Tähtitieteelliset havainnot -sähkömagneettisen säteilyn vastaanottoa ja analysointia. Fotonin energia (E=hc/λ) vaikuttaa detektiotapaan

Koko: px
Aloita esitys sivulta:

Download "Tähtitieteelliset havainnot -sähkömagneettisen säteilyn vastaanottoa ja analysointia. Fotonin energia (E=hc/λ) vaikuttaa detektiotapaan"

Transkriptio

1 Tähtitieteelliset havainnot -sähkömagneettisen säteilyn vastaanottoa ja analysointia Fotonin energia (E=hc/λ) vaikuttaa detektiotapaan Ilmakehän läpäisykyky - radioikkuna: λ 0.3mm 15 m

2 Radioastronomia tutkitaan tähtitieteellisten kohteiden lähettämää säteilyä alueella λ ~ 0.3 mm 15 m radioikkunaa rajoittavat ionosfäärin elektronien absorptio (λ > m) ja ilmakehän veden (H2O) ja hapen (O2) absorptioviivat (λ < 5 mm, välillä mm kapeita ikkunoita, vesihöyryn määrä (PWV) vaikuttaa huomattavasti) =3-0.3mm

3 Näkyvä taivas (cfa- kuvaa hallitsee Linnunradan synkrotronisäteily

4 Radiotaivas I 408 MHz (λ=73 cm, Haslam survey) kuvaa hallitsee Linnunradan synkrotronisäteily

5 Radiotaivas II Planck GHz λ= mm Linnunradan pöly ja ionisoitunut kaasu

6 Radiotaivas III WMAP (Wilkinson Microwave Anisotropy Probe) GHz Kosminen taustasäteily (etualan komponentit poistettu)

7 Radioastronomian tutkimuskohteita WMAP Kosminen taustasäteily (kosmologiset parametrit) Pimeä aine (Sunyaev-Zeldovich efekti)

8 Radioastronomian tutkimuskohteita SCUBA Kaukaiset (varhaiset) galaksit Aktiiviset galaksinytimet

9 Radioastronomian tutkimuskohteita M51 (näkyvä valo + HI) NRAO Galaksien ja Linnunradan rakenne (HI 21cm viiva, synktrotronisäteily, COkartoitukset)

10 Radioastronomian tutkimuskohteita CAS A (radiokontinuumi) NRAO Supernovajäänteet Pulsarit NRAO

11 Radioastronomian tutkimuskohteita SCUBA (0.85 mm) Molekyylipilvet Tähtien synty Esiplanetaariset kiekot

12 Radioastronomian tutkimuskohteita Aurinko planeetat ja niiden kuut komeetat Jupiter cm-alueella NRAO

13 Säteilymekanismit Terminen säteily -kiinteiden kappaleiden lämpösäteily (tähtienvälinen pöly, planeetat) -elektronien free-free-säteily (HII-alueet, protostellaariset suihkut) -atomien ja molekyylien spektriviivat (molekyylipilvet, tähtiä ympäröivät vaipat) Ei-terminen säteily -relativististen elektronien synkrotronisäteily (galaksien harva kaasu, AGNsuihkut, nuorten tähtien fotosfäärit) -maser-spektriviivat (šokit tähtien syntyalueissa ja tähtien pölyvaipoissa)

14 Astrofysiikka Säteilyn ominaisuuksien -spektri (intensiteetti taajuuden funktiona) -polarisaatio -aikavaihtelut avulla tutkitaan kohteen fysikaalisia ominaisuuksia: -rakenne, massa, koostumus -kaasun lämpötila, tiheys ja nopeusjakauma -magneettikenttä ja kohteessa vaikuttavia prosesseja

15 radio-alue infrapuna näkyvä valo Mustan kappaleen säteily

16 Esimerkki lämpösäteilystä: prototähdet säteilevät kaukoinfrapunassa sekä mm- a cm-alueella plasma muuttuu läpinäkyväksi lähellä mustankappaleen spektriä

17 Synkrotronisäteily (kun optisesti ohut Fν~ν-α) Kraus: Radio Astronomy

18 Spektriviivat (1) Vetyatomin (HI) hyperhienosiirtymä Λ=21 cm (ν=1.42 GHz) T.Beasley, OVRO

19 Spektriviivat (2) Atomien ja ionien elektroniset siirtymät Molekyylien värähdys- ja pyörimistilojen väliset siirtymät s T.Beasley, OVRO Avain kaasumaisten kohteiden fysiikkaan: -olosuhteet (tiheys, lämpötla, nopeusjakauma, magneettikenttä) -kemiallinen koostumus, -kohteen rakenne (kartoitus) Molekyyliviivoja on erityisen runsaasti millimetri- ja alimillimetrialueilla

20 Vuontiheys vuontiheys F [ W m-2 Hz-1 ] = energian määrä sekunnissa pinta-alaa ja taajuusintervallia kohden Radioastronomiassa yksikkönä jansky: 1Jy=10-26 W m-2 Hz-1 kokonaisvuontiheys ν F = ν dν F ν 2 1 F [ W m-2 ] = energian määrä joka virtaa pinta-alayksikön läpi annetussa taajuuskaistassa [ 1, 2]

21 Intensiteetti pintakirkkaus I [ W m-2 Hz-1 sr-1 ] vuontiheys avaruuskulmayksikköä kohden = energia aika-, ala-, taajuus ja avaruuskulmayksikköä kohden, dw = I da cos d d kulma on näkösäteen ja pinta-ala elementin normaalin välinen kulma eli projisioitu pinta-ala on da cos pintakirkkaus on yhtä suuri kuin kohteesta havaittava intensiteetti Radioastronomiassa yksikkönä usein Jy/beam eli keilaan tuleva vuontiheys. Tämä muunnetaan SI-yksiköiksi kertomalla luvulla Ωbeam (keilan avaruuskulma)

22 Vuontiheyden ja intensiteetin suhde F = lähde d = 0 d 0 s d sin (pallokoordinaatistossa) - vuontiheys on siis lähteen pintakirkkauden integraali

23 Mustan kappaleen säteily Mustan kappaleen säteilyn intensiteetti noudattaa Planckin lakia: 3 2hν 1 I ν = 2 hν /kt c e 1 mustan kappaleen tapauksessa käytetään intensiteetille yleensä merkintää B Rayleigh-Jeansin approksimaatio hν /kt <<1 kirkkauslämpötila Planckin laista seuraa Rayleigh-Jeans approksimaatiossa 2 kirkkauslämpötilan määritelmä λ T B 2k Iν

24 Mustan kappaleen säteily Stefan-Boltzmannin laki B(T) = Bν(T) d ν = σ T4 σ = W m-2k-4 Wienin siirtymälaki λmax T = b b= m K

25 Radioteleskooppi Radioteleskooppi koostuu antennista (yleensä paraboloidipeili), syöttöantennista (syöttötorvi) ja vastaanottimesta. Vastaanotin muuntaa sähkömagneettisen aallon sähköiseksi signaaliksi (V(t)) Perinteisessä radiovastaanottimessa signaali muunnetaan alempitaajuiseksi vahvistusta ja detektiota varten. Aallon amplitudi ja vaihe pystytään säilyttämään (heteronedyne receiver) Korkeataajuisessa kontinuumivastaanotossa käytetään bolometrejä, jotka mittaavat säteilyn kokonaistehoa

26 Antenni Paraboloidiantenni kerää säteilyä lähinnä sen optisen akselin suunnalta. Tätä ominaisuutta kuvataan antennin suuntakuviolla l. keilalla. Keilalle ei ole terävää reunaa. Kulmaerotuskyky määritellään keilan puoliarvoleveytenä. Kulmaerotuskyky ~ /D, missä säteilyn aallonpituus, ja D peilin halkaisija. Antennilla on sivukeiloja, ts. se näkee myös muulta kuin toivotusta suunnasta tulevaa säteilyä.

27 Teleskoopin erotuskyky ja herkkyys keilan koko kulmaerotuskyky /D vastaanotettu teho herkkyys P Fν D2

28 Nyquistin teoreema yhteys sähkötehon ja lämpötilan välillä: elektronien lämpöliike vastuksessa saa aikaan satunnaisia sähkövirtoja, joiden tehotiheys pi eli teho taajusyksikköä kohti on verrannollinen vastuksen lämpötilaan pi = k T [WHz-1 ] T pi =kt

29 Antennin vastaanottama tehotiheys = ½ efektiivinen pinta-ala havaittu vuontiheys p A = Ae F ν, obs = Ae I ν P n d 1 p A = Ae I ν P n d 2

30 Antenni ja vastus termodynaamisessa tasapainossa antennin ulostulon ja siihen sovitetun vastuksen tehotiheydet yhtäsuuret: pi = p A kt = Ae 2 I ν Pnd T Ae kt= I ν P n d 2

31 Antennilämpötila Tämän perusteella määritellään antennilämpötila: T A= Ae I ν Pn d 2k kt Ae 2 Iν Pnd

32 Antenni mustassa laatikossa Isotrooppinen mustankappaleen säteilykenttä: p A = Ae B ν T P n d = Ae B ν T A Rayleigh-Jeans: 2 kt B ν T = 2 λ kt p A = Ae 2 A λ Ae A = λ yleisesti voimassa pi =kt 2

33 Antennilämpötila ja kirkkauslämpötila T A= Ae I ν Pn d 2k Käyttämällä kirkkauslämpötilan määritelmää, Iν=2k/λ2 TB sekä edellä johdettua yhteyttä Ae= λ2/ A saamme TA= 1 TB Pnd A

34 Antennihyötysuhde Antenni- eli aukkohyötysuhde A Ae = AAg = sf bl s t misc sf = peilin pintahyötysuhde (surface efficiency) bl = kannattimien varjostus (blockage efficiency) s = syöttötorven spillover t = syöttötorven valaistus misc = diffraktio, vaihe, aallon sovitus, jne sf = exp( (4 σ/λ)2) e.g., σ = λ/16, sf = 0.5 rms error σ

35 Keilan alkuperä - interferenssi Akselin suunnasta tuleva tasoaalto Vinosti tuleva tasoaalto Rick Perley, NRAO

36 Antennin suuntakuvio Pääkeila πdl l=sin(θ), D = antennin halkaisija aallonpituuksina db = 10lg(tehosuhde) = 20lg(jännitesuhde) VLA: θ3db = 1.02/D, 1. nollakohta = 1.22/D kontuurit: 3, 6, 10, 15, 20, 25, 30, 35, 40 db

1 Perussuureiden kertausta ja esimerkkejä

1 Perussuureiden kertausta ja esimerkkejä 1 Perussuureiden kertausta ja esimerkkejä 1.1 Vuontiheys ja pintakirkkaus Vuontiheys ( flux density ) kertoo, kuinka paljon säteilyenergiaa taajuskaistassa [ν,ν+1hz] virtaa 1 m 2 pinta-alan läpi sekunnissa.

Lisätiedot

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:

Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33: 1.2 T=12000 K 10 2 T=12000 K 1.0 Wien R-J 10 0 Wien R-J B λ (10 15 W/m 3 /sterad) 0.8 0.6 0.4 B λ (10 15 W/m 3 /sterad) 10-2 10-4 10-6 10-8 0.2 10-10 0.0 0 200 400 600 800 1000 nm 10-12 10 0 10 1 10 2

Lisätiedot

XFYS4336 Havaitseva tähtitiede II

XFYS4336 Havaitseva tähtitiede II XFYS4336 Havaitseva tähtitiede II Silja Pohjolainen Kaj Wiik Tuorlan observatorio Kevät 2014 Osa kuvista on lainattu kirjasta Wilson, Rohlfs, Hüttemeister: Tools of Radio astronomy XFYS4336 Havaitseva

Lisätiedot

Radioastronomian käsitteitä

Radioastronomian käsitteitä Radioastronomian käsitteitä allonpituusalue ~ 100 m - 1 mm MHz 300 GHz Leveä aallonpituusalue: erilaisia antenneja, monenlaista tekniikkaa Ei (suoraan) kuvia Signaali yleensä

Lisätiedot

XFYS4336 Havaitseva tähtitiede II

XFYS4336 Havaitseva tähtitiede II XFYS4336 Havaitseva tähtitiede II Silja Pohjolainen Kaj Wiik Tuorlan observatorio Kevät 2014 Osa kuvista on lainattu kirjasta Wilson, Rohlfs, Hüttemeister: Tools of Radio astronomy XFYS4336 Havaitseva

Lisätiedot

Radiokontinuumi. Centaurus A -radiogalaksi. Cassiopeia A -supernovajäänne

Radiokontinuumi. Centaurus A -radiogalaksi. Cassiopeia A -supernovajäänne Radiokontinuumi Centaurus A -radiogalaksi Cassiopeia A -supernovajäänne Radiosäteilyn lähteet Molekyyleillä ja atomeilla on diskreettejä energiatiloja, joiden väliset siirtymät lähettävät viivasäteilyä,

Lisätiedot

Planck satelliitti. Mika Juvela, Helsingin yliopiston Observatorio

Planck satelliitti. Mika Juvela, Helsingin yliopiston Observatorio Planck satelliitti Mika Juvela Helsingin yliopiston Observatorio kosmista taustasäteilyä tutkiva Planck satelliitti laukaistaan vuonna 2008 Planck kartoittaa koko taivaan yhdeksällä radiotaajuudella 30GHz

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

Radioastronomia harjoitustyö; vedyn 21cm spektriviiva

Radioastronomia harjoitustyö; vedyn 21cm spektriviiva Radioastronomia harjoitustyö; vedyn 21cm spektriviiva Tässä työssä tehdään spektriviivahavainto atomaarisen vedyn 21cm siirtymästä käyttäen yllä olevassa kuvassa olevaa Observatorion SRT (Small Radio Telescope)

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

Radiointerferometria II

Radiointerferometria II Radiointerferometria II Kolme ALMA-antennia ALMA tulevaisuudessa Puuttuva informaatio Epätäydellinen uv-tason peitto: 1. Keskusaukko : pintamaisen lähteen kokonaisvuontiheys jää mittaamatta, V (0, 0) =

Lisätiedot

Radioteleskooppi. Alt atsimutaalinen pystytys. Apupeilin kiinnitys. Peilin tukirakenne. Apupeilin kannattajat. Elevaatio enkooderi.

Radioteleskooppi. Alt atsimutaalinen pystytys. Apupeilin kiinnitys. Peilin tukirakenne. Apupeilin kannattajat. Elevaatio enkooderi. Radioteleskooppi Apupeilin kiinnitys Peilin tukirakenne Apupeilin kannattajat Elevaatio enkooderi Jalusta Kiskot Perusta Atsimuuttienkooderi Alt atsimutaalinen pystytys Antennin pystytys + Keila ei kierry

Lisätiedot

SPEKTROGRAFIT. Mitataan valon aallonpituusjakauma

SPEKTROGRAFIT. Mitataan valon aallonpituusjakauma SPEKTROGRAFIT Mitataan valon aallonpituusjakauma Objektiivi-prisma: Objektiivin edessä oleva prisma levitää valon spektriksi tallennetaan CCD-kennolla Rakospektrografi: Teleskoopista kapean raon kautta

Lisätiedot

Mittaukset ja kalibrointi

Mittaukset ja kalibrointi Mittaukset ja kalibrointi Teleskoopin vaste (esim. jännitteenä tai countteina) riippuu paitsi lähteen vuontiheydestä, myös antennista, vastaanottimesta, säästä, elevaatiosta, jne... Havainnot täytyy kalibroida

Lisätiedot

Radiospektroskopia Linnunrata (valokuva) Linnunrata (valokuva+co)

Radiospektroskopia Linnunrata (valokuva) Linnunrata (valokuva+co) Radiospektroskopia Linnunrata (valokuva) Linnunrata (valokuva+co) Kaasun säteily Atomeilla ja molekyyleillä on diskreettejä energiatiloja Ne lähettävät tai absorboivat säteilyä siirtyessään energiatilalta

Lisätiedot

XFYS4336 Havaitseva tähtitiede II

XFYS4336 Havaitseva tähtitiede II XFYS4336 Havaitseva tähtitiede II Silja Pohjolainen Kaj Wiik Tuorlan observatorio Kevät 2014 Osa kuvista on lainattu kirjasta Wilson, Rohlfs, Hüttemeister: Tools of Radio astronomy XFYS4336 Havaitseva

Lisätiedot

Infrapunaspektroskopia

Infrapunaspektroskopia ultravioletti näkyvä valo Infrapunaspektroskopia IHMISEN JA ELINYMPÄ- RISTÖN KEMIAA, KE2 Kertausta sähkömagneettisesta säteilystä Sekä IR-spektroskopia että NMR-spektroskopia käyttävät sähkömagneettista

Lisätiedot

Kvanttifysiikan perusteet 2017

Kvanttifysiikan perusteet 2017 Kvanttifysiikan perusteet 207 Harjoitus 2: ratkaisut Tehtävä Osoita hyödyntäen Maxwellin yhtälöitä, että tyhjiössä magneettikenttä ja sähkökenttä toteuttavat aaltoyhtälön, missä aallon nopeus on v = c.

Lisätiedot

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA

PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 9: Fotonit ja relativistiset kaasut Ke 30.3.2016 1 AIHEET 1. Fotonikaasun termodynamiikkaa.

Lisätiedot

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi Kvantittuminen Planckin kvanttihypoteesi Kappale vastaanottaa ja luovuttaa säteilyä vain tietyn suuruisina energia-annoksina eli kvantteina Kappaleen emittoima säteily ei ole jatkuvaa (kvantittuminen)

Lisätiedot

RADIOASTRONOMIA HARRASTUKSENA. URSAN LAITEPÄIVÄT ARTJÄRVI Janne Peltonen

RADIOASTRONOMIA HARRASTUKSENA. URSAN LAITEPÄIVÄT ARTJÄRVI Janne Peltonen RADIOASTRONOMIA HARRASTUKSENA URSAN LAITEPÄIVÄT ARTJÄRVI 07.04.2018 Janne Peltonen SISÄLTÖ Radioastronomia Continuum H1 spektri Kuuheijastus (EME) Luotainten kuuntelu HAVAINTOVÄLINE Peilikärry Hinattava

Lisätiedot

Planck ja kosminen mikroaaltotausta

Planck ja kosminen mikroaaltotausta Planck ja kosminen mikroaaltotausta Elina Keihänen Helsingin yliopisto Fysikaalisten tieteiden laitos Fysiikan täydennyskoulutuskurssi 8.6.2007 Kiitokset materiaalista Hannu Kurki Suoniolle Planck satelliitti

Lisätiedot

RF-tekniikan perusteet BL50A0301. 5. Luento 5.10.2015 Antennit Radioaaltojen eteneminen

RF-tekniikan perusteet BL50A0301. 5. Luento 5.10.2015 Antennit Radioaaltojen eteneminen RF-tekniikan perusteet BL50A0301 5. Luento 5.10.2015 Antennit Radioaaltojen eteneminen Antennit Antennit Antenni muuttaa siirtojohdolla kulkevan aallon vapaassa tilassa eteneväksi aalloksi ja päinvastoin

Lisätiedot

XFYS4336 Havaitseva tähtitiede II

XFYS4336 Havaitseva tähtitiede II XFYS4336 Havaitseva tähtitiede II Silja Pohjolainen Kaj Wiik Tuorlan observatorio Kevät 2014 Osa kuvista on lainattu kirjasta Wilson, Rohlfs, Hüttemeister: Tools of Radio astronomy ja J. J. Condon and

Lisätiedot

Sähkömagneettinen säteily ja sen vuorovaikutusmekanismit

Sähkömagneettinen säteily ja sen vuorovaikutusmekanismit Astrofysiikkaa Sähkömagneettinen säteily ja sen vuorovaikutusmekanismit Sähkömagneettista säteilyä kuvataan joko aallonpituuden l tai taajuuden f avulla, tai vaihtoehtoisesti fotonin energian E avulla.

Lisätiedot

Havaitsevan tähtitieteen pk1 luento 11, Muut aaltoalueet. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen

Havaitsevan tähtitieteen pk1 luento 11, Muut aaltoalueet. Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen Havaitsevan tähtitieteen pk1 luento 11, Muut aaltoalueet Kalvot: Jyri Näränen, Mikael Granvik & Veli-Matti Pelkonen 11. Muut aaltoalueet 1. 2. 3. 4. 5. 6. Gamma Röntgen Ultravioletti Lähiinfrapuna Infrapuna

Lisätiedot

Kosmos = maailmankaikkeus

Kosmos = maailmankaikkeus Kosmos = maailmankaikkeus Synty: Big Bang, alkuräjähdys 13 820 000 000 v sitten Koostumus: - Pimeä energia 3/4 - Pimeä aine ¼ - Näkyvä aine 1/20: - vetyä ¾, heliumia ¼, pari prosenttia muita alkuaineita

Lisätiedot

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2

Z 1 = Np i. 2. Sähkömagneettisen kentän värähdysliikkeen energia on samaa muotoa kuin molekyylin värähdysliikkeen energia, p 2 766328A Termofysiikka Harjoitus no., ratkaisut (syyslukukausi 24). Klassisen ideaalikaasun partitiofunktio on luentojen mukaan Z N! [Z (T, V )] N, (9.) missä yksihiukkaspartitiofunktio Z (T, V ) r e βɛr.

Lisätiedot

RF-tekniikan perusteet BL50A0300

RF-tekniikan perusteet BL50A0300 RF-tekniikan perusteet BL50A0300 5. Luento 30.9.2013 Antennit Radioaaltojen eteneminen DI Juho Tyster Antennit Antenni muuttaa siirtojohdolla kulkevan aallon vapaassa tilassa eteneväksi aalloksi ja päinvastoin

Lisätiedot

HARRASTERADIOASTRONOMIAA. URSALO Janne Peltonen

HARRASTERADIOASTRONOMIAA. URSALO Janne Peltonen HARRASTERADIOASTRONOMIAA URSALO 6.11.2014 Janne Peltonen TAIVAAN RADIOLÄHTEET Taivaankappaleet Aurinko Kuu Jupiter Galaksin keskusta Sagittarius_A, musta aukko keskellä Supernovajäänteet Cassiopeia_A Taurus_A/Rapusumu

Lisätiedot

Aurinko. Tähtitieteen peruskurssi

Aurinko. Tähtitieteen peruskurssi Aurinko K E S K E I S E T K Ä S I T T E E T : A T M O S F Ä Ä R I, F O T O S F Ä Ä R I, K R O M O S F Ä Ä R I J A K O R O N A G R A N U L A A T I O J A A U R I N G O N P I L K U T P R O T U B E R A N S

Lisätiedot

RADIOTIETOLIIKENNEKANAVAT

RADIOTIETOLIIKENNEKANAVAT 1 RADIOTIETOLIIKENNEKANAVAT Millaisia stokastisia ilmiöitä kanavassa tapahtuu? ONGELMAT: MONITIE-ETENEMINEN & KOHINA 2 Monitie-eteneminen aiheuttaa destruktiivista interferenssia eri reittejä edenneiden

Lisätiedot

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos

Aine ja maailmankaikkeus. Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Aine ja maailmankaikkeus Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos Lahden yliopistokeskus 29.9.2011 1900-luku tiedon uskomaton vuosisata -mikä on aineen olemus -miksi on erilaisia aineita

Lisätiedot

4.3 Magnitudijärjestelmät

4.3 Magnitudijärjestelmät 4.3 Magnitudijärjestelmät Näennäinen magnitudi riippuu tarkasteltavasta aallonpituusalueesta ja havaintovälineen herkkyydestä tällä aallonpituusalueella Erilaiset magnitudijärjestelmät Järjestelmien nollakohdat

Lisätiedot

Fysiikka 8. Aine ja säteily

Fysiikka 8. Aine ja säteily Fysiikka 8 Aine ja säteily Sähkömagneettinen säteily James Clerk Maxwell esitti v. 1864 sähkövarauksen ja sähkövirran sekä sähkö- ja magneettikentän välisiä riippuvuuksia kuvaavan teorian. Maxwellin teorian

Lisätiedot

Jupiterin magnetosfääri. Pasi Pekonen 26. Tammikuuta 2009

Jupiterin magnetosfääri. Pasi Pekonen 26. Tammikuuta 2009 Jupiterin magnetosfääri Pasi Pekonen 26. Tammikuuta 2009 Johdanto Magnetosfääri on planeetan magneettikentän luoma onkalo aurinkotuuleen. Magnetosfäärissä plasman liikettä hallitsee planeetan magneettikenttä.

Lisätiedot

Radioastronomian perusteita

Radioastronomian perusteita Radioastronomian perusteita Anne Lähteenmäki & Merja Tornikoski Tämä tiivistelmä on koottu valikoiden Aalto-yliopiston Radioastronomian kurssin materiaaleista eikä se näin ollen ole täydellinen, vaan keskittyy

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I. Ilmakehän vaikutus havaintoihin. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos

Havaitsevan tähtitieteen peruskurssi I. Ilmakehän vaikutus havaintoihin. Jyri Lehtinen. kevät Helsingin yliopisto, Fysiikan laitos Ilmakehän vaikutus havaintoihin Helsingin yliopisto, Fysiikan laitos kevät 2013 2. Ilmakehän vaikutus havaintoihin Ilmakehän transmissio (läpäisevyys) sähkömagneettisen säteilyn eri aallonpituuksilla 2.

Lisätiedot

V astaano ttav aa antennia m allinnetaan k u v an 2-1 8 m u k aisella piirillä, jo ssa o n jänniteläh d e V sarjassa

V astaano ttav aa antennia m allinnetaan k u v an 2-1 8 m u k aisella piirillä, jo ssa o n jänniteläh d e V sarjassa Antennit osana viestintäjärjestelm ää Antennien pääk äy ttö tark o itu s o n to im inta v iestintäjärjestelm issä. V astaano ttav aa antennia m allinnetaan k u v an 2-1 8 m u k aisella piirillä, jo ssa

Lisätiedot

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Oppilaiden ennakkokäsityksiä avaruuteen liittyen Aurinko kiertää Maata Vuodenaikojen vaihtelu johtuu siitä,

Lisätiedot

Kohina. Havaittujen fotonien statistinen virhe on kääntäen verrannollinen havaittujen fotonien lukumäärän N neliö juureen ( T 1/ N)

Kohina. Havaittujen fotonien statistinen virhe on kääntäen verrannollinen havaittujen fotonien lukumäärän N neliö juureen ( T 1/ N) Kohina Havaittujen fotonien statistinen virhe on kääntäen verrannollinen havaittujen fotonien lukumäärän N neliö juureen ( T 1/ N) N on suoraan verrannollinen integraatioaikaan t ja havaittuun taajuusväliin

Lisätiedot

KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA

KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka KVANTTITEORIA Metso Tampere 13.11.2005 MODERNI

Lisätiedot

PIMEÄ ENERGIA mysteeri vai kangastus? Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos

PIMEÄ ENERGIA mysteeri vai kangastus? Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos PIMEÄ ENERGIA mysteeri vai kangastus? Kari Enqvist Helsingin yliopisto ja Fysiikan tutkimuslaitos 1917: Einstein sovelsi yleistä suhteellisuusteoriaa koko maailmankaikkeuteen Linnunradan eli maailmankaikkeuden

Lisätiedot

10. Polarimetria. 1. Polarisaatio tähtitieteessä. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria

10. Polarimetria. 1. Polarisaatio tähtitieteessä. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria 10. Polarimetria 1. Polarisaatio tähtitieteessä 2. Stokesin parametrit 3. Polarisaattorit 4. CCD polarimetria 10.1 Polarisaatio tähtitieteessä Polarisaatiota mittaamalla päästään käsiksi moniin fysikaalisiin

Lisätiedot

9. Polarimetria. 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä. 3. Polarisaattorit 4. CCD polarimetria

9. Polarimetria. 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä. 3. Polarisaattorit 4. CCD polarimetria 9. Polarimetria 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä 3. Polarisaattorit 4. CCD polarimetria 10.1 Stokesin parametrit 10.1

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA

FYSIIKAN LABORATORIOTYÖT 2 HILA JA PRISMA FYSIIKAN LABORATORIOTYÖT HILA JA PRISMA MIKKO LAINE 9. toukokuuta 05. Johdanto Tässä työssä muodostamme lasiprisman dispersiokäyrän ja määritämme työn tekijän silmän herkkyysrajan punaiselle valolle. Lisäksi

Lisätiedot

ja KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA

ja KVANTTITEORIA MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA ja KVANTTITEORIA 1 MODERNI FYSIIKKA KVANTTITEORIAN SYNTY AALTO HIUKKAS-DUALISMI EPÄTARKKUUSPERIAATE TUNNELOITUMINEN ELEKTRONIRAKENNE UUSI MAAILMANKUVA Fysiikka WYP2005 ja KVANTTITEORIA 24.1.2006 WYP 2005

Lisätiedot

Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan

Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan Tähtitiede Tutkimusta maailmankaikkeuden laidoilta Aurinkokuntaan Jyri Näränen Paikkatietokeskus, MML jyri.naranen@nls.fi http://personal.inet.fi/tiede/naranen/ Oheislukemista Palviainen, Asko ja Oja,

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat

Lisätiedot

Yleisen antennin säteily k enttien ratk aisem isen v aih eet:

Yleisen antennin säteily k enttien ratk aisem isen v aih eet: Sä te ily k e n ttie n ra tk a ise m in e n Yleisen antennin säteily k enttien ratk aisem isen v aih eet: 1. E tsi A integ roim alla y h tälö A = µ e jβr 4π r V Je j βˆr r dv, (40 ) 2. L ask e E E = jωa

Lisätiedot

Radioastronomian harjoitustyö

Radioastronomian harjoitustyö 1.11.2005 Radioastronomian harjoitustyö SPEKTRIVIIVA-ANALYYSI CLASS Tämän harjoitustyön tarkoituksena on tutustuttaa radiospektriviivojen analysointiin. Observatoriossa on käytössä tähän tarkoitukseen

Lisätiedot

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016

PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 Prof. Martti Puska Emppu Salonen Tomi Ketolainen Ville Vierimaa Luento 7: Hilavärähtelyt tiistai 12.4.2016 Aiheet tänään Hilavärähtelyt: johdanto Harmoninen

Lisätiedot

Havaitsevan tähtitieteen pk I, 2012

Havaitsevan tähtitieteen pk I, 2012 Havaitsevan tähtitieteen pk I, 2012 Kuva: J.Näränen 2004 Luento 2, 26.1.2012: Ilmakehän vaikutus havaintoihin Luennoitsija: Thomas Hackman HTTPK I, kevät 2012, luento2 1 2. Ilmakehän vaikutus havaintoihin

Lisätiedot

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on

Käyttämällä annettua kokoonpuristuvuuden määritelmää V V. = κv P P = P 0 = P. (b) Lämpölaajenemisesta johtuva säiliön tilavuuden muutos on 766328A ermofysiikka Harjoitus no. 3, ratkaisut (syyslukukausi 201) 1. (a) ilavuus V (, P ) riippuu lämpötilasta ja paineesta P. Sen differentiaali on ( ) ( ) V V dv (, P ) dp + d. P Käyttämällä annettua

Lisätiedot

Tähtienvälisen aineen komponentit

Tähtienvälisen aineen komponentit Tähtienvälinen aine -Ionisoinutta ja neutraalia kaasua (pääasiassa vetyä), pölyä -Osuus Linnunradan massasta 2% (3 10 9 M ) -Komponentit voidaan erottaa kartoituksilla, esim. Hα, radiokontinuumi, HI, keski-

Lisätiedot

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen

23 VALON POLARISAATIO 23.1 Johdanto. 23.2 Valon polarisointi ja polarisaation havaitseminen 3 VALON POLARISAATIO 3.1 Johdanto Mawellin htälöiden avulla voidaan johtaa aaltohtälö sähkömagneettisen säteiln etenemiselle väliaineessa. Mawellin htälöiden ratkaisusta seuraa aina, että valo on poikittaista

Lisätiedot

Fysiikan laboratoriotyöt 2, osa 2 ATOMIN SPEKTRI

Fysiikan laboratoriotyöt 2, osa 2 ATOMIN SPEKTRI Fysiikan laitos, kevät 2009 Fysiikan laboratoriotyöt 2, osa 2 ATOMIN SPEKTRI Valon diffraktioon perustuvia hilaspektrometrejä käytetään yleisesti valon aallonpituuden määrittämiseen. Tätä prosessia kutsutaan

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 12 / versio 1. joulukuuta 2015 Antennit (Ulaby 9.1 9.6, 9.9) Hertzin dipoli Kaukokenttä Säteilykuvio ja suuntaavuus Antennin vahvistus ja

Lisätiedot

Helsinki Testbed säätietojen käyttö Metsähovin radiotutkimusasemalla. Anne Lähteenmäki Metsähovin radiotutkimusasema TKK

Helsinki Testbed säätietojen käyttö Metsähovin radiotutkimusasemalla. Anne Lähteenmäki Metsähovin radiotutkimusasema TKK Helsinki Testbed säätietojen käyttö Metsähovin radiotutkimusasemalla Metsähovin radiotutkimusasema TKK Metsähovin radiotutkimusasema Sijaitsee Kirkkonummella Kylmälän kylässä Teknillisen korkeakoulun alainen

Lisätiedot

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017

PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 Emppu Salonen Lasse Laurson Toni Mäkelä Touko Herranen Luento 2: kineettistä kaasuteoriaa Pe 24.2.2017 1 Aiheet tänään 1. Maxwellin ja Boltzmannin

Lisätiedot

KULJETUSSUUREET Kuljetussuureilla tai -ominaisuuksilla tarkoitetaan kaasumaisen, nestemäisen tai kiinteän väliaineen kykyä siirtää ainetta, energiaa, tai jotain muuta fysikaalista ominaisuutta paikasta

Lisätiedot

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma

MIKKELIN LUKIO SPEKTROMETRIA. NOT-tiedekoulu La Palma MIKKELIN LUKIO SPEKTROMETRIA NOT-tiedekoulu La Palma Kasper Honkanen, Ilona Arola, Lotta Loponen, Helmi-Tuulia Korpijärvi ja Anastasia Koivikko 20.11.2011 Ryhmämme työ käsittelee spektrometriaa ja sen

Lisätiedot

Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) E a 2 ds

Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) E a 2 ds Suuntaavuus ja vahvistus Aukkoantennien tapauksessa suuntaavuus saadaan m uotoon (luku 7.3.1 ) Täm ä olettaa, että D = 4π λ 2 S a E a ds 2. (2 40 ) S a E a 2 ds Pääkeila aukon tasoa koh tisuoraan suuntaan

Lisätiedot

LÄMPÖSÄTEILY. 1. Työn tarkoitus. Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 2

LÄMPÖSÄTEILY. 1. Työn tarkoitus. Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 2 Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 1 LÄMPÖSÄTEILY 1. Työn tarkoitus Kun panet kätesi lämpöpatterille, käteen tulee lämpöä johtumalla patterin seinämän läpi. Mikäli pidät

Lisätiedot

9. Polarimetria. tähtitieteessä. 1. Polarisaatio. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria

9. Polarimetria. tähtitieteessä. 1. Polarisaatio. 2. Stokesin parametrit. 3. Polarisaattorit. 4. CCD polarimetria 9. Polarimetria 1. Polarisaatio tähtitieteessä 2. Stokesin parametrit 3. Polarisaattorit 4. CCD polarimetria 9.1 Polarisaatio tähtitieteessä! Polarisaatiota mittaamalla päästään käsiksi moniin fysikaalisiin

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I, kevät Luento 2, : Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen

Havaitsevan tähtitieteen peruskurssi I, kevät Luento 2, : Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen Havaitsevan tähtitieteen peruskurssi I, kevät 2008 Luento 2, 24.1.2007: Ilmakehän vaikutus havaintoihin Luennoitsija: Jyri Näränen 1 2. Ilmakehän vaikutus havaintoihin Optinen ikkuna Radioikkuna Ilmakehän

Lisätiedot

Scanned by CamScanner

Scanned by CamScanner Scanned by CamScanner ELEC-C414 Kenttäteoria ESIMERKKIRATKAISUT 2. välikoe: 13.12.216 4. (a) Ominaisimpedanssi (merkitään Z ) on siirtojohdon ominaisuus. Se on siis eri asia kuin tasoaaltojen yhteydessä

Lisätiedot

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus

Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus Kuva 1: Yksinkertainen siniaalto. Amplitudi kertoo heilahduksen laajuuden ja aallonpituus värähtelytiheyden. 1 Funktiot ja aallot Aiemmin käsiteltiin funktioita ja miten niiden avulla voidaan kuvata fysiikan

Lisätiedot

Työn tavoitteita. 1 Teoriaa

Työn tavoitteita. 1 Teoriaa FYSP103 / K3 BRAGGIN DIFFRAKTIO Työn tavoitteita havainnollistaa röntgendiffraktion periaatetta konkreettisen laitteiston avulla ja kerrata luennoilla läpikäytyä teoriatietoa Röntgendiffraktio on tärkeä

Lisätiedot

2. Fotonit, elektronit ja atomit

2. Fotonit, elektronit ja atomit Luento 4 2. Fotonit, elektronit ja atomit Valon kvanttiteoria; fotoni Valosähköinen ilmiö ja sen kvanttiselitys Valon emissio ja absorptio Säteilyn spektri; atomin energiatasot Atomin rakenne Niels Bohrin

Lisätiedot

9. Polarimetria. Havaitsevan tähtitieteen peruskurssi I, Kevät 2014 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP)

9. Polarimetria. Havaitsevan tähtitieteen peruskurssi I, Kevät 2014 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP) 9. Polarimetria Havaitsevan tähtitieteen peruskurssi I, Kevät 2014 Veli-Matti Pelkonen (Kalvot JN, TH, MG & VMP) 1 9. Polarimetria 1. Stokesin parametrit 2. Polarisaatio tähtitieteessä 3. Polarisaattorit

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I 2. Ilmakehän vaikutus havaintoihin Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmakehän vaikutus havaintoihin Ilmakehän häiriöt (kuva: @www.en.wikipedia.org) Sää: pilvet, sumu, sade, turbulenssi,

Lisätiedot

Osallistumislomakkeen viimeinen palautuspäivä on maanantai

Osallistumislomakkeen viimeinen palautuspäivä on maanantai Jakso : Materiaalihiukkasten aaltoluonne. Teoriaa näihin tehtäviin löytyy Beiserin kirjasta kappaleesta 3 ja hyvin myös peruskurssitasoisista kirjoista. Seuraavat videot demonstroivat vaihe- ja ryhmänopeutta:

Lisätiedot

Visibiliteetti ja kohteen kirkkausjakauma

Visibiliteetti ja kohteen kirkkausjakauma Visibiliteetti ja kohteen kirkkausjakauma Interferoteriassa havaittava suure on visibiliteetti V (u, v) = P n (x, y)i ν (x, y)e i2π(ux+vy) dxdy kohde Taivaannapa m Koordinaatisto: u ja v: B/λ:n projektioita

Lisätiedot

ASTROFYSIIKAN TEHTÄVIÄ VI

ASTROFYSIIKAN TEHTÄVIÄ VI ASTROFYSIIKAN TEHTÄVIÄ VI 622. Kun katsot tähtiä, niin niiden valo ei ole tasaista, vaan tähdet vilkkuvat. Miksi? Jos astronautti katsoo tähtiä Kuun pinnalla seisten, niin vilkkuvatko tähdet tällöinkin?

Lisätiedot

Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: HAVAINTOLAITTEET

Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: HAVAINTOLAITTEET Tähtitieteen Peruskurssi, Salon Kansalaisopisto, syksy 2010: HAVAINTOLAITTEET FT Seppo Katajainen, Turun Yliopisto, Finnish Center for Astronomy with ESO (FINCA) Havaintolaitteet Havaintolaitteet sähkömagneettisen

Lisätiedot

Pasi Suhonen. Auringontutkimusvälineenä toimiva radioteleskooppijärjestelmä

Pasi Suhonen. Auringontutkimusvälineenä toimiva radioteleskooppijärjestelmä Pasi Suhonen Auringontutkimusvälineenä toimiva radioteleskooppijärjestelmä Metropolia Ammattikorkeakoulu Insinööri (AMK) Tietotekniikan koulutusohjelma Insinöörityö 24.4.2012 Tiivistelmä Tekijä(t) Otsikko

Lisätiedot

ELEC-A4130 Sähkö ja magnetismi (5 op)

ELEC-A4130 Sähkö ja magnetismi (5 op) ELEC-A4130 Sähkö ja magnetismi (5 op) Jari J. Hänninen 2015 16/IV V Luentoviikko 9 Tavoitteet Valon luonne ja eteneminen Dispersio Lähde: https: //www.flickr.com/photos/fastlizard4/5427856900/in/set-72157626537669172,

Lisätiedot

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen

Valon luonne ja eteneminen. Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen Valon luonne ja eteneminen Valo on sähkömagneettista aaltoliikettä, ei tarvitse väliainetta edetäkseen 1 Valonlähteitä Perimmiltään valon lähteenä toimii kiihtyvässä liikkeessä olevat sähkövaraukset Kaikki

Lisätiedot

Radiotekniikan perusteet BL50A0301

Radiotekniikan perusteet BL50A0301 Radiotekniikan perusteet BL50A0301 1. Luento Kurssin sisältö ja tavoitteet, sähkömagneettinen aalto Opetusjärjestelyt Luentoja 12h, laskuharjoituksia 12h, 1. periodi Luennot Juhamatti Korhonen Harjoitukset

Lisätiedot

Luento 6. Mustan kappaleen säteily

Luento 6. Mustan kappaleen säteily Mustan kappaleen säteily Luento 6 Pintaa, joka absorboi kaiken siihen osuvan sähkömagneettisen säteilyn, kutsutaan mustaksi kappaleeksi. Tällainen pinta myös säteilee kaikilla aallonpituuksilla. Sen sanotaan

Lisätiedot

Mekaniikan jatkokurssi Fys102

Mekaniikan jatkokurssi Fys102 Mekaniikan jatkokurssi Fys12 Kevät 21 Jukka Maalampi LUENTO 11 Mekaaninen aaltoliike alto = avaruudessa etenevä järjestäytynyt häiriö. alto altoja on kahdenlaisia: Poikittainen aalto - poikkeamat kohtisuorassa

Lisätiedot

- ultraviolettisäteilyn (UV) - näkyvän alueen (visible) - infrapuna-alueen (IR)

- ultraviolettisäteilyn (UV) - näkyvän alueen (visible) - infrapuna-alueen (IR) 86 Opettele jako: - Gammasäteet (Gamma rays) - Röntgensäteet (X-rays) - Ultravioletti (Ultraviolet) - Näkyvä (Visible) - Infrapuna-alue (Infrared) - Mikroaaltoalue (Microwave) - Radioaallot 87 Valo-opissa

Lisätiedot

= ωε ε ε o =8,853 pf/m

= ωε ε ε o =8,853 pf/m KUDOKSEN POLARISOITUMINEN SÄHKÖKENTÄSSÄ E ε,, jε r, jε, r i =,, ε r, i r, i E Efektiivinen johtavuus σ eff ( ω = = ωε ε ε o =8,853 pf/m,, r 2πf ) o Tyypillisiä arvoja radiotaajuukislla Kompleksinen permittiivisyys

Lisätiedot

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV =

1240eV nm. 410nm. Kun kappaleet saatetaan kontaktiin jännite-ero on yhtä suuri kuin työfunktioiden erotus ΔV = S-47 ysiikka III (ST) Tentti 88 Maksimiaallonpituus joka irroittaa elektroneja metallista on 4 nm ja vastaava aallonpituus metallille on 8 nm Mikä on näiden metallien välinen jännite-ero? Metallin työfunktio

Lisätiedot

4 Fotometriset käsitteet ja magnitudit

4 Fotometriset käsitteet ja magnitudit 4 Fotometriset käsitteet ja magnitudit 4.1 Intensiteetti, vuontiheys ja luminositeetti Pinta-alkion da läpi kulkee säteilyä Avaruuskulma dω muodostaa kulman θ pinnan normaalin kanssa. Tähän avaruuskulmaan

Lisätiedot

Ongelmia mittauksissa Ulkoiset häiriöt

Ongelmia mittauksissa Ulkoiset häiriöt Ongelmia mittauksissa Ulkoiset häiriöt Häiriöt peittävät mitattavia signaaleja Häriölähteitä: Sähköverkko 240 V, 50 Hz Moottorit Kytkimet Releet, muuntajat Virtalähteet Loisteputkivalaisimet Kännykät Radiolähettimet,

Lisätiedot

Friedmannin yhtälöt. Einsteinin yhtälöt isotrooppisessa, homogeenisessa FRW-universumissa 8 G 3. yleisin mahdollinen metriikka. Friedmannin yhtälö

Friedmannin yhtälöt. Einsteinin yhtälöt isotrooppisessa, homogeenisessa FRW-universumissa 8 G 3. yleisin mahdollinen metriikka. Friedmannin yhtälö Friedmannin yhtälöt Einsteinin yhtälöt isotrooppisessa, homogeenisessa FRW-universumissa 8 G G [ R( t)] T [ aine, energia, R( t)] 3 yleisin mahdollinen metriikka d sin d dr ds c dt R( t) ( r d ) 1 kr Friedmannin

Lisätiedot

Kokeellisen tiedonhankinnan menetelmät

Kokeellisen tiedonhankinnan menetelmät Kokeellisen tiedonhankinnan menetelmät Ongelma: Tähdet ovat kaukana... Objektiivi Esine Objektiivi muodostaa pienennetyn ja ylösalaisen kuvan Tarvitaan useita linssejä tai peilejä! syys 23 11:04 Galilein

Lisätiedot

Petri Kärhä 04/02/04. Luento 2: Kohina mittauksissa

Petri Kärhä 04/02/04. Luento 2: Kohina mittauksissa Kohinan ominaisuuksia Kohinamekanismit Terminen kohina Raekohina 1/f kohina (Kvantisointikohina) Kohinan käsittely Kohinakaistanleveys Kohinalähteiden yhteisvaikutus Signaali-kohina suhde Kohinaluku Kohinalämpötila

Lisätiedot

12. Eristeet Vapaa atomi

12. Eristeet Vapaa atomi 12. Eristeet Eristeiden tyypillisiä piirteitä ovat kovalenttiset sidokset (tai vahvat ionisidokset) ja siitä seuraavat mekaaniset ja sähköiset ominaisuudet. Makroskooppisen ulkoisen sähkökentän E läsnäollessa

Lisätiedot

n=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1

n=5 n=4 M-sarja n=3 L-sarja n=2 Lisäys: K-sarjan hienorakenne K-sarja n=1 10.1 RÖNTGENSPEKTRI Kun kiihdytetyt elektronit törmäävät anodiin, syntyy jatkuvaa säteilyä sekä anodimateriaalille ominaista säteilyä (spektrin terävät piikit). Atomin uloimpien elektronien poistamiseen

Lisätiedot

Valo ja muu sähkömagneettinen säteily

Valo ja muu sähkömagneettinen säteily Valo ja muu sähkömagneettinen säteily Valon luonne on yksi kvanttimekaniikan omituisuuksista. Joissakin tilanteissa valo käyttäytyy kuin aaltoliike, toisissa kuin hiukkaset. Valohiukkanen eli fotoni on

Lisätiedot

LÄMPÖSÄTEILY. 1 Johdanto. Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 2. Perustietoa työstä

LÄMPÖSÄTEILY. 1 Johdanto. Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 2. Perustietoa työstä Oulun yliopisto Fysiikan opetuslaboratorio Fysiikan laboratoriotyöt 2 1 Perustietoa työstä Mihin fysiikan osa-alueeseen työ liittyy? Termofysiikkaan ja aaltoliikeoppiin. Mistä löytyy työssä tarvittava

Lisätiedot

Harjoitustehtävien vastaukset

Harjoitustehtävien vastaukset Harjoitustehtävien vastaukset Esimerkiksi kaiutinelementti, rumpukalvo (niin rummussa kuin korvassa), jännitetty kuminauha tai kielisoittimien (esimerkiksi viulu, kitara) kielet, kellon koneisto, heiluri,

Lisätiedot

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1 TEKNIIKKA FYSIIKAN LABORATORIO V

TURUN AMMATTIKORKEAKOULU TYÖOHJE 1 TEKNIIKKA FYSIIKAN LABORATORIO V TURUN AMMATTIKORKAKOUU TYÖOHJ 1 3A. asertyö 1. Työn tarkoitus Työssä perehdytään interferenssi-ilmiöön tutkimalla sitä erilaisissa tilanteissa laservalon avulla. 2. Teoriaa aser on lyhennys sanoista ight

Lisätiedot

PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS

PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS 1 PYP I / TEEMA 4 MITTAUKSET JA MITATTAVUUS Aki Sorsa 2 SISÄLTÖ YLEISTÄ Mitattavuus ja mittaus käsitteinä Mittauksen vaiheet Mittaustarkkuudesta SUUREIDEN MITTAUSMENETELMIÄ Mittalaitteen osat Lämpötilan

Lisätiedot

15. Tähtienvälinen aine

15. Tähtienvälinen aine 15. Tähtienvälinen aine Interstellaarinen materia: galaksien sisällä Intergalaktinen materia: galaksien välillä Yleisiä ominaisuuksia: 1) Interstellaarisen aineen määrä: tähtienvälinen kaasu n. 10% Linnunradan

Lisätiedot

ELEC C4140 Kenttäteoria (syksy 2015)

ELEC C4140 Kenttäteoria (syksy 2015) ELEC C4140 Kenttäteoria (syksy 2015) Henrik Wallén Luentoviiko 9 / versio 9. marraskuuta 2015 Tasoaallot, osa 2 (Ulaby 7.3, 7.5, 7.6) Tasoaallon polarisaatio Virranahtoilmiö Tehotiheys ja Poyntingin vektori

Lisätiedot

Tfy Fysiikka IIB Mallivastaukset

Tfy Fysiikka IIB Mallivastaukset Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama

Lisätiedot