossain materiaalissa, jota kutsutaan tässä yhteydessä väliaineeksi (medium). 1 Mekaanisten aaltojen vastakohtana ovat sähkömagneettiset allot, jotka kulkevat
LisätiedotMS-C1340 Lineaarialgebra ja differentiaaliyhtälöt
MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Differentiaaliyhtälöt, osa 1 Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 20 R. Kangaslampi Matriisihajotelmista
Lisätiedotinfoa Viikon aiheet Potenssisarja a n = c n (x x 0 ) n < 1
infoa Viikon aiheet Tentti ensi viikolla ma 23.0. klo 9.00-3.00 Huomaa, alkaa tasalta! D0 (Sukunimet A-) E204 (Sukunimet S-Ö) Mukaan kynä ja kumi. Ei muuta materiaalia. Tentissä kaavakokoelma valmiina.
LisätiedotLuku 7 Työ ja energia. Muuttuvan voiman tekemä työ Liike-energia
Luku 7 Työ ja energia Muuttuvan voiman tekemä työ Liike-energia Tavoitteet: Selittää työn käsite Mallittaa voiman tekemä työ Mallittaa liike-energian ja työn keskinäinen riippuvuus Esitiedot Newtonin lait
LisätiedotMekaaninen energia. Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa. Suppea energian määritelmä:
Mekaaninen energia Energian säilymislaki Työ, teho, hyötysuhde Mekaaninen energia Sisäenergia Lämpö = siirtyvää energiaa Suppea energian määritelmä: Energia on kyky tehdä työtä => mekaaninen energia Ei
LisätiedotMassakeskipiste Kosketusvoimat
Massakeskipiste Kosketusvoimat Luennon tavoitteet Kosketusvoimia Kitka Tukivoima Jännitys Jousivoima Massakeskipisteen käsite ja sillä laskeminen (Resonanssi tiedottaa tarjoavansa kahvia luentotauolla)
LisätiedotHarjoitustehtävien vastaukset
Harjoitustehtävien vastaukset Esimerkiksi kaiutinelementti, rumpukalvo (niin rummussa kuin korvassa), jännitetty kuminauha tai kielisoittimien (esimerkiksi viulu, kitara) kielet, kellon koneisto, heiluri,
LisätiedotVAIHTOVIRTAPIIRI. 1 Työn tavoitteet
Oulun yliopisto Fysiikan opetuslaboratorio Sähkö- ja magnetismiopin laboratoriotyöt AHTOTAP Työn tavoitteet aihtovirran ja jännitteen suunta vaihtelee ajan funktiona. Esimerkiksi Suomessa käytettävä verkkovirta
LisätiedotKerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten)
Noste Ympyräliike I Luennon tavoitteet Kerrataan harmoninen värähtelijä Noste, nesteen ja kaasun aiheuttamat voimat Noste ja harmoninen värähtelijä (laskaria varten) Aloitetaan ympyräliikettä Keskeisvoiman
LisätiedotLuento 14: Periodinen liike, osa 2
Luento 14: Periodinen liike, osa 2 Vaimennettu värähtely Pakkovärähtely Resonanssi F ~ µ ~F t F ~ d ~F r m~g Ajankohtaista Poimintoja palautekyselystä Oli mukava luento. Mukavaa että luennoitsija mahdollisti
LisätiedotLuento 15: Ääniaallot, osa 2
Luento 15: Ääniaallot, osa 2 Aaltojen interferenssi Doppler Laskettuja esimerkkejä Luennon sisältö Aaltojen interferenssi Doppler Laskettuja esimerkkejä Aaltojen interferenssi Samassa pisteessä vaikuttaa
LisätiedotLuento 10. Potentiaali jatkuu, voiman konservatiivisuus, dynamiikan ja energiaperiaatteen käyttö, reaalinen jousi
Luento 10 Potentiaali jatkuu, voiman konservatiivisuus, dynamiikan ja energiaperiaatteen käyttö, reaalinen jousi Tällä luennolla tavoitteena: Gravitaatio jatkuu Konservatiivinen voima Mitä eroa on energia-
LisätiedotTheory Finnish (Finland)
Q1-1 Kaksi tehtävää mekaniikasta (10 pistettä) Lue yleisohjeet ennen tehtävien aloittamista. Osa A: Piilotettu kiekko (3,5 pistettä) Tässä tehtävässä käsitellään umpinaista puista sylinteriä, jonka säde
LisätiedotErityinen suhteellisuusteoria (Harris luku 2)
Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen
LisätiedotLineaarialgebra MATH.1040 / Piirianalyysiä 2
Lineaarialgebra MATH.1040 / Piirianalyysiä 2 1 Seuraavat tarkastelut nojaavat trigonometrisille funktioille todistettuihin kaavoihin. sin(α + β) = sinα cosβ + cosα sinβ (1) cos(α + β) = cosα cosβ sinα
LisätiedotH7 Malliratkaisut - Tehtävä 1
H7 Malliratkaisut - Tehtävä Eelis Mielonen 7. lokakuuta 07 a) Palautellaan muistiin Maclaurin sarjan määritelmä (Taylorin sarja origon ympäristössä): f n (0) f(x) = (x) n Nyt jos f(x) = ln( + x) saadaan
Lisätiedotdt 2. Nämä voimat siis kumoavat toisensa, jolloin saadaan differentiaaliyhtälö
Mathematican version 8 mukainen. (25.10.2012 SKK) Tavallinen heiluri Otetaan tarkastelun kohteeksi tavallinen yksinkertainen heiluri. Tämä koostuu kitkattomaan niveleen kiinnitetystä (massattomasta) varresta
LisätiedotUseita oskillaattoreita yleinen tarkastelu
Useita oskillaattoreita yleinen tarkastelu Useita riippumattomia vapausasteita q i, i =,..., n ja potentiaali vastaavasti U(q, q 2,..., q n). Tasapainoasema {q 0, q0 2,..., q0 n} q 0 Käytetään merkintää
LisätiedotDiplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Insinöörivalinnan fysiikan koe 1.6.2011, malliratkaisut
A1 Diplomi-insinöörien ja arkkitehtien yhteisvalinta - dia-valinta 2011 Täydennä kuhunkin kohtaan yhtälöstä puuttuva suure tai vakio alla olevasta taulukosta. Anna vastauksena kuhunkin kohtaan ainoastaan
LisätiedotLiike pyörivällä maapallolla
Liike pyörivällä maapallolla Voidaan olettaa: Maan pyöriminen tasaista Maan rataliikkeen näennäisvoimat tasapainossa Auringon vetovoiman kanssa Riittää tarkastella Maan tasaisesta pyörimisestä akselinsa
LisätiedotLuento 10: Työ, energia ja teho
Luento 10: Työ, energia ja teho Johdanto Työ ja kineettinen energia Teho Ajankohtaista Konseptitesti 1 Kysymys Ajat pyörällä ylös jyrkkää mäkeä. Huipulle vie kaksi polkua, toinen kaksi kertaa pidempi kuin
LisätiedotDifferentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle /
Differentiaali- ja integraalilaskenta 1 Ratkaisut 6. viikolle / 16. 18.5. Lineaariset differentiaaliyhtälöt, homogeeniset differentiaaliyhtälöt Tehtävä 1: a) Määritä differentiaaliyhtälön y 3y = 14e 4x
LisätiedotFysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2
Fysiikan valintakoe 10.6.2014, vastaukset tehtäviin 1-2 1. (a) W on laatikon paino, F laatikkoon kohdistuva vetävä voima, F N on pinnan tukivoima ja F s lepokitka. Kuva 1: Laatikkoon kohdistuvat voimat,
Lisätiedot5.10. HIUKKANEN POTENTIAALIKUOPASSA
5.10. HIUKKANEN POTENTIAALIKUOPASSA eli miten reunaehdot ja normitus vaikuttavat aaltofunktioihin Yleensä Schrödingerin yhtälön ratkaiseminen matemaattisesti on hyvin työlästä ja edellyttää vahvaa matemaattista
LisätiedotSEISOVA AALTOLIIKE 1. TEORIAA
1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus
LisätiedotFononit. Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa
Fononit Värähtelyt lineaarisessa atomiketjussa Dispersiorelaatio Kaksi erilaista atomia ketjussa Fononit kolmessa dimensiossa Atomien lämpövärähtely Mikä on atomien värähtelyn taajuus ja amplitudi? Tarkastellaan
LisätiedotLuento 11: Potentiaalienergia
Luento 11: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Esimerkkejä ja harjoituksia Ajankohtaista Konseptitesti 1 Kysymys Levossa oleva kappale lähtee
Lisätiedot763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 2017
763306A JOHDATUS SUHTEELLISUUSTEORIAAN 2 Ratkaisut 2 Kevät 207. Nelinopeus ympyräliikkeessä On siis annettu kappaleen paikkaa kuvaava nelivektori X x µ : Nelinopeus U u µ on määritelty kaavalla x µ (ct,
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 31.3.2016 Susanna Hurme Dynamiikan välikoe 4.4.2016 Ajankohta ma 4.4.2016 klo 16:30 19:30 Salijako Aalto-Sali: A-P (sukunimen alkukirjaimen mukaan) Ilmoittautuminen
LisätiedotLuento 9: Potentiaalienergia
Luento 9: Potentiaalienergia Potentiaalienergia Konservatiiviset voimat Voima potentiaalienergiasta gradientti Laskettuja esimerkkejä ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2015 Mikro- ja nanotekniikan
LisätiedotLuento 3: Liikkeen kuvausta, differentiaaliyhtälöt
Luento 3: Liikkeen kuvausta, differentiaaliyhtälöt Suoraviivainen liike integrointi Digress: vakio- vs. muuttuva kiihtyvyys käytännössä Kinematiikkaa yhdessä dimensiossa taustatietoa ELEC-A3110 Mekaniikka
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 15.3.2016 Susanna Hurme Päivän aihe: Translaatioliikkeen kinematiikka: asema, nopeus ja kiihtyvyys (Kirjan luvut 12.1-12.5, 16.1 ja 16.2) Osaamistavoitteet Ymmärtää
LisätiedotLuvun 8 laskuesimerkit
Luvun 8 laskuesimerkit Esimerkki 8.1 Heität pallon, jonka massa on 0.40 kg seinään. Pallo osuu seinään horisontaalisella nopeudella 30 m/s ja kimpoaa takaisin niin ikään horisontaalisesti nopeudella 20
LisätiedotAaltoliike ajan suhteen:
Aaltoliike Aaltoliike on etenevää värähtelyä Värähdysliikkeen jaksonaika T on yhteen värähdykseen kuluva aika Värähtelyn taajuus on sekunnissa tapahtuvien värähdysten lukumäärä Taajuuden ƒ yksikkö Hz (hertsi,
LisätiedotKuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus
Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus värähtelytiheyden. 1 Funktiot ja aallot Aiemmin käsiteltiin funktioita ja miten niiden avulla voidaan kuvata fysiikan
LisätiedotEi-inertiaaliset koordinaatistot
orstai 25.9.2014 1/17 Ei-inertiaaliset koordinaatistot Tarkastellaan seuraavaa koordinaatistomuunnosta: {x} = (x 1, x 2, x 3 ) {y} = (y 1, y 2, y 3 ) joille valitaan kantavektorit: {x} : (î, ĵ, ˆk) {y}
LisätiedotFYS03: Aaltoliike. kurssin muistiinpanot. Rami Nuotio
FYS03: Aaltoliike kurssin muistiinpanot Rami Nuotio päivitetty 24.1.2010 Sisältö 1. Mekaaninen aaltoliike 2 1.1. Harmoninen voima 2 1.2. Harmoninen värähdysliike 2 1.3. Mekaaninen aalto 3 1.4. Mekaanisen
LisätiedotKJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 17.3.2016 Susanna Hurme Päivän aihe: Energian, työn ja tehon käsitteet sekä energiaperiaate (Kirjan luku 14) Osaamistavoitteet: Osata tarkastella partikkelin kinetiikkaa
LisätiedotMekaniikka, osa 2. Perttu Lantto. Luentokalvot
Mekaniikka, osa 2 Perttu Lantto Luentokalvot perustuvat kirjaan: University physics, 13 th International Edition H. D. Young & R. A. Freedman (Pearson, 2012) 21. maaliskuuta 2016 Osa VI Luku 14: Jaksollinen
LisätiedotMat Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ
Mat-48 Dynaaminen optimointi, mallivastaukset, kierros Vaimennetun heilurin tilanyhtälöt on esitetty luennolla: θ = g sin θ r θ L ẋ = x ẋ = g L sin x rx Epälineaarisen systeemin tasapainotiloja voidaan
LisätiedotEnergia, energian säilyminen ja energiaperiaate
E = γmc 2 Energia, energian säilyminen ja energiaperiaate Luennon tavoitteet Lepoenergian, liike-energian, potentiaalienergian käsitteet haltuun Työ ja työn merkki* Systeemivalintojen miettimistä Jousivoiman
LisätiedotPotentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa
Potentiaalikuoppa Luento 9 Potentiaalikuopalla tarkoitetaan tilannetta, jossa potentiaalienergia U(x) on muotoa U( x ) = U U( x ) = 0 0 kun x < 0 tai x > L, kun 0 x L. Kuopan kohdalla hiukkanen on vapaa,
LisätiedotLuento 5: Käyräviivainen liike. Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike
Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat θ, ω ja α Yhdistetty liike 1 / 29 Luennon sisältö Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat
LisätiedotLuento 5: Käyräviivainen liike
Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike Ajankohtaista Konseptitesti 1 Kysymys Viereisessä kuvassa leppäkerttu istuu karusellissa,
LisätiedotKaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.
6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon
Lisätiedotdl = F k dl. dw = F dl = F cos. Kun voima vaikuttaa kaarevalla polulla P 1 P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl
Kun voima vaikuttaa kaarevalla polulla P 2, polku voidaan jakaa infinitesimaalisen pieniin siirtymiin dl Kukin siirtymä dl voidaan approksimoida suoraviivaiseksi, jolloin vastaava työn elementti voidaan
LisätiedotKvanttifysiikan perusteet 2017
Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.
LisätiedotLuento 6: Liikemäärä ja impulssi
Luento 6: Liikemäärä ja impulssi Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste Muuttuva massa Laskettuja esimerkkejä Luennon sisältö Liikemäärä ja impulssi Liikemäärän säilyminen Massakeskipiste
LisätiedotLuvun 5 laskuesimerkit
Luvun 5 laskuesimerkit Huom: luvun 4 kohdalla luennolla ei ollut laskuesimerkkejä, vaan koko luvun 5 voi nähdä kokoelmana sovellusesimerkkejä edellisen luvun asioihin! Esimerkki 5.1 Moottori roikkuu oheisen
LisätiedotNimi: Muiden ryhmäläisten nimet:
Nimi: Muiden ryhmäläisten nimet: PALKKIANTURI Työssä tutustutaan palkkianturin toimintaan ja havainnollistetaan sen avulla pienten ainepitoisuuksien havainnointia. Työn mittaukset on jaettu kolmeen osaan,
Lisätiedoty (0) = 0 y h (x) = C 1 e 2x +C 2 e x e10x e 3 e8x dx + e x 1 3 e9x dx = e 2x 1 3 e8x 1 8 = 1 24 e10x 1 27 e10x = e 10x e10x
BM0A5830 Differentiaaliyhtälöiden peruskurssi Harjoitus 4, Kevät 017 Päivityksiä: 1. Ratkaise differentiaaliyhtälöt 3y + 4y = 0 ja 3y + 4y = e x.. Ratkaise DY (a) 3y 9y + 6y = e 10x (b) Mikä on edellisen
Lisätiedot5.9 Voiman momentti (moment of force, torque)
5.9 Voiman momentti (moment of force, torque) Voiman momentti määritellään ristitulona M = r F missä r on voiman F vaikutuspisteen paikkavektori tarkasteltavan pisteen suhteen Usean voiman tapauksessa
LisätiedotFYSP105/2 VAIHTOVIRTAKOMPONENTIT. 1 Johdanto. 2 Teoreettista taustaa
FYSP105/2 VAIHTOVIRTAKOMPONENTIT Työn tavoitteita o Havainnollistaa vaihtovirtapiirien toimintaa o Syventää ymmärtämystä aiheeseen liittyvästä fysiikasta 1 Johdanto Tasavirta oli 1900 luvun alussa kilpaileva
LisätiedotLuento 2: Liikkeen kuvausta
Luento 2: Liikkeen kuvausta Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Luennon sisältö Suoraviivainen liike integrointi Kinematiikkaa yhdessä dimensiossa Liikkeen ratkaisu kiihtyvyydestä
LisätiedotNormaaliryhmä. Toisen kertaluvun normaaliryhmä on yleistä muotoa
Normaaliryhmä Toisen kertaluvun normaaliryhmä on yleistä muotoa x = u(t,x,y), y t I, = v(t,x,y), Funktiot u = u(t,x,y), t I ja v = v(t,x,y), t I ovat tunnettuja Toisen kertaluvun normaaliryhmän ratkaisu
LisätiedotDYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi
DYNAMIIKKA II, LUENTO 5 (SYKSY 2015) Arttu Polojärvi LUENNON SISÄLTÖ Kertausta edelliseltä luennolta: Suhteellisen liikkeen nopeuden ja kiihtyvyyden yhtälöt. Jäykän kappaleen partikkelin liike. Jäykän
LisätiedotMittalaitetekniikka. NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014
Mittalaitetekniikka NYMTES13 Vaihtosähköpiirit Jussi Hurri syksy 2014 1 1. VAIHTOSÄHKÖ, PERUSKÄSITTEITÄ AC = Alternating current Jatkossa puhutaan vaihtojännitteestä. Yhtä hyvin voitaisiin tarkastella
LisätiedotLuento 5: Käyräviivainen liike
Luento 5: Käyräviivainen liike Käyräviivainen liike Heittoliike Ympyräliike Kulmamuuttujat,! ja Yhdistetty liike Ajankohtaista Konseptitesti 1 http://presemo.aalto.fi/mekaniikka2017 Kysymys Sotalaivasta
Lisätiedot4. Käyrän lokaaleja ominaisuuksia
23 VEKTORIANALYYSI Luento 3 4 Käyrän lokaaleja ominaisuuksia Käyrän tangentti Tarkastellaan parametrisoitua käyrää r( t ) Parametrilla t ei tarvitse olla mitään fysikaalista merkitystä, mutta seuraavassa
Lisätiedot