7. Lohkominen ja sulautus 2 k kokeissa. Lohkominen (Blocking)
|
|
- Sanna Härkönen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 7. Lohkominen ja sulautus 2 k kokeissa Lohkominen (Blocking) Lohkotekijät muodostuvat faktoreista, joiden suhteen ei voida tehdä (täydellistä) satunnaistamista. Esimerkiksi faktorikokeessa raaka-aine-erät muodostavat usein lohkotekijän. Esimerkki 7.1: Oletetaan, että esimerkissä 6.1 (2 2 asetelma), raaka-aine-erästä voidaan tehdä vainneljä koetta. Täten 12 kokeen (kolme toistoa per käsittelykombinaatio) toteuttamiseen tarvitaan kolme raaka-aineerää (kolme lohkoa). Huomattavaa on, että jokaisessa lohkossa toteutetaan täysi faktorikoe (kaikki käsittelykombinaatiot). Analyysi toteutetaan samalla tavalla kuin kappaleen 5 tapauksessa. 1 2 Lohkot on merkitty SAS-data osassa Block-muuttujalla, arvoina 1, 2 ja 3. options ls = 80; data chemicalprocess; input A B Block label A = "Reactant concenntration (15%= low, 25%= high)" B = "Catalyst (0.5kg = low, 1kg = high)" y = "Yield"; datalines; ; Title "2ˆ2 factorial example with blocking"; proc glm data = chemicalprocess; class A B Block; model y = Block A B A*B /ss3; Tulokseksi saadaan The GLM Procedure Dependent Variable: y Yield Sum of Source DF Squares Mean Square F Value Pr > F Model Error Corrected R-Square Coeff Var Root MSE y Mean Source DF Type III SS Mean Square F Value Pr > F Block A B A*B Havaitaan, että lohkotekijän vaikutus jää pieneksi, joten sen jättäminen pois ei juurikaan muutaisi tuloksisa. 3 4
2 Sulautus (Confounding, Aliasing) Jos lohkoissa ei ole mahdollista toteuttaa kaikkia faktorikokeen käsittelykombinaatiotita, voidaan käyttää tekniikkaa, jota sanotaan sulautukseksi (confounding). Esimerkiksi raaka-aine-erä ei riitä kaikkien käsittelykombinaatioiden valmistamiseen. Sulautuksessa täysi faktorikoe lohkotaan (allokoidaan lohkoihin), jossa lohkon koko (käsittelyjen määrä) on pienempi kuin täyden faktorikokeen käsittelykombinaatioiden määrä. Seuraus on, että tiettyjäkäsittelyvaikutuksia ei voida erottaa lohkovaikutuksista (sulautuvat lohkoihin). Tällöin kussakin lohkossa voidaan toteuttaa vain vajaa faktorikoe (vähemmän käsittelykombinaatioita kuin 2 k ). Kysymyksessä on siis epätäydellisen lohkokokeen asetelma. 5 6 Yleinen tilanne 2 k faktorikoe 2 p vajaata lohkoa (incomplete blocks), jossa p<k 2 k faktoriasetelman sulautus kahdessa lohkossa Sulautuksessa koe tehdään (esimerkiksi) siten, että käsittelyt A B ja A + B + toteutetaan toisessa lohkossa ja A B + ja A + B toisessa lohkossa (käsittelyjärjestykset satunnaistetaan). Designmatriisin avulla ilmaistuna asia on seuraava (oletetaan, että AB = +1 allokoidaan lohkoon 1 ja AB = 1 lohkoon 2) p =1: 2 1 = 2 lohkoa. Jos k =2,täydessä lohkokokeessa tarvittaisiin 2 2 =4käsittelyä. A B AB Block
3 Havaitaan, että yhdysvaikutukset, kun A ja B ovat saman merkkiset (AB = +1), ovat samassa lohkossa. Samoin yhdysvaikutukset, kun A ja B ovat vastakkaismerkkisiä (AB = 1), ovat samassa lohkossa. Tällöin lohkovaikutus ja AB vaikutus ovat identtisiä (AB on sulautettu lohkoihin). Tämä nähdään seuraavasti: 2 2 kokeen solukeskiarvot ovat: B 1 +1 A 1 y 11. y y 21. y 22. Yhdysvaikutus on (1) AB interact =( y y 21. ) ( y y 22. ) Jos keskiarvot merkitään edellä esitetyndesignmatriisin vastaaville riveille saadaan esitys A B AB Block Cell average y y y y 22. Lohkovaikutus saadaan erotuksena lohkon 2 arvojen summasta ja lohkon 1 arvojen summasta, Block effect =( y y 21. ) ( y y 22. ), (2) eli täsmälleen sama kuin AB interact Vaihtoehtoisesti olisi voitu päävaikutukset sulauttaa lohkoihin. Käytäntö on, että korkeimman asteen yhdysvaikutukset sulautetaan. Esimerkki 7.2: 2 4 kokeen yhdysvaikutustermin ABCD sulautus kahden lohkon tapauksessa. Muodostetaan lohko 1 käsittelykombinaatioista, joissa ABCD =1ja lohkon 2, kun ABCD = 1. Tällöin A B C D ABCD Block Havaitaan, että sulautettua tekijää voidaan käyttää regressiossa lohkomuuttujana. 11 Seuraava esimerkki valaisee, että sulautettu tekijä ja lohkovaikutus todellakin yhdistyvät sulautuksessa toisiinsa niin, ettei estimoidusta arvosta voida identifioida kummasta on kysymys. Esimerkki 7.3: Tarkastellaan esimerkin 6.4 aineistoa. y: suodatusnopeus (filtration rate gal/h) A: lämötila (temperature), B: paine (pressure), C: formaldehydi (concentration of formaldehyde) D: sekoitusnopeus (stirring rate). Aineistosta laskettuna yhdysvaikutukseeksi saatiin ABCD = (regressiokertoimen avulla ilmaistuna, mikä tässä tapauksessa, kun tasot ovat ±1, tarkoittaa poikkeamaa yleiskeskiarvosta, jolten kokonaisvaikutus on = 1.375). 12
4 Oletetaan seuraavassa, että yksi raaka-aine-erä riittää vain kahdeksaan käsittelykombinaatioon, joten faktorikokeen tarvitseman 2 4 =16käsittelykombinaation toteuttamiseksi tarvitaan kaksi raaka-aine-erää. Oletetaan, että erä 1 on heikompilaatuista, jossa tulokset ovat systemaattisesti 20 yksikköä alemmat kuin erästä 2 saadut tulokset (vähennetään esimerkin 6.4 lohkoon 1 kuuluvista arvoista 20). Data: ======================== A B C D Block y ======================= Faktoriefektit (estimaatit) ========================== Effect Estimate A B A*B C A*C B*C A*B*C D A*D B*D A*B*D C*D A*C*D B*C*D A*B*C*D =========================== Eli näitä kahta vaikutusta ei voida erottaa toisistaan. Tämän takia sulautettavaksi tekijäksi on hyvä valita tekijä, jonka vaikutuksen oletetaan olevan käytännön kannalta merkityksetön. Lohkominen on tässä erittäin tärkeää. Jos lohkomista ei olisi suoritettu, vaan satunnaisteminen olisi tehty kaikkien 16 käsittelykombinaatioiden yli, huonompilaatuisesta raaka-aineesta valmistetut kokeet harhauttavat tuloksia. Kaikkien muiden tekijöiden vaikutukset pysyvät samana kuin esimerkissä 6.4 (2 x regressioestimaatti), lukuun ottamatta ABCD tekijää, joka sisältää myös lohkovaikutuksen ( 20). ABCD = todellinen yhdysvaikutus + lohkovaikutus = ( 20) = Esimerkkinä tästä käy yllä oleva tilanne. Kuvitellaan, että satunnaistaminen olisi juuri sattunut tuottamaan yllä olevan käsittelyjärjestyksen. Lohkovaikutus (huono raaka-aine) tulkittaisiin silloin korkeana ABCD yhdysvaikutuksena! Yleinen ohje: When in doubt, block. 16
5 2 k kokeen sulautus neljän (p = 2) lohkon tapauksessa Lohkottaessa neljään lohkoon, kussakin lohkossa on 2 k 2 käsittelyä. Asetelma soveltuu, kun tekijöitä on suurehko määrä k 4. Tällöin valitaan kaksi tekijää, joiden perusteella lohkotaan. Esimerkki 7.4: Kun k =5 ja p =2, 2 5 koeasetelma lohkossa on 2 3 =8käsittelyä. Jos muodostetaan ADEja BCElohkotekijöiksi, myös (ADE)(BCE) =ABCDE 2 = ABCD tekijä sulautuu. Lohko 1: ADC =1,BCE =1 Lohko 2: ADC = 1, BCE =1 Lohko 3: ADC =1,BCE = 1 Lohko 4: ABC = 1, BCE = 1 Tekijät on valittava huolella, sillä tekijä, joka muodostuu näiden tulona sulautuu myös lohkoihin Yleisessä tapauksessa [lohkoja 2 p,käsittelyjä per lohko 2 k p (p<k)], on olmassa tiettyjä suosituksia tekijöistä, joiden perusteella lohkot muostetaan. Nämä täytyy kuitenkin ratkoa tapauskohtaisesti, ettei sulauteta tutkimuksen kannalta tärkeitä yhdysvaikutustekijöitä. Osittainen sulautus Jos käsittelyjä toistetaan (n >1), voidaan lohkot muodostaa eri tekijöillä eri toistoissa. Etuna on, että voidaan estimoida lohkojen muodostuksessa käytetyt yhdysvaikutukset toistoista, joissa on käytetty eri tekijöitä lohkomiseen
6 Esimerkki 7.5: Tarkasellaan 2 3 faktorikoetta, jossa toistoja on n =4 ja p = 1, eli lohkoja 2 1 =2 kappaletta. Tällöin sulautettavat tekijät voidaan valita siten, että ensimmäisessä toistossa sulautetaan ABC, toisessa AB, kolmannessa AC ja neljännessä BC. Analyysi voidaan toteuttaa siten, että SS A, SS B, SS C lasketaan koko aineisosta, SS AB toistoista I, III ja IV, SS AC toistoista I, II ja IV, SS BC toistoista I, II ja III sekä SS ABC toistoista II, III ja IV. Varianssitaulu: Source SS df MS F Replicates SS repl 3 MS repl Blocks within replicates SS block 4 MS block A SS A 1 MS A MSA B SS B 1 MS A MSA C SS C 1 MS A MSA AB (I&III&IV) SS AB 1 MS AB MSAB AC (I&II&IV) SS AC 1 MS AC MSAC BC (I&II&III) SS BC 1 MS BC MSBC ABC (II&III&III) SS ABC 1 MS ABC MSABC Error SS err 17 MS err Total SS tot 31 SS block = SS ABC (repl I) + SS AB (repl II) +SS AC (repl III) + SS BC (repl IV) Esimerkki 7.6: Kemiallisen prosessin tuottavuuden parantamiseksi tarkastellaan faktorikokeella neljän kontrolloitavan tekijän (A, B, C, D) vaikutusta tuotokseen (y). Yhdestä raaka-aine-erästä saadaan valmistettua 8 koeerää, joten täyden faktorikokeen (2 4 = 16) toteuttamiseksi tarvitaan kaksi raaka-aine-erää. Jokaisesta käsittelystä tehdään kaksi toistoa, joten raaka-aine-eriä tarvitaan neljä. Sulautettaviksi tekijöiksi valitaan ensimmäisessä toistossa ABCD ja toisessa toistossa ABC. options ls = 80; data example76; input A B C D R label y = "yield of a chemical process" R = "replicate"; datalines; ; 23 24
7 * COMMENT: Sort observations by replicate; proc sort data = example76; by r; * COMMENT: Run GLM by group in order to obtain SS(ABCD) * from replicate I and SS(ABC) from replicate II. * The within replicate Sum of Squares is * obtained as the sum of SS(ABCD) form * replicate II and SS(ABC) from repicate I; Title "2k blocking example ABCD confounded in replicate I and ABC in replicate II"; proc glm data = example76; by r; * Run analysis group wise by replicate r; class A B C D; model y = A B C D /ss3; * COMMENT: Run GLM for the combined data to obtain the rest * of the Sum of Squares * Using variable R (replicate indicator) gives the sum of * squares between replicates; proc glm data = example76; class R A B C D; model y = R A B C D@2 A*B*D A*C*D B*C*D /ss3; Kokoamalla tulokset varianssitauluun saadaan: =============================================================== Source df SS MS F p-val Between Replics Block (ABCD rep I + ABC rep II) A B C D AB AC BC AD BD CD ABC (from repl I) ABD ACD BCD ABCD (from repl II) Error Total =============================================================== Havaitaan, että lohkominen on ollut tarpeen tässä. ABC on myös tilastollisesti merkitsevä
Lohkotekijät muodostuvat faktoreista, joiden suhteen ei voida tehdä (täydellistä) satunnaistamista.
7. Lohkominen ja sulautus 2 k kokeissa Lohkominen (Blocking) Lohkotekijät muodostuvat faktoreista, joiden suhteen ei voida tehdä (täydellistä) satunnaistamista. Esimerkiksi faktorikokeessa raaka-aine-erät
Lisätiedot7. Lohkominen ja sulautus 2 k kokeissa. Lohkominen (Blocking)
7. Lohkominen ja sulautus 2 k kokeissa Lohkominen (Blocking) Lohkotekijät muodostuvat faktoreista, joiden suhteen ei voida tehdä (täydellistä) satunnaistamista. Esimerkiksi faktorikokeessa raaka-aine-erät
LisätiedotLähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). tulee katettua (complete replicate). Havaintojen
6. 2 k faktorikokeet Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). Vähintään 2 k havaintoa, jotta kaikki vaihtoehdot tulee katettua (complete replicate). Havaintojen kokonaismäärä N = 2
Lisätiedot6. 2 k faktorikokeet. Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). määrä per faktoritasokombinaatio (balansoidussa)kokeessa.
6. 2 k faktorikokeet Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). Vähintään 2 k havaintoa, jotta kaikki vaihtoehdot tulee katettua (complete replicate). Havaintojen kokonaismäärä N =2
Lisätiedotproc glm data = ex61; Title2 "Aliasing Structure of the 2_IV^(5-1) design"; model y = A B C D E /Aliasing; run; quit;
Title "Exercises 6"; Data ex61; input A B C D E y @@; Label A = "Furnance Temperature" B = "Heating Time" C = "Transfer Time" D = "Hold Down Time" E = "Quench of Oil Temperature" y = "Free Height of Leaf
Lisätiedot6. 2 k faktorikokeet. Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). määrä per faktoritasokombinaatio (balansoidussa)kokeessa.
6. 2 k faktorikokeet Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). Vähintään 2 k havaintoa, jotta kaikki vaihtoehdot tulee katettua (complete replicate). Havaintojen kokonaismäärä N =2
LisätiedotFaktorikokeilla tarkoitetaan koesuunnitelmaa, jossa koe toistetaan kaikilla faktoreiden tasojen kombninaatioilla.
5. Johdatus faktorikokeisiin 5.1 Taustaa Faktorikokeilla tarkoitetaan koesuunnitelmaa, jossa koe toistetaan kaikilla faktoreiden tasojen kombninaatioilla. Täten, jos faktorilla A on a tasoa ja faktorilla
Lisätiedot2 k -faktorikokeet. Vilkkumaa / Kuusinen 1
2 k -faktorikokeet Vilkkumaa / Kuusinen 1 Motivointi 2 k -faktorikoe on k-suuntaisen varianssianalyysin erikoistapaus, jossa kaikilla tekijöillä on vain kaksi tasoa, matala (-) ja korkea (+). 2 k -faktorikoetta
Lisätiedot5. Johdatus faktorikokeisiin. Tekijän omaa vaikutusta vastemuuttujaan sanotaan. 5.1 Taustaa
5. Johdatus faktorikokeisiin 5.1 Taustaa Faktorikokeilla tarkoitetaan koesuunnitelmaa, jossa koe toistetaan kaikilla faktoreiden tasojen kombninaatioilla. Täten, jos faktorilla A on a tasoa ja faktorilla
Lisätiedot5. Johdatus faktorikokeisiin. Tekijän omaa vaikutusta vastemuuttujaan sanotaan. 5.1 Taustaa
5. Johdatus faktorikokeisiin 5.1 Taustaa Faktorikokeilla tarkoitetaan koesuunnitelmaa, jossa koe toistetaan kaikilla faktoreiden tasojen kombninaatioilla. Täten, jos faktorilla A on a tasoa ja faktorilla
Lisätiedot9.1 Hierarkiset asetelmat (Nested Designs)
9. Muita koeasetelmia 9.1 Hierarkiset asetelmat (Nested Designs) Tietyissä koetilanteissa yhden faktorin tasot ovat samanlaisia joskaan ei täysin identtisiä toisen faktorin eri tasoilla. Tällaista asetelmaa
LisätiedotKaksitasoiset hierarkiset asetelmat (Two-Stage Nested Designs) 9. Muita koeasetelmia. 9.1 Hierarkiset asetelmat (Nested Designs)
9. Muita koeasetelmia 9.1 Hierarkiset asetelmat (Nested Designs) Tietyissä koetilanteissa yhden faktorin tasot ovat samanlaisia joskaan ei täysin identtisiä toisen faktorin eri tasoilla. Tällaista asetelmaa
Lisätiedot8. Osittaiset 2 k faktorikokeet. Niinpä, jos voidaan olettaa, että korekeamman
8. Osittaiset 2 k faktorikokeet Faktoreiden lukumäärän k kasvaessa 2 k koeasetelmassa kasvaa koetoistojen (runs) määrää nopeasti täydessä toteutuksessa (complete replicate). Esimerkiksi 2 6 asetelman täysi
Lisätiedotnopeasti täydessä toteutuksessa (complete replicate).
8. Osittaiset 2 k faktorikokeet Faktoreiden lukumäärän k kasvaessa 2 k koeasetelmassa kasvaa koetoistojen (runs) määrää nopeasti täydessä toteutuksessa (complete replicate). Esimerkiksi 2 6 asetelman täysi
Lisätiedot9. Muita koeasetelmia. Kaksitasoiset hierarkiset asetelmat (Two-Stage Nested Designs) 9.1 Hierarkiset asetelmat (Nested Designs)
9. Muita koeasetelmia 9.1 Hierarkiset asetelmat (Nested Designs) Tietyissä koetilanteissa yhden faktorin tasot ovat samanlaisia joskaan ei täysin identtisiä toisen faktorin eri tasoilla. Tällaista asetelmaa
LisätiedotKoesuunnittelu 2 k -faktorikokeet. TKK (c) Ilkka Mellin (2005) 1
Koesuunnittelu 2 k -faktorikokeet TKK (c) Ilkka Mellin (2005) 2 k -faktorikokeet 2 2 -faktorikokeet 2 3 -faktorikokeet 2 k -faktorikokeet TKK (c) Ilkka Mellin (2005) 2 2 k -faktorikokeet: Mitä opimme?
LisätiedotOsafaktorikokeet. Heliövaara 1
Osafaktorikokeet Heliövaara 1 Osafaktorikokeet Kun faktorien määrä 2 k -faktorikokeessa kasvaa, tarvittavien havaintojen määrä voi ylittää kokeentekijän resurssit. Myös estimoitavien korkean asteen yhdysvaikutustermien
LisätiedotOsafaktorikokeet. Kurssipalautetta voi antaa Oodissa Kuusinen/Heliövaara 1
Osafaktorikokeet Kurssipalautetta voi antaa Oodissa 27.4.-25.5. Kuusinen/Heliövaara 1 Osafaktorikokeet Kun faktorien määrä 2 k -faktorikokeessa kasvaa, tarvittavien havaintojen määrä voi ylittää kokeen
LisätiedotA250A0050 Ekonometrian perusteet Tentti
A250A0050 Ekonometrian perusteet Tentti 28.9.2016 Tentissä ei saa käyttää laskinta. Tentistä saa max 80 pistettä. Hyväksytysti suoritetusta harjoitustyöstä saa max 20 pistettä. Huom. Merkitse vastauspaperin
LisätiedotTavoite on eliminoida sen vaikutus koetuloksista. 4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat. Eliminointimenetelmiä:
4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat 4.1 Satunnaistettu lohkokoe (Randomized Block Design) Kiusatekijä (nuisance factor): Kiusatekijä on taustatekijä, joka voi vaikuttaa
Lisätiedot4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat. Kiusatekijä on taustatekijä, joka voi vaikuttaa
4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat 4.1 Satunnaistettu lohkokoe (Randomized Block Design) Kiusatekijä (nuisance factor): Kiusatekijä on taustatekijä, joka voi vaikuttaa
LisätiedotKeskipisteen lisääminen 2 k -faktorikokeeseen (ks. Montgomery 9-6)
Mat-.3 Koesuunnittelu ja tilastolliset mallit kevät Keskipisteen lisääminen k -faktorikokeeseen (ks. Montgomery 9-6) Esim (Montg. ex. 9-, 6-): Tutkitaan kemiallisen prosessin saannon Y riippuvuutta faktoreista
Lisätiedot4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat. Tavoite on eliminoida sen vaikutus koetuloksista. Eliminointimenetelmiä:
4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat Tavoite on eliminoida sen vaikutus koetuloksista. 4.1 Satunnaistettu lohkokoe (Randomized Block Design) Kiusatekijä (nuisance factor):
LisätiedotVARIANSSIANALYYSI ANALYSIS OF VARIANCE
VARIANSSIANALYYSI ANALYSIS OF VARIANCE 1 Suomalaisten aikuisten pituusjakauma:.8.7.6.5.4.3.2.1 14 15 16 17 18 19 2 21 Jakauma ei ole normaali, sen olettaminen sellaiseksi johtaa virheellisiin päätelmiin.
LisätiedotKertausluento. Vilkkumaa / Kuusinen 1
Kertausluento Vilkkumaa / Kuusinen 1 Kokeellinen tutkimus Kokeellisessa tutkimuksessa on tavoitteena selvittää, miten erilaiset käsittelyt vaikuttavat tutkimuksen kohteisiin - Esim. miten lämpötila ja
LisätiedotLohkoasetelmat. Vilkkumaa / Kuusinen 1
Lohkoasetelmat Vilkkumaa / Kuusinen 1 Motivointi 1/3 Kaksisuuntaisella varianssianalyysilla voidaan tutkia kahden tekijän A ja B vaikutusta sekä niiden yhdysvaikutusta tutkimuksen kohteeseen Kaksisuuntaisessa
LisätiedotToimittaja 1 2 3 Erä 1 2 3 4 1 2 3 4 1 2 3 4 1 2 2 1 1 0 1 0 2 2 1 3 1 3 0 4 2 4 0 3 4 0 1 2 0 4 1 0 3 2 2 2 0 2 2 1
Mat-.03 Koesuunnittelu ja tilastolliset mallit / Ratkaisut Aiheet: Avainsanat: Hierarkkiset koeasetelmat -faktorikokeet Vastepintamenetelmä Aritmeettinen keskiarvo, Estimaatti, Estimaattori, -testi, aktorikokeet,
LisätiedotLatinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt
TKK (c) Ilkka Mellin (005) Koesuunnittelu TKK (c) Ilkka Mellin (005) : Mitä opimme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan yhden tekijän vaikutusta vastemuuttujaan,
Lisätiedot[MTTTA] TILASTOMENETELMIEN PERUSTEET, KEVÄT 209 https://coursepages.uta.fi/mttta/kevat-209/ HARJOITUS 5 viikko 8 RYHMÄT: ke 2.5 3.45 ls. C6 Leppälä to 08.30 0.00 ls. C6 Korhonen to 2.5 3.45 ls. C6 Korhonen
LisätiedotLohkoasetelmat. Heliövaara 1
Lohkoasetelmat Heliövaara 1 Kiusatekijä Kaikissa kokeissa, kokeen tuloksiin voi vaikuttaa vaihtelu joka johtuu kiusatekijästä. Kiusatekijä on tekijä, jolla mahdollisesti on vaikutusta vastemuuttujan arvoon,
LisätiedotKaksisuuntaisen varianssianalyysin tilastollisessa malli voidaan esittää seuraavassa muodossa:
Mat-.03 Koesuunnittelu ja tilastolliset mallit Mat-.03 Koesuunnittelu ja tilastolliset mallit / Ratkaisut Aiheet: Avainsanat: Kaksisuuntainen varianssianalsi Aritmeettinen keskiarvo, Estimointi, F-testi,
Lisätiedot3. Yhden faktorin kokeet. 3.1 Varianssianalyysi. Yhden faktorin koeasetelma, jossa faktorilla on a tasoa (kokeessa on a käsittelyä).
3. Yhden faktorin kokeet 3.1 Varianssianalyysi Yhden faktorin koeasetelma, jossa faktorilla on a tasoa (kokeessa on a käsittelyä). Esimerkki 3.1: Tutkitaan kankaassa käytettävän synteettisen kuidun vetolujuutta,
LisätiedotVastepintamenetelmä. Kuusinen/Heliövaara 1
Vastepintamenetelmä Kuusinen/Heliövaara 1 Vastepintamenetelmä Vastepintamenetelmässä pyritään vasteen riippuvuutta siihen vaikuttavista tekijöistä approksimoimaan tekijöiden polynomimuotoisella funktiolla,
Lisätiedot3. Yhden faktorin kokeet. 3.1 Varianssianalyysi. Yhden faktorin koeasetelma, jossa faktorilla on a tasoa (kokeessa on a käsittelyä).
3. Yhden faktorin kokeet 3.1 Varianssianalyysi Yhden faktorin koeasetelma, jossa faktorilla on a tasoa (kokeessa on a käsittelyä). Esimerkki 3.1: Tutkitaan kankaassa käytettävän synteettisen kuidun vetolujuutta,
Lisätiedot1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT
Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yksisuuntainen varianssianalyysi Bartlettin testi, Bonferronin menetelmä, F-testi, Jäännösneliösumma, χ 2 -testi, Kokonaiskeskiarvo,
LisätiedotYhden faktorin koeasetelma, jossa faktorilla on a tasoa (kokeessa on a käsittelyä).
3. Yhden faktorin kokeet 3.1 Varianssianalyysi Yhden faktorin koeasetelma, jossa faktorilla on a tasoa (kokeessa on a käsittelyä). Esimerkki 3.1: Tutkitaan kankaassa käytettävän synteettisen kuidun vetolujuutta,
Lisätiedot8. Osittaiset 2 k faktorikokeet. Niinpä, jos voidaan olettaa, että korekeamman
8. Osittaiset 2 k faktorikokeet Faktoreiden lukumäärän k kasvaessa 2 k koeasetelmassa kasvaa koetoistojen (runs) määrää nopeasti täydessä toteutuksessa (complete replicate). Esimerkiksi 2 6 asetelman täysi
LisätiedotTilastollisten menetelmien käyttö Kelan tutkimustoiminnassa
Tilastollisten menetelmien käyttö Kelan tutkimustoiminnassa Risto Lehtonen Helsingin yliopisto Kela 1 Tilastokeskuksen SAS-seminaari 16.11.2009 Aiheita Kelan tutkimustoiminta SAS-sovellukset vaativien
LisätiedotPerusnäkymä yksisuuntaiseen ANOVAaan
Metsämuuronen 2006. TTP Tutkimuksen tekemisen perusteet ihmistieteissä Taulukko.51.1 Analyysiin mukaan tulevat muuttujat Mja selite Merkitys mallissa F1 Ensimmäinen faktoripistemuuttuja Selitettävä muuttuja
LisätiedotFrequencies. Frequency Table
GET FILE='C:\Documents and Settings\haukkala\My Documents\kvanti\kvanti_harjo'+ '_label.sav'. DATASET NAME DataSet WINDOW=FRONT. FREQUENCIES VARIABLES=koulv paino /ORDER= ANALYSIS. Frequencies [DataSet]
LisätiedotA DEA Game II. Juha Saloheimo S ysteemianalyysin. Laboratorio. Teknillinen korkeakoulu
A DEA Game II Juha Salohemo 12.12.2007 Content Recap of the Example The Shapley Value Margnal Contrbuton, Ordered Coaltons, Soluton to the Example DEA Mn Game Summary Home Assgnment Recap of the Example
LisätiedotOtanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 3: Frekvenssiaineistojen asetelmaperusteinen analyysi: Perusteita
Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 3: Frekvenssiaineistojen asetelmaperusteinen analyysi: Perusteita risto.lehtonen@helsinki.fi OHC Survey Tilastollinen analyysi Kysymys: Millä
LisätiedotLohkoasetelmat. Kuusinen/Heliövaara 1
Lohkoasetelmat Kuusinen/Heliövaara 1 Kiusatekijä Kaikissa kokeissa kokeen tuloksiin voi vaikuttaa vaihtelu, joka johtuu kiusatekijästä. Kiusatekijä on tekijä, jolla on mahdollisesti vaikutusta vastemuuttujan
LisätiedotJ1 (II.6.9) J2 (X.5.5) MATRIISILASKENTA(TFM) MALLIT AV 6
MATRIISILASKENTA(TFM) MALLIT AV 6 J (II.6.9) Päättele, että avaruusvetorit a, b ja c ovat lineaarisesti riippuvat täsmälleen un vetoreiden virittämän suuntaissärmiön tilavuus =. Tuti tällä riteerillä ovato
LisätiedotResiduaalit. Residuaalit. UK Ger Fra US Austria. Maat
TAMPEREEN YLIOPISTO Tilastollisen mallintamisen harjoitustyö Teemu Kivioja ja Mika Helminen Epätasapainoisen koeasetelman analyysi Worksheet 5 Matematiikan, tilastotieteen ja filosofian laitos Tilastotiede
Lisätiedot( )
( www.padasalai.net ) TET TET TET ReExam Paper I Paper II. 8015118094 sivatvmalai@yahoo.co.in Questions TRB - Page 1 II ( 7, 21 ) ( 3, 15 ) ( 3, 5) ( 6,2) (3,5) 1 ( 3, 5 ) (2 + ) ( - 2 ) (2 + ) ( - 2 )
LisätiedotKoesuunnittelu Vastepintamenetelmä. TKK (c) Ilkka Mellin (2005) 1
Koesuunnittelu Vastepintamenetelmä TKK (c) Ilkka Mellin (2005) 1 Vastepintamenetelmä Vastepintamenetelmä: Johdanto 2 k -faktorikokeet Vastefunktion kaarevuuden testaaminen 1. asteen vastepintamallin varianssianalyysihajotelma
LisätiedotTässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot)
R-ohjelman käyttö data-analyysissä Panu Somervuo 2014 Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. 0) käynnistetään R-ohjelma Huom.1 allaolevissa ohjeissa '>' merkki on R:n
Lisätiedot1. KAKSISUUNTAINEN VARIANSSIANALYYSI: TULOSTEN TULKINTA
Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Kaksisuuntainen varianssianalyysi Bonferronin menetelmä, F-testi, Jäännösneliösumma, Kaksisuuntainen varianssianalyysi Kokonaiskeskiarvo,
LisätiedotLannoituskokeet konsentraatilla: kesän 2018 kokeiden tuloksia. Joonas Hirvonen Markku Huttunen Juha Kilpeläinen Anssi Kokkonen
Lannoituskokeet konsentraatilla: kesän 218 kokeiden tuloksia Joonas Hirvonen Markku Huttunen Juha Kilpeläinen Anssi Kokkonen Konsentraatti-lannoitteen kenttäkokeet Konsentraatin lannoitusvaikutusta testattiin
LisätiedotEsim Brand lkm keskiarvo keskihajonta A ,28 5,977 B ,06 3,866 C ,95 4,501
Esim. 2.1.1. Brand lkm keskiarvo keskihajonta A 10 251,28 5,977 B 10 261,06 3,866 C 10 269,95 4,501 y = 260, 76, n = 30 SS 1 = (n 1 1)s 2 1 = (10 1)5, 977 2 321, 52 SS 2 = (n 2 1)s 2 2 = (10 1)3, 8662
LisätiedotVastepintamenetelmä. Heliövaara 1
Vastepintamenetelmä Kurssipalautteen antamisesta saa hyvityksenä yhden tenttipisteen. Palautelomakkeeseen tulee lähiaikoina linkki kurssin kotisivuille. Heliövaara 1 Vastepintamenetelmä Vastepintamenetelmässä
LisätiedotVastaukset 1. A = (-4,3) B = (6,1) C = (4,8) D = (-7,-1) E = (-1,0) F = (3,-3) G = (7,-9) 3. tämä on ihan helppoa
Vastaukset 1. A = (4,3) B = (6,1) C = (4,8) D = (7,1) E = (1,0) F = (3,3) G = (7,9) 2. 3. tämä on ihan helppoa 4. 5. a) (0, 0) b) Kolmannessa c) Ensimmäisessä d) toisessa ja neljännessä 117 6. 7. 8. esimerkiksi
Lisätiedot1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA
Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Päättely yhden selittäjän lineaarisesta regressiomallista Ennustaminen, Ennuste, Ennusteen luottamusväli, Estimaatti, Estimaattori,
LisätiedotVastepintamenetelmä. Vilkkumaa / Kuusinen 1
Vastepintamenetelmä Vilkkumaa / Kuusinen 1 Motivointi Varianssianalyysissa tutkitaan tekijöiden vaikutusta vasteeseen siten, että tekijöiden tasot on ennalta valittu. - Esim. tutkitaan kemiallisen prosessin
LisätiedotLukumäärän laskeminen 1/7 Sisältö ESITIEDOT:
Lukumäärän laskeminen 1/7 Sisältö Samapituisten merkkijonojen lukumäärä I Olkoon tehtävänä muodostaa annetuista merkeistä (olioista, alkioista) a 1,a 2,a 3,..., a n jonoja, joissa on p kappaletta merkkejä.
LisätiedotHilbertin aksioomat ja tarvittavat määritelmät Tiivistelmä Geometria-luentomonisteesta Heikki Pitkänen
Hilbertin aksioomat ja tarvittavat määritelmät Tiivistelmä Geometria-luentomonisteesta Heikki Pitkänen 1. Hilbertin aksioomat 1-3 Oletetaan tunnetuiksi peruskäsitteet: piste, suora ja suora kulkee pisteen
LisätiedotHierarkkiset koeasetelmat. Heliövaara 1
Hierarkkiset koeasetelmat Heliövaara 1 Hierarkkiset koeasetelmat Kaksiasteista hierarkkista koeasetelmaa käytetään tarkasteltaessa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan kahden tekijän
LisätiedotOpetus talteen ja jakoon oppilaille. Kokemuksia Aurajoen lukion tuotantoluokan toiminnasta Anna Saivosalmi 9.9.2011
Opetus talteen ja jakoon oppilaille Kokemuksia Aurajoen lukion tuotantoluokan toiminnasta Anna Saivosalmi 9.9.2011 Aurajoen lukio ISOverstaan jäsen syksystä 2010 lähtien ISOverstas on maksullinen verkko-oppimisen
LisätiedotData-analyysi II. Sisällysluettelo. Simo Kolppo [Type the document subtitle]
Data-analyysi II [Type the document subtitle] Simo Kolppo 26.3.2014 Sisällysluettelo Johdanto... 1 Tutkimuskysymykset... 1 Aineistojen esikäsittely... 1 Economic Freedom... 1 Nuorisobarometri... 2 Aineistojen
LisätiedotThe relationship between leisuretime physical activity and work stress with special reference to heart rate variability analyses
The relationship between leisuretime physical activity and work stress with special reference to heart rate variability analyses Teisala Tiina, TtM, tohtorikoulutettava Jyväskylän yliopisto Terveystieteiden
LisätiedotUseampisuuntainen varianssianalyysi. Useampisuuntainen varianssianalyysi. Useampisuuntainen varianssianalyysi
(c) lkka Mellin (005) Useampisuuntainen varianssianalsi ohdatus tilastotieteeseen Useampisuuntainen varianssianalsi (c) lkka Mellin (005) Useampisuuntainen varianssianalsi: Mitä opimme? arkastelemme tässä
LisätiedotOHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3
OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 3 Tutkimussuunnitelman rakenne-ehdotus Otsikko 1. Motivaatio/tausta 2. Tutkimusaihe/ -tavoitteet ja kysymykset
Lisätiedotxi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n =
1. Tutkitaan paperin ominaispainon X(kg/dm 3 ) ja puhkaisulujuuden Y (m 2 ) välistä korrelaatiota. Tiettyä laatua olevasta paperierästä on otettu satunnaisesti 10 arkkia ja määritetty jokaisesta arkista
LisätiedotAltistusaika 1 kk 2 kk 3 kk 1.35 1.53 1.38 1.35 1.63 1.51 1.60 1.40 2.18 1.77 1.66 1.98 1.73 1.76 1.60 1.72
Mat-.03 Koesuunnittelu ja tilastolliset mallit Mat-.03 Koesuunnittelu ja tilastolliset mallit / Ratkaisut iheet: vainsanat: Kaksisuuntainen varianssianalsi Lohkoasetelmat Latinalaiset neliöt ritmeettinen
Lisätiedot33. pohjoismainen matematiikkakilpailu 2019 Ratkaisut
33. pohjoismainen matematiikkakilpailu 2019 Ratkaisut 1. Kutsutaan (eri) positiivisten kokonaislukujen joukkoa merkitykselliseksi, jos sen jokaisen äärellisen epätyhjän osajoukon aritmeettinen ja geometrinen
LisätiedotKemometriasta. Matti Hotokka Fysikaalisen kemian laitos Åbo Akademi Http://www.abo.fi/~mhotokka
Kemometriasta Matti Hotokka Fysikaalisen kemian laitos Åbo Akademi Http://www.abo.fi/~mhotokka Mistä puhutaan? Määritelmiä Määritys, rinnakkaismääritys Mittaustuloksen luotettavuus Kalibrointi Mittausten
LisätiedotEnergian varastointi ja uudet energialähteet
Energian varastointi ja uudet energialähteet Fossiiliset polttoaineet, entropia 1 Fossiilisten polttoaineiden jaottelu Raakaöljy Vedyn ja hiilen yhdisteet Öljyliuske Öljyhiekka Maakaasu Kivihiili 2 Öljyvarat
LisätiedotCapacity Utilization
Capacity Utilization Tim Schöneberg 28th November Agenda Introduction Fixed and variable input ressources Technical capacity utilization Price based capacity utilization measure Long run and short run
LisätiedotPerusestimointi 5 Analyysiä survey-datalla Tee Suomen datalla jokin oma kokeilu käyttäen tätä mallia Esimerkki PISA 2006:sta SAS:lla
Perusestimointi 5 Analyysiä survey-datalla Tee Suomen datalla jokin oma kokeilu käyttäen tätä mallia Esimerkki PISA 2006:sta SAS:lla proc surveymeans data=pisa.impuoecd; where cnt='fin' or cnt='deu' or
LisätiedotARVIOINTIPERIAATTEET
PSYKOLOGIAN YHTEISVALINNAN VALINTAKOE 2012 ARVIOINTIPERIAATTEET Copyright Helsingin yliopisto, käyttäytymistieteiden laitos, Materiaalin luvaton kopiointi kielletty. TEHTÄVÄ 1. (max. 34.5 pistettä) 1 a.i)
LisätiedotJakaumien merkitys biologisissa havaintoaineistoissa: Löytyykö ratkaisu Yleistetyistä Lineaarisista (Seka)Malleista?
1 Hydrobiologian tutkijaseminaari 20.3.2000 Jakaumien merkitys biologisissa havaintoaineistoissa: Löytyykö ratkaisu Yleistetyistä Lineaarisista (Seka)Malleista? Jari Hänninen Turun yliopisto Saaristomeren
Lisätiedota) Arkistokatu ja Maaherrankatu ovat yhdensuuntaiset. Väite siis pitää paikkansa.
Tekijä MAA3 Geometria 14.8.2016 1 a) Arkistokatu ja Maaherrankatu ovat yhdensuuntaiset. Väite siis pitää paikkansa. b) Pirttiniemenkatu ja Tenholankatu eivät ole yhdensuuntaisia. Väite ei siis pidä paikkaansa.
LisätiedotHealth 2000/2011 Surveys. Statistical Analysis using SAS and SAS-Callable SUDAAN Packages 17.6.2013. Esa Virtala. etunimi.sukunimi@thl.
Health 2000/2011 Surveys Statistical Analysis using SAS and SAS-Callable SUDAAN Packages 17.6.2013 Esa Virtala etunimi.sukunimi@thl.fi Terveyden ja hyvinvoinnin laitos (THL) PL 30 00271 Helsinki Puhelin:
LisätiedotCapacity utilization
Mat-2.4142 Seminar on optimization Capacity utilization 12.12.2007 Contents Summary of chapter 14 Related DEA-solver models Illustrative examples Measure of technical capacity utilization Price-based measure
Lisätiedot2 2 -faktorikokeen määritelmä
TKK (c) Ilkka Mellin (005) Koesuunnittelu TKK (c) Ilkka Mellin (005) : Mitä opimme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan kahden tai useamman tekijän vaikutusta
LisätiedotTAPAUS-VERROKKITUTKIMUS
TAPAUS-VERROKKI TUTKIMUKSEN TYYPIT JA TULOSTEN ANALYYSI Simo Näyhä Jari Jokelainen Kansanterveystieteen ja yleislääketieteen laitoksen jatkokoulutusmeeting.3.4.2007 TAPAUS-VERROKKITUTKIMUS Idea Tutkimusryhmät
LisätiedotKenguru Benjamin, ratkaisut (1 / 6) luokka
Kenguru Benjamin, ratkaisut (1 / 6) 3 pisteen tehtävät 1. Kuinka monta kokonaislukua on lukujen 19,03 ja,009 välissä? (A) 14 (B) 15 (C) 16 (D) 17 (E) enemmän kuin 17 Luvut 3, 4, 5, 6, 7, 8, 9, 10, 11,
LisätiedotHarjoitus 9: Excel - Tilastollinen analyysi
Harjoitus 9: Excel - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen regressioanalyysiin
LisätiedotSPSS-perusteet. Sisältö
SPSS-perusteet Sisältö Ikkunat 3 Päävalikot 5 Valikot 6 Aineiston käsittely 6 Muuttujamuunnokset 7 Aineistojen kuvailu analyysit 8 Havaintomatriisin luominen ja käsittely 10 Muulla sovelluksella tehdyn
Lisätiedot3. Useamman selittäajäan regressiomalli. p-selittäaväaäa muuttujaa. Y i = + 1 X i1 +...+ p X ip + u i
3. Useamman selittäajäan regressiomalli p-selittäaväaäa muuttujaa Y i = + 1 X i1 +...+ p X ip + u i i = 1,...,n (> p), missäa n = havaintojen lukumäaäaräa otoksessa. Oletukset kuten aiemmin: (1) E(u i
LisätiedotA DEA Game I Chapters
A DEA Game I Chapters 5.-5.3 Saara Tuurala 2.2.2007 Agenda Introducton General Formulaton Assumpton on the Game and Far Dvson Coalton and Characterstc Functon Summary Home Assgnment Introducton /5 A DEA
Lisätiedot1. REGRESSIOMALLIN SYSTEMAATTISEN OSAN MUOTO
Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Regressiodiagnostiikka Cooken etäisyys, Funktionaalinen muoto, Diagnostinen grafiikka, Diagnostiset testit, Heteroskedastisuus,
LisätiedotKvantitatiiviset menetelmät
Kvantitatiiviset menetelmät HUOM! Tentti pidetään tiistaina.. klo 6-8 V ls. Uusintamahdollisuus on rästitentissä.. ke 6 PR sali. Siihen tulee ilmoittautua WebOodissa 9. 8.. välisenä aikana. Soveltuvan
LisätiedotOsa 2: Otokset, otosjakaumat ja estimointi
Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin
LisätiedotTerra Preta kasvatuskoe Pilkon pellolla 2012-2013
Terra Preta kasvatuskoe Pilkon pellolla 2012-2013 Karelia ammattikorkeakoulu Biotalouden keskus Simo Paukkunen Lokakuu 2013 Sisällys 1 Johdanto... 1 2 Aineisto ja menetelmät... 1 3 Tulokset... 6 3.1 Oraiden
Lisätiedot1. USEAN SELITTÄJÄN LINEAARINEN REGRESSIOMALLI JA OSITTAISKORRELAATIO
Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Usean selittäjän lineaarinen regressiomalli Estimaatti, Estimaattori, Estimointi, Jäännösneliösumma, Jäännöstermi, Jäännösvarianssi,
Lisätiedot2. Keskiarvojen vartailua
2. Keskiarvojen vartailua Esimerkki 2.1: Oheiset mittaukset liittyvät Portland Sementin sidoslujuuteen (kgf/cm 2 ). Mittaukset y 1 ovat nykyisestä seoksesta ja mittaukset y 2 uudesta seoksesta, jossa lisäaineena
LisätiedotMS-C2128 Ennustaminen ja aikasarja-analyysi ARMA esimerkkejä
MS-C2128 Ennustaminen ja aikasarja-analyysi ARMA esimerkkejä Tehtävä 4.1. Ncss-ohjelmiston avulla on generoitu AR(1)-, AR(2)-, MA(1)- ja MA(2)-malleja vastaavia aikasarjoja erilaisilla parametrien arvoilla.
LisätiedotAlternative DEA Models
Mat-2.4142 Alternative DEA Models 19.9.2007 Table of Contents Banker-Charnes-Cooper Model Additive Model Example Data Home assignment BCC Model (Banker-Charnes-Cooper) production frontiers spanned by convex
LisätiedotATH-koulutus: R ja survey-kirjasto THL 16.2.2011. 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1
ATH-koulutus: R ja survey-kirjasto THL 16.2.2011 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1 Sisältö Otanta-asetelman kuvaaminen R:llä ja survey-kirjastolla Perustunnusluvut Regressioanalyysit 16. 2. 2011
LisätiedotOletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen
Yhden faktorin malli: n kpl sijoituskohteita, joiden tuotot ovat r i, i =, 2,..., n. Olkoon f satunnaismuuttuja ja oletetaan, että tuotot voidaan selittää yhtälön r i = a i + b i f + e i avulla, missä
LisätiedotKoesuunnittelu ja tilastolliset mallit Johdanto. TKK (c) Ilkka Mellin (2005) 1
Koesuunnittelu ja tilastolliset mallit Johdanto TKK (c) Ilkka Mellin (2005) 1 Koesuunnittelu: Johdanto Johdattelevia esimerkkejä Tilastolliset kokeet TKK (c) Ilkka Mellin (2005) 2 Koesuunnittelu: Johdanto
LisätiedotJY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT
JY / METODIFESTIVAALI 2013 PRE-KURSSI: KYSELYTUTKIMUS DEMOT SPSS-ohjelmiston Complex Samples- toiminto otoksen poiminnassa ja estimaattien laskennassa Mauno Keto, lehtori Mikkelin AMK / Liiketalouden laitos
LisätiedotLAUSEKKEET JA NIIDEN MUUNTAMINEN
LAUSEKKEET JA NIIDEN MUUNTAMINEN 1 LUKULAUSEKKEITA Ratkaise seuraava tehtävä: Retkeilijät ajoivat kahden tunnin ajan polkupyörällä maantietä pitkin 16 km/h nopeudella, ja sitten vielä kävelivät metsäpolkua
LisätiedotTekijä Pitkä matematiikka On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 4 5
Tekijä Pitkä matematiikka 6..06 8 On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 5 sivun AB pituudesta. Pitää siis osoittaa, että DE = AB. 5 Muodostetaan vektori DE. DE =
LisätiedotEpävarmuuden hallinta bootstrap-menetelmillä
1/17 Epävarmuuden hallinta bootstrap-menetelmillä Esimerkkinä taloudellinen arviointi Jaakko Nevalainen Tampereen yliopisto Metodifestivaalit 2015 2/17 Sisältö 1 Johdanto 2 Tavanomainen bootstrap Bootstrap-menettelyn
LisätiedotGap-filling methods for CH 4 data
Gap-filling methods for CH 4 data Sigrid Dengel University of Helsinki Outline - Ecosystems known for CH 4 emissions; - Why is gap-filling of CH 4 data not as easy and straight forward as CO 2 ; - Gap-filling
Lisätiedot(d) Laske selittäjään paino liittyvälle regressiokertoimelle 95 %:n luottamusväli ja tulkitse tulos lyhyesti.
2. VÄLIKOE vuodelta -14 1. Liitteessä 1 on esitetty R-ohjelmalla saatuja tuloksia aineistosta, johon on talletettu kahdenkymmenen satunnaisesti valitun miehen paino (kg), vyötärön ympärysmitta (cm) ja
LisätiedotKEMIALLISET ANALYYSIT TURUN YLIOPISTOSSA
Biokemian ja elintarvikekemian laitos RAPORTTI 1 (8) Projekti: Siian laatu kalan tarjontaketjussa Dnro: 4682/3516/05 Hankenro: 534589 Raportin laatija: Jukka Pekka Suomela KEMIALLISET ANALYYSIT TURUN YLIOPISTOSSA
Lisätiedot