PALOTEKNINEN SUUNNITELMA TOIMINNALLINEN TARKASTELU
|
|
- Juuso Tuominen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 PALOTEKNINEN SUUNNITELMA TOIMINNALLINEN TARKASTELU K.osa/Kylä Kortteli/Tila Tontti/rno Rakennustoimenpide Asiakirjan nimi Juoks.no PALOTEKNINEN SUUNNITELMA Rakennuskohde VERMON LÄMPÖKESKUS ESPOO Suunnittelutoimisto PALOÄSSÄT OY Tapiontori 1 (2.krs) ESPOO puh (050) Suunnittelijan allekirjoitus Sami Hämäläinen rkm. / turv.amk (Fise AA) Tark. Hyv. Pvm. SP SH Asiakirjan sisältö LASKELMA LÄMPÖSÄTEILYN INTENSITEETTI Asiakirjan numero PALO
2 1. YLEISTÄ Kyseessä on Espoossa sijaitsevan lämpökeskuksen palavan nesteen säiliöiden ja niiden suoja-altaan lämpösäteilyyn liittyvä toiminnallinen tarkastelu. Tarkastelun tarkoituksena oli tutkia allaspalojen aiheuttamaa lämpösäteilyn intensiteettiä ympäristöön. Laskennan tapahtumina käytettiin yksittäisen säiliön tulipaloa (1), suoja-altaan tulipaloa (2) ja säiliön ja suoja-altaan yhdenaikaista tulipaloa (3). Lämpökeskuksella on kaksi kappaletta 5000 m 3 ja yksi kappale 1000 m 3 säiliöitä. Suuremmat säiliöt sijaitsevat yhteisessä suoja-altaassa, jossa on lisäksi varaus kolmannelle 5000 m 3 säiliölle. Pienempi säiliö on sijoitettu erikseen omaan suoja-altaaseen. Säiliöissä oleva polttoaine on raskasta polttoöljyä. Suuren säiliön korkeus on 18,4 metriä ja pinta-ala on noin 291 m 2. Suoja-altaan reunan korkeus on maasta 3,05 metriä ja altaan pinta-ala on noin 2700 m 2. Kuva 1. Asemapiirros Lämpösäteilyn kannalta merkittävää tietoa on säteilylähteen koko ja etäisyys syttymislähteeseen/säteilyn vastaanottajaan. Tässä tarkastelussa selvitettiin palotilanteessa muodostuvat etäisyydet lämpösäteilyn arvoille 1,5 kw/m 2 sekä 3,0 kw/m 2. Arvot laskettiin epäoptimaalisimpaan sijaintiin eli kohtisuoraan säteilylähteestä sekä maanpinnan tasolle 2 metrin korkeuteen. Paloässät Oy 2
3 2. PALOTEHO JA LIEKIN KORKEUS Säiliö- ja allaspalon muodostaman palotehon arvo tarvitaan, liekin korkeuden laskemiseksi. Paloteho lasketaan molemmille palotilanteille erikseen. Yhdistettävää palotehoa on vaikea laskea johtuen säiliöiden sijoittumisesta suoja-altaaseen, näin ollen yhdistettynä palotehona on käytetty suoja-altaan palotehoa. Palotehon laskemiseksi tarvitaan seuraavat tiedot; - Palavan nesteen määrä litraa - Raskas polttoöljy [4] o lämpöarvo 39,7 MJ/kg o tiheys 0,97 kg/dm 3 o massan palamisnopeus 0,035 kg/m 2 s o empiirinen vakio 1,7 m -1 - Paloalat 291 m 2 ja 2700 m 2 Säiliöpalosta muodostuu noin 404 MW paloteho. Vastaavasti suoja-altaan palossa paloteho kasvaa jo noin 3753 MW suuruiseksi. Suoja-altaan palossa palotehon laskennassa suojaallas muunnettiin sylinterin muotoiseksi palon halkaisijan laskemiseksi. Käytetty paloala oli vastaava. Suoja-altaan karakteristisena halkaisijana käytettiin arvoa 58,65 metriä. Tätä arvoa käytetään jatkossa suoja-altaan pitkän sivun säteilylähteen leveytenä. Suoja-altaan pitkän sivun todellinen leveys on noin 80 metriä. Altaassa sijaitsevat säiliöt pienentävät liekkien kokonaisleveyttä. Palotehon ja paloalan perusteella voidaan ratkaista palosta muodostuvan liekin korkeus. Liekin korkeuden laskennassa käytetään Heskestadin menetelmää [4]. L f = -1,02D + 0,235Q c 2/5 Säiliöpalosta muodostuu 21,4 metriä korkea liekki. Vastaavasti suoja-altaan palosta muodostuu 40,4 metriä korkea liekki. Allaspalojen liekin korkeudesta vain osa on näkyvää, erittäin suurten palojen aiheuttama savu muodostaa liekkien eteen suojan, estäen suurimman osan lämpösäteilystä. Suurin ja oleellisin lämpösäteilyvaikutus muodostuu liekistä. Tätä ns. näkyvän alueen laajuutta voidaan selvittää laskennallisesti [5]. Kuva 2. Periaatteellinen piirros näkyvän liekin määräytymisestä [5]. Paloässät Oy 3
4 Näkyvän liekin osuus pienenee erittäin suurissa allaspaloissa johtuen palotehon aiheuttamasta epäpuhtaasta palamisesta. Palamisesta aiheutuu tällöin huomattavasti enemmän savua, kuin pienissä allaspaloissa. Kriteerinä suurille allaspaloille pidetään 20 metrin halkaisijaa [5]. Laskennallinen kaava suoja-altaan kokoisen allaspalon näkyvän liekin osuudelle; Hmax = 6 4 x 10-3 x q f, missä H max = on näkyvän liekin korkeus (m) q f = paloteho pinta-alayksikköä kohden (kw/m 2 ) Suoja-altaan näkyvän liekin korkeudeksi muodostuu näin ollen 6,4 x 10-3 x ( kw / 2700 m 2 ) noin 8,9 metriä. Vastaavasti, koska säiliön halkaisija on vain hieman alle 20 metriä sen palosta muodostuvan näkyvän liekin laskeminen voidaan samalla kaavalla [5]. Liekkien muodostaman säteilylähteen pinta-alaan vaikuttavaa myös tuuli. Tuuli voi kääntää palopatsasta, jolloin osa liekeistä ulottuu lähemmäksi säteilyn vastaanottajaa, mutta vastaavasti liekin näkyvä pinta-ala pienenee. Tässä tarkastelussa lämpösäteilyn laskennassa on tutkittu tuuletonta tilannetta. 3. LÄMPÖSÄTEILY Vaikuttava lämpösäteily lasketaan pelkästään suoja-altaan palosta, koska säiliöpalosta aiheutuva säteilyteho jää pienemmäksi. Näin ollen suoja-altaan palotilanne muodostuu vaikutusalueiden kriteeriksi. Suoja-altaan palon säteilyteho lasketaan käyttämällä pitkän sivun osalta liekkien karakteristisena leveytenä vastaavan ympyrän muotoisen altaan halkaisijaa. Halkaisija on 58,65 metriä. Pidemmän sivun todellinen mitta on noin 80 metriä, jota kuitenkin lyhentää kaksi säiliötä. Olettaen, että vain toinen säiliö osallistuu palamiseen, lyhentää toisen säiliön halkaisija leveyttä noin 20 metriä. Lyhyemmän sivun osalta käytetään sivun todellista mittaa, joka on 33,76 metriä. Lämpösäteily lasketaan käyttäen Stefan-Bolzmannin teoriaa [1]. E = ε * 5,67 * T 4 * 10-8 (kw/m 2 ) Laskennassa säteilijälle annettiin 900 C lämpötila. Säteilylähteenä käytettiin näkyvän liekin aluetta. Säteilylähteen säteilytehoksi muodostuu 96,6 kw/m 2, joka vastaa lähteissä esitettyä vaihteluväliä kw/m 2. Säteilijän vastaanottajan emissiivisyyden arvona käytetään lukemaa 0,9 [1]. Paloässät Oy 4
5 Säteilyteho säteilyn vastaanottajan ja etäisyyden suhteen huomioidaan kaavalla; E = 4 * φ * E max, missä φ on säteilijän ja säteilyn vastaanottajan etäisyyden ja näkyvyyskertoimen välinen suhdeluku [1]. E max on lämpösäteilyn voimakkuus Näkyvyyskerroin on suhdeluku, joka kuvaa sitä, kuinka suuri osuus säteilijän lähettämästä lämpösäteilystä kohdistuu säteilyn vastaanottajaan. Kun säteilyn vastaanottaja on keskellä säteilijää ja kohtisuoraan säteilijästä, näkyvyyskerroin on 1. Näkyvyyskerroin olisi 0, mikäli säteilyn vastaanottaja ei näe säteilijää eli on säteilyä läpäisemättömän esineen takana. Tämän kaltaisia kohtia muodostuu tutkittavassa kohteessa välissä olevien rakennusten ja rakennelmien johdosta. Sijoittamalla arvot kaavaan käänteisesti lasketaan etäisyydet 1,5 kw/m 2 ja 3,0 kw/m 2 säteilyintensiteetin arvoille. Säteilyn intensiteetti Pitkän sivu Lyhyt sivu Kulmat 45 1,5 kw/m 2 n. 100,6 metriä n. 77,2 metriä 94,2 metriä 3,0 kw/m 2 n. 69,2 metriä n. 53,6 metriä 65 metriä Taulukko 1. Etäisyydet eri lämpösäteilyn intensiteeteille. Kulmien kohdalla etäisyydet laskettiin kulman näkyvyyden mukaan. Kulmissa säteilevän pinnan leveytenä käytettiin 51 metriä. Etäisyyskaavio on esitetty kuvassa seuraavalla sivulla. Paloässät Oy 5
6 Kuva 3. Lämpösäteilyn intensiteetin vaikutusalueet, kuva ei mittakaavassa Säteilyn intensiteetti on laskettu säteilypinnan keskipisteestä, eli käytännössä noin 4,5 metrin korkeudelta maasta. Maaston muodot, rakennukset ja rakennelmat vaikuttavat vaikutusalueeseen estäen lämpösäteilyn etenemistä. Lämpösäteilyn vaikutusta palon leviämisen kannalta voidaan arvioida säteilyn intensiteetin kautta. Ihmisen ihoon kohdistuu esimerkiksi auringosta pilvettömänä päivänä noin 0,67 kw/m 2 lämpösäteilyä. Poistumisen kannalta 6,5 kw/m 2 aiheuttaa kivun tunteen iholla säteilyn kestäessä yli 8 sekuntia. Palovammoja syntyy 16 kw/m 2 säteilyteholla [1]. Suomalaisessa lähteessä poistumisturvallisuuden kriteeriksi on mainittu 10 kw/m 2 [2]. Yhdysvalloissa säiliöpalojen muodostamien riskien osalta käytetään kahta lämpösäteilyn intensiteettiä kuvaavaa rajaa, jotka ovat 1,4 kw/m 2 ihmisiin ja 31,5 kw/m 2 rakennuksiin [4]. Esineen syttymiseen tarvitaan mm. puun osalta noin 12,5 kw/m 2 pitkäkestoista säteilytehoa [1]. Laskelman laati Sami Hämäläinen paloturvallisuussuunnittelija (Fise AA) Paloässät Oy 6
7 LÄHTEET 1 / Drysdale D., An introduction to Fire Dynamics 2nd edition, West Sussex (UK), / RIL ry, RIL 221 Paloturvallisuussuunnittelu, Helsinki, / Ympäristöministeriö, Suomen Rakentamismääräyskokoelma E1, Helsinki, / The SFPE Handbook of Fire Protection Engineering 4th Edition, Quincy (US), / NIST, Thermal Radiation from Large Pool Fires, NISTIR 6546, (US), 2000 Paloässät Oy 7
SAVUNPOISTOSUUNNITELMA
SAVUNPOISTOSUUNNITELMA 25.5.2016 Muutos kappaleessa 5. Savunpoistopuhaltimien mallit muutettu. K.osa/Kylä Kortteli/Tila Tontti/rno Rakennustoimenpide Asiakirjan nimi Juoks.no SANEERAUS SAVUNPOISTOSUUNNITELMA
Etanoli-vesi seosten palaminen
TEKNOLOGIAN TUTKIMUSKESKUS VTT OY Etanoli-vesi seosten palaminen Palotutkimuksen päivät 2017 Timo Korhonen, Tuula Hakkarainen & Jukka Vaari Johdanto Väkevät alkoholijuomat ja Palavien nesteiden säilytys
Rak Tulipalon dynamiikka
Rak-43.3510 Tulipalon dynamiikka 7. luento 14.10.2014 Simo Hostikka Palopatsaat 1 Luonnollisten palojen liekki 2 Palopatsas 3 Liekin korkeus 4 Palopatsaan lämpötila ja virtausnopeus 5 Ideaalisen palopatsaan
Ratkaisu: Maksimivalovoiman lauseke koostuu heijastimen maksimivalovoimasta ja valonlähteestä suoraan (ilman heijastumista) tulevasta valovoimasta:
LASKUHARJOITUS 1 VALAISIMIEN OPTIIKKA Tehtävä 1 Pistemäinen valonlähde (Φ = 1000 lm, valokappaleen luminanssi L = 2500 kcd/m 2 ) sijoitetaan 15 cm suuruisen pyörähdysparaboloidin muotoisen peiliheijastimen
Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio
Geometrian kertausta MAB2 Juhani Kaukoranta Raahen lukio Ristikulmat Ristikulmat ovat yhtä suuret keskenään Vieruskulmien summa 180 Muodostavat yhdessä oikokulman 180-50 =130 50 Samankohtaiset kulmat Kun
Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on
766328A ermofysiikka Harjoitus no. 3, ratkaisut (syyslukukausi 201) 1. (a) ilavuus V (, P ) riippuu lämpötilasta ja paineesta P. Sen differentiaali on ( ) ( ) V V dv (, P ) dp + d. P Käyttämällä annettua
PALOSEMINAARI 2019 PALOTURVALLISUUS JA STANDARDISOINTI TIIA RYYNÄNEN. Your industry, our focus
PALOSEMINAARI 2019 PALOTURVALLISUUS JA STANDARDISOINTI Your industry, our focus 6.2.2019 TIIA RYYNÄNEN Rakennustuotteiden palokäyttäytymisen luokitus Rakennustuotteiden palokäyttäytymistä koskevassa luokitusstandardissa
Sovelletun fysiikan pääsykoe
Sovelletun fysiikan pääsykoe 7.6.016 Kokeessa on neljä (4) tehtävää. Vastaa kaikkiin tehtäviin. Muista kirjoittaa myös laskujesi välivaiheet näkyviin. Huom! Kirjoita tehtävien 1- vastaukset yhdelle konseptille
ASIAKIRJALUETTELO PURKUPIIRUSTUKSET RS001. Naistenmatka 1(2) Pirkkalan yläaste. Luettelon sisältö: Luettelon tunniste:
1(2) Pirkkalan yläaste ASIAKIRJALUETTELO Luettelon sisältö: PURKUPIIRUSTUKSET Luettelon tunniste: RS001 Suunnittelijan työ numero: 22701904 Työmaan numero: Rakennuskohteen osoite: Koulutie 8 33960 PIRKKALA
2.1 Yhdenmuotoiset suorakulmaiset kolmiot
2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.2 Kulman tangentti 2.3 Sivun pituus tangentin avulla 2.4 Kulman sini ja kosini 2.5 Trigonometristen funktioiden käyttöä 2.7 Avaruuskappaleita 2.8 Lieriö 2.9
PALOTURVALLISUUS MAANALAISISSA TILOISSA
PALOTURVALLISUUS MAANALAISISSA TILOISSA Esko Mikkola ja Tuomo Rinne VTT Copyright VTT LÄHTÖKOHTIA Maanalaisissa tiloissa tulipalo on erityisen vaarallinen: Poistuminen hidasta (pitkät etäisyydet, nousut,
LIITE. asiakirjaan KOMISSION DELEGOITU ASETUS.../... annettu xxx,
EUROOPAN KOMISSIO Bryssel 1.7.2015 C(2015) 4394 final ANNEX 1 LIITE asiakiran KOMISSION DELEGOITU ASETUS.../... annettu xxx, rakennustuotteiden paloteknisen käyttäytymisen luokittelusta Euroopan parlamentin
TOIMINNALLINEN PALOTURVALLISUUSSUUNNITTELU
TOIMINNALLINEN PALOTURVALLISUUSSUUNNITTELU PALOTURVALLISUUS VAATIMUSTEN TÄYTTYMISEN OSOITTAMINEN Suomen rakentamismääräyskokoelma E1 (1.3.1) Suomen rakentamismääräyskokoelma E1 (1.3.2) Paloturvallisuuden
x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)
MAA4 ratkaisut. 5 a) Itseisarvon vastauksen pitää olla aina positiivinen, joten määritelty kun 5 0 5 5 tai ( ) 5 5 5 5 0 5 5 5 5 0 5 5 0 0 9 5 9 40 5 5 5 5 0 40 5 Jälkimmäinen vastaus ei toimi määrittelyjoukon
Sähkökaapelien palomallinnuksen uusia menetelmiä ja tuloksia
Sähkökaapelien palomallinnuksen uusia menetelmiä ja tuloksia Anna Matala, Simo Hostikka, Johan Mangs VTT Palotutkimuksen päivät 27.-28.8.2013 2 Motivaatio 3 Pyrolyysimallinnuksen perusteet Pyrolyysimallinnus
Rakennusten paloturvallisuutta koskevan ympäristöministeriön asetuksen ja ohjeen uudistaminen
Rakennusten paloturvallisuutta koskevan ympäristöministeriön asetuksen ja ohjeen uudistaminen Onnettomuuksien ehkäisyn opintopäivät Tampere 9.11.2016 Rakenteellista paloturvallisuutta koskevat olennaiset
TUTKIMUSRAPORTTI VTT-R-07831-11 2 (6) Sisällysluettelo
2 (6) Sisällysluettelo 1 Tehtävä... 3 2 Aineisto... 3 3 Palotekninen arviointi... 3 3.1 Tuotemäärittelyt ja palotekninen käyttäytyminen... 3 3.2 Ullakon yläpohjan palovaatimusten täyttyminen... 3 4 Yhteenveto...
Euroopan unionin neuvosto Bryssel, 6. heinäkuuta 2015 (OR. en) Euroopan komission pääsihteerin puolesta Jordi AYET PUIGARNAU, johtaja
Euroopan unionin neuvosto Bryssel, 6. heinäkuuta 2015 (OR. en) 10588/15 ADD 1 SAATE Lähettäjä: Saapunut: 1. heinäkuuta 2015 Vastaanotta: MI 444 ENT 133 COMPET 333 DELACT 84 Euroopan komission pääsihteerin
MALLINTAMINEN JA SEN KÄYTTÖ PALOTEKNIIKASSA
MALLINTAMINEN JA SEN KÄYTTÖ PALOTEKNIIKASSA Jukka Hietaniemi VTT Rakennus- ja yhdyskuntatekniikka PL 183, 44 VTT Tiivistelmä Tietotekniikan käyttö on levinnyt kaikille inhimillisen toiminnan alueille ja
1 Oikean painoisen kuulan valinta
Oikean painoisen kuulan valinta Oheisessa kuvaajassa on optimoitu kuulan painoa niin, että se olisi mahdollisimman nopeasti perillä tietyltä etäisyydeltä ammuttuna airsoft-aseella. Tulos on riippumaton
Korkeiden rakennusten poistumisturvallisuus
Korkeiden rakennusten poistumisturvallisuus L2 Paloturvallisuus Oy Tommi Nieminen Runeberginkatu 5 B 00100 Helsinki p. 040 7029044 tommi.nieminen@l2.fi www.l2.fi Korkea rakentaminen Suomessa Uutta meille
[MATEMATIIKKA, KURSSI 9]
2016 Puustinen, Sinn PYK [MATEMATIIKKA, KURSSI 9] Avaruusgeometrian teoriaa, tehtäviä ja linkkejä peruskoululaisille 1 SISÄLLYSLUETTELO 9. KURSSIN SISÄLTÖ... 3 9.0.1 MALLIKOE 1... 4 9.0.2 MALLIKOE 2...
HATTULAN KUNTA PAROLAN TERVEYSASEMA
HATTULAN KUNTA PAROLAN TERVEYSASEMA LVI-TYÖSELOSTUS NYKYISEN TERVEYSASEMAN TILAPÄINEN LÄMPÖKESKUS Asiakirja n:o LVI 0101 Projekti n:o 01720.P001 Viimeisin muutos Laadittu 29.3.2018 Laatija IJK Tark./Hyv.
TOKSET FIRE SAFE JÄTEASTIASUOJAN PALO-OMINAISUUKSIEN SELVITYS
TOKSET FIRE SAFE JÄTEASTIASUOJAN PALO-OMINAISUUKSIEN SELVITYS Sisällysluettelo 1 TYÖN SISÄLTÖ... 3 2 TOKSET -JÄTESÄILIÖIDEN KUVAUS... 3 3 TOKSET-JÄTEASTIA SÄILIÖN SYTTYVYYS, PALON KEHITTYMINEN JA VOIMAKKUUS
Tuovi Rahkonen 27.2.2013. Lämpötilahäviöiden tasaus Pinta-alat, m 2
Rakennuksen lämpöhäviöiden tasauslaskelma D3-2007 Rakennuskohde Rakennustyyppi Rakennesuunnittelija Tasauslaskelman tekijä Päiväys Tulos : Suunnitteluratkaisu Rakennuksen yleistiedot Rakennustilavuus Maanpäälliset
Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kertaus K1. a) Ratkaistaan suorakulmaisen kolmion kateetin pituus x tangentin avulla. tan9 x,5,5 x,5 tan 9 x 2,8... x» 2,8 (cm) Kateetin pituus x on 2,8 cm. b) Ratkaistaan vinokulmaisen kolmion sivun pituus
Melumallinnus Kauramäki / Etelä-Keljo
Melumallinnus Kauramäki / Etelä-Keljo JYVÄSKYLÄN KAUPUNKI KAAVOITUS 2012 (9.3.2012) 1 TYÖN TARKOITUS Tässä melumallinnuksessa on tarkasteltu Ysitien(Vt 9) tieliikenteen aiheuttamaa melutasoa Etelä-Keljon
LAUSUNTO KIINTEISTÖTIEDOT LAUSUNTO Kohde sijaitsee rataosan Tampere-Seinäjoki rataosan lähimmästä raiteesta noin 50 metrin päässä.
LAUSUNTO 7..07 LIVI/86/0.0.0/07 Viite: Lausuntopyyntö 6..07 NAAPURIN KUULEMINEN RAKENNUSLUPAHAKEMUSTA VARTEN, TAMPERE RAKENNUSLUVAN HAKIJA Tampereen ev.lut seurakuntayhtymä KIINTEISTÖTIEDOT 87-8-07-7 RAKENTAMISTIEDOT
P viherpiha 39P m2 12 A m2. VIITESUUNNITELMA / LUONNOS Lestikuja 6, / 15 RAKENNUSPAIKKA / -ALUE
RKENNUSPIKK / -LUE Rakennuspaikka sijaitsee Helsingin Tapaninkylässä korttelissa 9200, missä aiempi tontti nro 7 on jaettu tonteiksi 4 ja 5 (tonttijako 2.2.204). Tontilla 4 on 50-luvulla rakennettu pientalo
TUULIVOIMAPUISTO Ketunperä
Page 1 of 7 Ketunperä_Valkeselvitys_YKJR 150531- Etha Wind Oy Frilundintie 2 65170 Vaasa Finland TUULIVOIMAPUISTO Ketunperä Välkeselvitys Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä Rev01 31.5.2015
Lumirakenteiden laskennassa noudatettavat kuormat ja kuormitukset
Lumirakenteiden laskennassa noudatettavat kuormat ja kuormitukset Kuormien laskemisessa noudatetaan RakMK:n osaa B1, Rakenteiden varmuus ja kuormitukset sekä Rakenteiden kuormitusohjetta (RIL 144) Mitoituslaskelmissa
nostolava-auto B-C B-B B-1 B-2 B-A B-3 B-1 B-2 B-4 B-3 B-5 B-4 B-6 B-5 B-7 B-6 4 498,7 m 2 B-8 B-7 B-9 B-8 B- B-9 B-11 B- B-12 B-11 B-C B-12 B-B B-A 4202 59 1 0 lumet BK ESITTELYAUTOT nostolava-auton kääntösäde
Savunpoiston mitoitus
Savunpoiston mitoitus Pekka Kallioniemi Piikallio Oy Finnbuild 2014 Helsinki 3.10.2014 Kera Group, Finland Finnbuild 2014, Kera Group Savunpoiston mitoitus, Pekka Kallioniemi 1 Esitelmän pääaiheet Savunpoiston
Paloturvallisuustutkimus VTT:ssä. Paloklusteri 14.1.2015 Tuula Hakkarainen, erikoistutkija VTT
Paloturvallisuustutkimus VTT:ssä Paloklusteri 14.1.2015 Tuula Hakkarainen, erikoistutkija VTT Pohjois-Euroopan suurin soveltavan tutkimuksen organisaatio KAIKKEIN VAATIVIMMISTA INNOVAATIOISTA Suomessa
Rakenteiden sisältämät palokuormat ja niiden suojaaminen. Esko Mikkola KK-Palokonsultti Oy
Rakenteiden sisältämät palokuormat ja niiden suojaaminen Esko Mikkola KK-Palokonsultti Oy Taustaa Rakennusten paloturvallisuussuunnittelun lähtökohtana ovat rakennusten paloluokat, jotka rajoittavat niiden
Rakennusten paloturvallisuus, säännökset ja ohjeet
Rakennusten paloturvallisuus, säännökset ja ohjeet Paloseminaari 18, Paloturvallisuus ja standardisointi 10.2.2016, HILTON Kalastajatorppa Jorma Jantunen Rakenteellista paloturvallisuutta koskevat olennaiset
Tuulivoimaloiden ympäristövaikutukset
25.10.2012 1 (6) Tilaaja Suomen Tuulivoima Oy y-tunnus 24098903 Tuulivoimaloiden ympäristövaikutukset Savonrannan Syvälahden tuulivoimalat 25.10.2012 2 (6) Turbiinien varjovaikutus Turbiinin pyörivä roottori
FYSI1040 Fysiikan perusteet III / Harjoitus 1 1 / 6
FYSI040 Fysiikan perusteet III / Harjoitus / 6 Laskuharjoitus 2. Halogeenilampun käyttöhyötysuhde on noin 6 lm/w. Laske sähköiseltä ottoteholtaan 60 watin halogenilampun tuottama: (a) Valovirta. (b) Valovoima
Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)
Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman
FDS-OHJELMAN KÄYTTÖ SUUREN KOHTEEN TULIPALON SIMULOINNISSA
FDS-OHJELMAN KÄYTTÖ SUUREN KOHTEEN TULIPALON SIMULOINNISSA Tuula Hakkarainen ja Jukka Hietaniemi VTT Rakennus- ja yhdyskuntatekniikka PL 1803, 02044 VTT Tiivistelmä Tässä työssä esitellään kolmiulotteiseen
VAHINGONVAARASELVITYS
JNi UPM-Kymmene Oyj Hartolankosken suojapenkereet VAHINGONVAARASELVITYS Vaunujoki Liekovesi Vammala Hartolankoski Hoppu 24.5.2013 Oy Vesirakentaja Puhelin Sähköposti Y-tunnus Bertel Junhin aukio 9 etunimi.sukunimi@afconsult.com
Kirjoittaja: tutkija Jyrki Kouki, TTS tutkimus
TUTKIMUSRAPORTTI 13.03.2009 Mittauksia hormittomalla takalla ( Type: HW Biotakka, tuotekehitysversio) Tilaaja: OY H & C Westerlund AB Kirjoittaja: tutkija Jyrki Kouki, TTS tutkimus 2 SISÄLLYSLUETTELO sivu
VIII LISÄTIETOA 8.1. HAVAINTOVIRHEISTÄ
56 VIII LISÄTIETOA 8.1. HAVAINTOVIRHEISTÄ Hyvällä havaitsijalla keskimääräinen virhe tähdenlennon kirkkauden arvioimisessa on noin 0.4 magnitudia silloin, kun meteori näkyy havaitsijan näkökentän keskellä.
Rakennusten paloturvallisuutta koskevan ympäristöministeriön asetuksen ja ohjeen uudistaminen
Rakennusten paloturvallisuutta koskevan ympäristöministeriön asetuksen ja ohjeen uudistaminen Jorma Jantunen Pelastusviranomaisten ajankohtaispäivät pelastustoimen laitteista, Hotelli Käpylä 27.09.2016
a) Lasketaan sähkökenttä pallon ulkopuolella
Jakso 2. Gaussin laki simerkki 2.1: Positiivinen varaus Q on jakautunut tasaisesti R-säteiseen palloon. Laske sähkökenttä pallon a) ulkopuolella ja b) sisäpuolella etäisyydellä r pallon keskipisteestä.
PYHTÄÄN KUNTA RUOTSINPYHTÄÄN KUNTA
Liite 16 PYHTÄÄN KUNTA RUOTSINPYHTÄÄN KUNTA VT 7 MELUALUEEN LEVEYS 6.10.2005 SUUNNITTELUKESKUS OY RAPORTTI Turku / M. Sairanen VT 7, melualueen leveys 6.10.2005 SISÄLLYSLUETTELO 1. JOHDANTO... 1 2. LASKENNAN
Hydrologia. Säteilyn jako aallonpituuden avulla
Hydrologia L3 Hydrometeorologia Säteilyn jako aallonpituuden avulla Ultravioletti 0.004 0.39 m Näkyvä 0.30 0.70 m Infrapuna 0.70 m. 1000 m Auringon lyhytaaltoinen säteily = ultavioletti+näkyvä+infrapuna
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 6.3.08 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
Differentiaalilaskennan tehtäviä
Differentiaalilaskennan tehtäviä DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona 2. Derivoimiskaavat 2.1
KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme
KJR-C1001 Statiikka ja dynamiikka Luento 23.3.2016 Susanna Hurme Rotaatioliikkeen kinetiikka: hitausmomentti ja liikeyhtälöt (Kirjan luvut 17.1, 17.2 ja 17.4) Osaamistavoitteet Ymmärtää hitausmomentin
33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ
TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien
7 ULOSKÄYTÄVIEN PALOTEKNINEN SUUNNITTELU 7.1 ULOSKÄYTÄVÄT Porrashuone Avoin luhtikäytävä Varatienä toimiva parveke
7 ULOSKÄYTÄVIEN PALOTEKNINEN SUUNNITTELU 7.1 ULOSKÄYTÄVÄT Rakennuksesta tulee voida poistua palotilanteessa ohjattua reittiä pitkin turvallisesti ja nopeasti. Puurunkoisessa rakennuksessa poistumisjärjestelyt
Martinlaakson kaupunginosan korttelin 17544 suojaus raide-, tieliikenne- ja lentomelulta sekä kauppakeskuksen tavaraliikenteen melulta
1(3) Tilaaja: SRV Westerlund Oy Sami Somero PL 515 02201 Espoo sami.somero@srv.fi Martinlaakson kaupunginosan korttelin 17544 suojaus raide-, tieliikenne- ja lentomelulta sekä kauppakeskuksen tavaraliikenteen
RAUMAN KAUPUNKI KAAVOITUS
M O N N A N U M M I R A K E N T A M I S T A P A O H J E E T RAUMAN KAUPUNKI KAAVOITUS 8.10.2002 Lähtökohdat Monnanummen alue sijaitsee kaupunki- ja maalaismaiseman rajavyöhykkeellä. Se rajautuu pohjoisessa
Luku 6. reunaehtoprobleemat. 6.1 Laplacen ja Poissonin yhtälöt Reunaehdot. Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan
Luku 6 Sähköstatiikan reunaehtoproleemat 6.1 Laplacen ja Poissonin yhtälöt Kun sähkökentän lauseke E = φ sijoitetaan Gaussin lakiin, saadaan ( φ) = ρ ε 0, (6.1) josta 2 φ = ρ ε 0. (6.2) Tämä tulos on nimeltään
RIL Rakenteellinen paloturvallisuus. Yleiset perusteet ja ohjeet. Suomen Rakennusinsinöörien Liitto RIL ry
RIL 195-1-2018 Suomen Rakennusinsinöörien Liitto RIL ry Rakenteellinen paloturvallisuus Yleiset perusteet ja ohjeet 2 RIL 195-1-2018 RILin julkaisuilla on oma kotisivu, joka löytyy osoitteesta www.ril.fi/kirjakauppa
110 kv JOHTOKADUT JA RAKENTAMINEN NIIDEN LÄHEISYYDESSÄ
110 kv JOHTOKADUT JA RAKENTAMINEN NIIDEN LÄHEISYYDESSÄ Tällä ohjeella määritetään ulkopuolisille toimijoille erilaisten kaavoitus- ja rakentamishankkeiden yhteydessä Turku Energia Sähköverkot Oy:n (TESV)
RAK. KUORMAT: LUMIKUORMA MAASSA 2,75 kn/m2 TUULIKUORMA 0,6 kn/m2 KATTORAKENTEET 0,8 kn/m2 MITALLISTETTU PUUTAVARA C24
KUORMAT: LUMIKUORMA MAASSA 2,75 kn/m2 TUULIKUORMA 0,6 kn/m2 KATTORAKENTEET 0,8 kn/m2 MITALLISTETTU PUUTAVARA C24 SEINIEN RUNGOT 42x148 k600 YLÄJUOKSUT, ALAJUOKSUT JA RUNKOTOLPAT SIJAINTEINEEN PIIRUSTUKSEN
RAK. KUORMAT: LUMIKUORMA MAASSA 2,75 kn/m2 TUULIKUORMA 0,6 kn/m2 KATTORAKENTEET 0,8 kn/m2 MITALLISTETTU PUUTAVARA C24
KUORMAT: LUMIKUORMA MAASSA 2,75 kn/m2 TUULIKUORMA 0,6 kn/m2 KATTORAKENTEET 0,8 kn/m2 MITALLISTETTU PUUTAVARA C24 SEINIEN RUNGOT 42x148 k600 YLÄJUOKSUT, ALAJUOKSUT JA RUNKOTOLPAT SIJAINTEINEEN PIIRUSTUKSEN
Vanhoja koetehtäviä. Analyyttinen geometria 2016
Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.
Kaavoitus ja erityistä vaaraa aiheuttavat laitokset - säädöstausta, Tukesin ohje
Turvallisuus- ja kemikaalivirasto Leena Ahonen Kaavoitus ja erityistä vaaraa aiheuttavat laitokset - säädöstausta, Tukesin ohje Onnettomuuksien ehkäisy 2013 Espoo, Dipoli 13-14.2.2013 Länsi-Uudenmaan pelastuslaitos,
Linnanniitun eteläosan kaava-alue K 266 T 3, K 265 T 2-3, K 263 T 1-3, K 264 T 1 Nummela POHJATUTKIMUSLAUSUNTO. Työ 3632/10
VIHDIN KUNTA Linnanniitun eteläosan kaava-alue K 266 T 3, K 265 T 2-3, K 263 T 1-3, K 264 T 1 Nummela POHJATUTKIMUSLAUSUNTO Työ 3632/10 Sisällys: Pohjatutkimuslausunto Pohjatutkimusmerkinnät Pohjatutkimuskartta
4 TOISEN ASTEEN YHTÄLÖ
Huippu Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.4.016 4 TOISEN ASTEEN YHTÄLÖ POHDITTAVAA 1. Merkitään toisen neliön sivun pituutta kirjaimella x. Tällöin toisen neliön sivun pituus on
235. 236. 237. 238. 239. 240. 241. 8. Sovellutuksia. 8.1. Pinta-alan ja tilavuuden laskeminen. 8.2. Keskiö ja hitausmomentti
8. Sovellutuksia 8.1. Pinta-alan ja tilavuuden laskeminen 235. Laske sen kappaleen tilavuus, jota rajoittavat pinnat z = xy, x = y 2, z = 0, x = 1. (Kappale sijaitsee oktantissa x 0, y 0, z 0.) 1/6. 236.
LP 115x115 yp 2075 L=2075 EI KANTAVA PILARI. Rakennustoimenpide UUDISRAKENNUS Rakennuskohteen nimi ja osoite. LP 115x115 yp 2300 L=2300
R3 R3 KUORMAT: LUMIKUORMA MAASSA 2,75 kn/m2 TUULIKUORMA 0,6 kn/m2 KATTORAKENTEET 0,8 kn/m2 MITALLISTETTU PUUTAVARA C24 LIIMAPUU GL32 SEINIEN RUNGOT 42x148 k600 YLÄJUOKSUT, ALAJUOKSUT JA RUNKOTOLPAT SIJAINTEINEEN
Differentiaali- ja integraalilaskenta
Differentiaali- ja integraalilaskenta Opiskelijan nimi: DIFFERENTIAALILASKENTA 1. Raja-arvon käsite, derivaatta raja-arvona 1.1 Raja-arvo pisteessä 1.2 Derivaatan määritelmä 1.3 Derivaatta raja-arvona
Melumallinnus Pellonreuna
Melumallinnus Pellonreuna JYVÄSKYLÄN KAUPUNKI KAAVOITUS 2017 (28.4.2017) 1 TYÖN TARKOITUS Tässä melumallinnuksessa on tarkasteltu Kuokkalan Tikanväylän ja Pohjanlahdentien liikenteen aiheuttaman melun
KON C3004 14.10.2015 H03 Ryhmä G Samppa Salmi, 84431S Joel Tolonen, 298618. Koesuunnitelma
KON C3004 14.10.2015 H03 Ryhmä G Samppa Salmi, 84431S Joel Tolonen, 298618 Koesuunnitelma Sisällysluettelo Sisällysluettelo 1 1 Tutkimusongelma ja tutkimuksen tavoit e 2 2 Tutkimusmenetelmät 3 5 2.1 Käytännön
RAK. LP 90x225 ap 2075 L=6748
KUORMAT: LUMIKUORMA MAASSA 2,75 kn/m2 TUULIKUORMA 0,6 kn/m2 KATTORAKENTEET 0,8 kn/m2 MITALLISTETTU PUUTAVARA C24 SEINIEN RUNGOT 42x148 k600 YLÄJUOKSUT, ALAJUOKSUT JA RUNKOTOLPAT SIJAINTEINEEN PIIRUSTUKSEN
CHEM-A1410 Materiaalitieteen perusteet
CHEM-A1410 Materiaalitieteen perusteet Laskuharjoitus 18.9.2017, Materiaalien ominaisuudet Tämä harjoitus ei ole arvioitava, mutta tämän tyyppisiä tehtäviä saattaa olla tentissä. Tehtävät perustuvat kurssikirjaan.
a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.
Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi
11. Dimensioanalyysi. KJR-C2003 Virtausmekaniikan perusteet
11. Dimensioanalyysi KJR-C2003 Virtausmekaniikan perusteet Päivän anti Miten yksittäisen virtaustapauksen tuloksia voidaan yleistää tarkastelemalla ilmiöön liittyvien suureiden yksiköitä? Motivointi: dimensioanalyysin
Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 /
MS-A3x Differentiaali- ja integraalilaskenta 3, IV/6 Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitukseen 3 / 9..-.3. Avaruusintegraalit ja muuttujanvaihdot Tehtävä 3: Laske sopivalla muunnoksella
Scanclimber Oy Mastolavojen matematiikkaa
Koostanut Essi Rasimus Opettajalle Scanclimber Oy Mastolavojen matematiikkaa Kohderyhmä: 8. - 9. -luokka Esitiedot: Ympyrän tasogeometria, kulman suuruus, nopeuden yhtälö Taustalla oleva matematiikka:
Välkeselvitys. Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä. Rev01 02.12.2014 CGr TBo Hankilannevan tuulivoimapuiston välkeselvitys.
Page 1 of 11 Hankilanneva_Valkeselvitys- CGYK150219- Etha Wind Oy Frilundintie 2 65170 Vaasa Finland TUULIVOIMAPUISTO HANKILANNEVA Välkeselvitys Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä Rev01 02.12.2014
Avaruuslävistäjää etsimässä
Avaruuslävistäjää etsimässä Avainsanat: avaruusgeometria, mittaaminen Luokkataso: 6.-9. lk, lukio Välineet: lankaa, särmiön muotoisia kartonkisia pakkauksia(esim. maitotölkki tms.), sakset, piirtokolmio,
Raportti. Kiinteistö Oy Kalevan Airut 8479 asemakaavatyön meluselvitys. Projektinumero: 307797 Donna ID 1 612 072
! Raportti Kiinteistö Oy Kalevan Airut 8479 asemakaavatyön meluselvitys 27.5.2016 Projektinumero: 307797 Donna ID 1 612 072 Sisältö 1. Johdanto... 1 2. Laskentamalli... 1 2.1. Lähtötiedot... 1 2.1.1. Suunnittelualue...
Mikrokalorimetri - uusi materiaalien palamisominaisuuksien tutkimuslaite hankittu VTT:lle
Mikrokalorimetri - uusi materiaalien palamisominaisuuksien tutkimuslaite hankittu VTT:lle Johan Mangs & Anna Matala VTT Palotutkimuksen päivät 27.-28.8.2013 2 Mikrokalorimetri (Micro-scale Combustion Calorimeter
Välkeselvitys. Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä. Rev01 03.02.2015 CGr TBo Ketunperän tuulivoimapuiston välkeselvitys.
Page 1 of 11 Ketunperä-Välkeselvitys- CG150203-1- Etha Wind Oy Frilundintie 2 65170 Vaasa Finland TUULIPUISTO Ketunperä Välkeselvitys Versio Päivämäärä Tekijät Hyväksytty Tiivistelmä Rev01 03.02.2015 CGr
valmistaa ilmanvaihtokoneita Parmair Eximus JrS
Parmair Eximus JrS Parmair Eximus JrS Air Wise Oy valmistaa ilmanvaihtokoneita Parmair Eximus JrS Sertifikaatti Nro C333/05 1 (2) Parmair Eximus JrS on tarkoitettu käytettäväksi asunnon ilmanvaihtokoneena
Fluidi virtaa vaakasuoran pinnan yli. Pinnan lähelle muodostuvan rajakerroksen nopeusjakaumaa voidaan approksimoida funktiolla
Tehtävä 1 Fluidi virtaa vaakasuoran pinnan yli. Pinnan lähelle muodostuvan rajakerroksen nopeusjakaumaa voidaan approksimoida funktiolla ( πy ) u(y) = U sin, kun 0 < y < δ. 2δ Tässä U on nopeus kaukana
L a = L l. rv a = Rv l v l = r R v a = v a 1, 5
Tehtävä a) Energia ja rataliikemäärämomentti säilyy. Maa on r = AU päässä auringosta. Mars on auringosta keskimäärin R =, 5AU päässä. Merkitään luotaimen massaa m(vaikka kuten tullaan huomaamaan sitä ei
Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.
Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän
Grä sbö len tuulivöimähänke: Kuväsövitteet
Grä sbö len tuulivöimähänke: Kuväsövitteet 1. Yleistä: Kaikissa kuvasovitteissa on käytetty tuulivoimalatyyppiä Nordex N117 2.4 MW. Napakorkeus: 141 m Lavan pituus: 58,5 m Roottorin halkaisija: 117 m Menetelmä:
HOLLOLAN KUNTA RAIKKOSEN KATUYHTEYS
Vastaanottaja Hollolan kunta Asiakirjatyyppi Tilanvaraussuunnitelma Päivämäärä 7.12.2016 Viite 1510030125 HOLLOLAN KUNTA RAIKKOSEN KATUYHTEYS HOLLOLAN KUNTA RAIKKOSEN KATUYHTEYS Päivämäärä 7.12.2016 Laatija
Hernesaaren osayleiskaava-alueen aallokkotarkastelu TIIVISTELMÄLUONNOS 31.10.2011
1 Hernesaaren osayleiskaava-alueen aallokkotarkastelu TIIVISTELMÄLUONNOS 31.10.2011 Laskelmat aallonkorkeuksista alueella Hernesaaren alue on aallonkon laskennan kannalta hankala alue, koska sinne pääsee
Esim: Mikä on tarvittava sylinterin halkaisija, jolla voidaan kannattaa 10 KN kuorma (F), kun käytettävissä on 100 bar paine (p).
3. Peruslait 3. PERUSLAIT Hydrauliikan peruslait voidaan jakaa hydrostaattiseen ja hydrodynaamiseen osaan. Hydrostatiikka käsittelee levossa olevia nesteitä ja hydrodynamiikka virtaavia nesteitä. Hydrauliikassa
PATENIEMENRANTA. Varjostusanalyysi
PATENIEMENRANTA Varjostusanalyysi 12.5.2016 VARJOSTUSANALYYSI Pateniemenrannan asemakaavan uuden rakentamisen varjostusvaikutusta on tutkittu varjostusanalyysein kahtena eri ajankohtana varjostusta eri
MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!
A-osio: ilman laskinta. MAOLia saa käyttää. Laske kaikki tehtävistä 1-. 1. a) Derivoi funktio f(x) = x (4x x) b) Osoita välivaiheiden avulla, että seuraava raja-arvo -lauseke on tosi tai epätosi: x lim
Mikkelin kaupunki. Satamalahden meluselvitys. Jarno Kokkonen Olli Kontkanen Matti Romppanen
Mikkelin kaupunki Satamalahden Jarno Kokkonen Olli Kontkanen Matti Romppanen 8.12.2010 1 SISÄLTÖ LÄHTÖKOHDAT 1 1 MENETELMÄT JA LÄHTÖTIEDOT 2 1.1 Melulaskenta 2 1.2 Liikennetiedot 2 2 TULOKSET 2 LIITTEET
Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan!
MAA4 koe 1.4.2016 Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan! Jussi Tyni A-osio: Ilman laskinta. Laske kaikki
Paloturvallinen puutalo RoadShow Palo-opas. Tero Lahtela
Paloturvallinen puutalo RoadShow 2018 Palo-opas Tero Lahtela Asetus Perustelumuistio Asetuksen lukeminen Yleinen vaatimus Palon leviämistä lasitetuilla parvekkeilla tulee rajoittaa Yli 2-krs. rak. lisävaatimus
Ideaalikaasut. 1. Miksi normaalitila (NTP) on tärkeä puhuttaessa kaasujen tilavuuksista?
Ideaalikaasut 1. Miksi normaalitila (NTP) on tärkeä puhuttaessa kaasujen tilavuuksista? 2. Auton renkaan paineeksi mitattiin huoltoasemalla 2,2 bar, kun lämpötila oli + 10 ⁰C. Pitkän ajon jälkeen rekkaan
Meluselvitys Pajalantien ja Hulikankulman alueet
Meluselvitys Pajalantien ja Hulikankulman alueet Lempäälän kunta Jussi Kurikka-Oja 16.4.2014 1 Taustatiedot Tässä meluselvityksessä on tarkasteltu Lempäälän kunnan Pajalantien ja Hulikankulman asemakaava-alueiden
Puun paloturvallinen käyttö parvekkeissa ja räystäissä
Puun paloturvallinen käyttö parvekkeissa ja räystäissä Palotutkimuksen päivät 2013 Esko Mikkola 2 Parvekkeiden ja luhtikäytävien palovaatimuksia muualla Määräyksissä olevia vaatimuksia kysyttiin seuraavista
Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus
Mamk / Tekniikka ja liikenne / Sähkövoimatekniikka / Sarvelainen 2015 T8415SJ ENERGIATEKNIIKKA Laskuharjoitus HÖYRYTEKNIIKKA 1. Vettä (0 C) höyrystetään 2 bar paineessa 120 C kylläiseksi höyryksi. Laske
Mervento Oy, Vaasa Tuulivoimalan melun leviämisen mallinnus 2014. 19.3.2014 Projektinumero: 305683. WSP Finland Oy
Mervento Oy, Vaasa Tuulivoimalan melun leviämisen mallinnus 2014 19.3.2014 2 (6) Sisällysluettelo 1 Johdanto... 3 2 Lähtötiedot ja menetelmät... 3 2.1 Äänitehotasojen mittaus... 3 2.2 Laskentamalli...