Kaksitasoiset hierarkiset asetelmat (Two-Stage Nested Designs) 9. Muita koeasetelmia. 9.1 Hierarkiset asetelmat (Nested Designs)
|
|
- Otto Majanlahti
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 9. Muita koeasetelmia 9.1 Hierarkiset asetelmat (Nested Designs) Tietyissä koetilanteissa yhden faktorin tasot ovat samanlaisia joskaan ei täysin identtisiä toisen faktorin eri tasoilla. Tällaista asetelmaa sanotaan sisäkkäiseksi tai hierarkiseksi (nested,hierarchical). Kaksitasoiset hierarkiset asetelmat (Two-Stage Nested Designs) Kaksitasoisessa hierarkiseissa asetelmassa on kaksi faktoria A ja B,jossa B : n tasot ovat hierarkisesti A:n tasojen sisällä. Esimerkki 9.1: Oletetaan että yhtiöllä on kolme raakaainetoimittajaa (faktori A). Halutaan tutkia onko kunkin toimittajan raaka-aine puhtaudeltaan samanveroista. Jokaiselta toimittajalta tilataan neljä raaka-aine-erää (faktori B) ja jokaisesta erästä otetaan kolme näytettä (toistot n = 3) puhtaustestiä varten. 1 2
2 Asetelma on seuraavanlainen: Toimittaja Erä Hav. y 111 y 121 y 131 y 141 y 112 y 122 y 132 y 142 y 211 y 221 y 231 y 241 y 212 y 222 y 232 y 242 y 311 y 321 y 331 y 341 y 312 y 322 y 332 y 342 Huom. 9.1: Esimerkissä 9.1 erien (faktori B) numerointi 1 4 kunkin toimittajan (faktori A) kohdalla on vain sopimuskysymys. Yhtä hyvin ne voisivat olla toimittajalla 1: 1 4 toimittajalla 2: 5 8 ja toimittajalla 3: Huom. 9.2: Aina ei ole itsestään selvää onko tietty koe hierarkinen vai ei. Kuitenkin periaatteena voidaan pitää,että jos faktorin tasot voidaan numeroida y 113 y 123 y 133 y 143 y 213 y 223 y 233 y 243 y 313 y 323 y 333 y 343 Figure 9.1: Two-stage nested design. Erityisesti havaitaan,että eri toimittajien erät eivät ole missään tekemisissä muiden toimittajien erien kanssa. Toimittajan 1 erällä 1 ei ole mitään tekemistä toimittajan 2 erän1kanssa,jne. 3 4
3 Tilastollinen Malli Jos tekijä B on hierarkinen (nested) A:han nähden,niin A ja B välillä ei voi olla interaktiota,sillä kukinb:n taso (arvo,luokka) on sidoksissa vain tiettyyn A:n tasoon (arvoon, luokkaan). Täten siis B luokka on A:sta riippuvainen (A:n funkiot). Kasksiasteisen hierarkisen asetelman tilastollinen malli on muotoa (1) y ijk = μ + τ i + β j(i) + ε (ij)k, i =1,...,a (= tekijän A tasot), j =1,...,b (= tekijän B tasot) ja k =1,...,n (= toistot), (2) ε (ij)k NID(0,σ 2 ). Alaindeksi j(i) osoittaa,että tekijän B luokka j: on tekijän A luokassa i (hierarkisuus). Alaindeksi (ij)k puolestaan viittaa toistoon k tekijöiden A ja B käsittelykombinaation ij sisällä. Yhdysvaikutusta (τβ) ij ei ole. 5 6
4 Jos tekijät A ja B ovat kiinteitä (ei-satunnaisia) (fixed effects), ja a i=1 b j=1 τ i =0 β j(i) =0. Jos A ja B ovat satunnaistekijöitä (random effects), (3) τ i N(0,σ 2 τ ) ja (4) β j(i) N(0,σ 2 β ). Asetelmaa,jossa B:n luokkia on kussakin A:n luokassa sama määrä ja toistojen n määrä on sama,sanotaan tasapainotetuksi hierarkiseksi asetelmaksi (balanced nested design). Neliösummahajotelma: (5) a b i=1 j=1 k=1 n (y ijk y... ) 2 = bn +n + a ( y i.. y... ) 2 i=1 a i=1 j=1 a b i=1 j=1 k=1 b ( y ij. y i.. ) 2 n (y ijk y ij. ) 2 eli (6) SS T = SS A + SS B(A) + SS E, 7 8
5 jossa (7) SS T = a b n (y ijk y... ) 2, i=1 j=1 k=1 a (8) SS A = bn ( y i.. y... ) 2, (9) SS B(A) = n ja i=1 a b i=1 j=1 ( y ij. y i.. ) 2 Varianssitaulu: Source SS df MS A SS A a 1 MS A BwithinA SS B(A) a(b 1) MS B(A) Error SS E ab(n 1) MS E Total SS T abn 1 (11) MS A = SS A (a 1), (10) SS E = a b n (y ijk y ij. ) 2. i=1 j=1 k=1 (12) MS B(A) = SS B(A) a(b 1), (13) SS E = SS E ab(n 1). Huom. 9.3: Testisuureet määräytyvät sen mukaan ovatko tekijät kiinteitä vai satunnaisia. 9 10
6 (a) Molemmat tekijät A ja B kiinteitä (fixed effects model): (b) Tekijät satunnaismuuttujia (random effects model [variance component model]): Hypoteesi: (14) H 0 : τ i = 0 kaikilla i =1,...,a. Testisuure: (15) F = MS A. MS E Hypoteesi: (16) H 0 : β j(i) = 0 kaikilla j =1,...,b,i=1,...,a. Testisuure: (17) F = MS B(A) MS E. Hypoteesi: (18) H 0 : σ 2 τ =0. Testisuure: (19) F = MS A. MS B(A) Hypoteesi: (20) H 0 : σ 2 β =0. Testisuure: (21) F = MS B(A) MS E
7 (c) A kiinteä jab satunnaistekijä (mixed model): Sekatapauksessa,jossa A kiinteä jab satunnainen,testattavat hypoteesit ovat (14) ja (20). Hypoteesin (14) testisuure: (22) F = MS A MS B(A). Hypoteesin (20) testisuure: (23) F = MS B(A) MS E Esimerkki 9.2: Tarkastellaan kolmella menetelmällä valmistetun polttoaineen palamisominaisuuksia. Valitaan satunnaisesti neljä näyte-erää kustakin valmistusmenetelmästä jatehdään kolme palamiskoetta kustakin näytteestä. Kysymyksessä on siis sekamalli. =========================================================== Tyotantoprosessi (A) Era(B) =========================================================== 13 14
8 SAS: Title "Design of Experiments, Example 9.2": options ls = 80; data example92; input A B label A = "Propellant manufacturing process" B = "Batch within process" y = "Propellant burning rate"; datalines; ; run; proc glm data = example92; Title "Nested Random Effects Model"; class A B; model y = A B(A); random B(A) /test; run; quit; Tulokset: Source A B(A) The GLM Procedure Type III Expected Mean Square Var(Error) + 3 Var(B(A)) + Q(A) Var(Error) + 3 Var(B(A)) Source DF Type III SS Mean Square F Value Pr > F A Error: MS(B(A)) Source DF Type III SS Mean Square F Value Pr > F B(A) <.0001 Error: MS(Error) Tekijän A vaikutus ei ole tilastollisesti merkitsevä. Tekijä B on tilstollisesti merkitsevä. Täten tuotantoprosessilla ei näytä olevan vaikutusta palamiseen. Sen sijaan näyte-erien välillä oneroa. Tuotannon optimoinnissa tulisi tten vaatia toimittajilta tasalaatuisempaa raaka-ainetta
9 Huom 9.1: Kiinteän tekijän mallissa parametrien estimaatit ovat (24) ˆτ i = y i.. y.. ja (25) ˆβ j(i) = y ij. y i... Huom 9.2: Satunnaistekijän mallissa (random effects model),saadaan varianssit στ 2 ja σ2 β estimoitua kaavoilla Esimerkki 9.3: Esimerkissä 9.2 on sekamalli. Vaikutusten estimaatit ovat kaavojen (24) ja (27) mukaisesti ja ˆτ 1 = = 3.97, ˆτ 2 = = 2.05, ˆσ 2 β ˆτ 3 = =6.03 = (26) ˆσ 2 τ = MS A MS B(A) bn ja (27) ˆσ 2 β = MS B(A) MS E n Huom. 9.3: Virhetermin ε (ij)k varianssin σ 2 estimaattori on (28) ˆσ 2 = MS E = SS E ab(n 1). Huom 9.4: Usein hierariksiset asetelmissa malli on niin sanottu sekamalli (mixed model),jossa tekijä A on kiinteä jab satunnaismuuttuja
10 Yleinen m-tason hierarkinen asetelma (The general m-stage nested design) Kaksitasoinen malli yleistyy suoraviivaisesti useampitasoiseksi. Esimerkki 9.4: Oletetaan esimerkiksi,että valimossa tutkitaan kahden eri valutavan kovuutta. Tilastollinen malli yleiselle kolmitasoiselle asetelmalle (tekijät A, B ja C) on (29) y ijkl = μ + τ i + β j(i) + γ k(ij) + ε (ijk)l i =1,...,a, j =1,...,b, k =1,...,c ja l =1,...,n (n = toistojen lukumäärä). Neliösummajajotelma: Valu voi tapahtua kolmessa lämpötilassa. (30) SS T = SS A + SS B(A) + SS C(B) + SS E. Valitaan kaksi valutuotetta satunnaisesti kustakin lämpötilavaihtoehdosta joista mitataan kovuudet. Näin syntyy kolme tasoa: valutavat (2 kappaletta), lämpötila (3 vaihtoehtoa) ja lopputuotteet (2 kappaletta kussakin lämötilassa tuotetusta valutuotteesta). Tässä on siis kolmitasoisnen hierarkinen asetelma
11 jossa (31) SS T = (y ijkl y... ) 2, i j k l a (32) SS A = bcn (y i... y... ) 2, i=1 a b (33) SS B(A) = cn ( y ij.. y i... ) 2, i=1 j=1 a b c (34) SS B(C) = n ( y ijk. y ij.. ) 2 i=1 j=1 k=1 Varianssitaulu: Source SS df MS A SS A a 1 MS A B(within A) SS B(A) a(b 1) MS B(A) C(within B) SS C(B) ab(n 1) MS C(B) Error SS E abc(n 1) MS E Total SS T jossa keskineliösummat (MS) saadaan jakamalla vastaava neliösumma (SS) vapausasteilla (df). (35) SS E = i (y ijkl y ijk. ) 2. j k l 21 22
12 Hierarkiset faktoriasetelmat (Designs with both nested and factorial factors) Kun osa faktoreista on faktorikokeen mukaisia (ei-hierarkisia) ja osa hierarkisia,sanotaan asetelmaa hierarkiseksi faktoriasetelmaksi (nestedfactorial design). Esimerkki 9.5: Piirilevylle aseteltavien elektronisten komponenttien käsinladontaprosessia halutaan parantaa. Vaihtoehtoina on kaksi erilaista kokoamislinjaa ja kolme erilaista kokoamiseen tarvittavaa laitteistoa. Käytännön syistä (tutantolinjat eri tehdasrakennuksissa) valitaan satunnaisesti neljä kokoajaa kumpaankin tuotantolinjaan,(eli yhteensä kahdeksan). Kuitenkin esimerkiksi tuotantolinjalle 1 valitut työntekijät kokoavat testissä kaikilla laitekokoonpanoilla (satunnaistetussa järjestyksessä)
13 Kokoamiseen menevä aika(y) mitataan sekunteina. Faktorit: A: Laitteisto (1,2,3) B: Kokoamislinja (1,2) C: Kokoaja (1,2,3,4). Toistoja tehdään kaksi (n =2). Tekijä C (kokoajat) on hierarkinen tuotantolinjan (B) suhteen. Tekijät A (laitteisto) ja B (tuotantolinja) eivät ole hierarkinen minkään faktorin suhteen,suhteen,sillä kaikkia laitekokoonpanoja testataan molemmilla linjoilla ja kaikki kokoajat operoivat jokaisella laitteella. Havaintoainisto: =============================================== layout/ tuotantolinja (B) Linja 1 Linja 2 Operator/ kokoaja (C) fixture/ laitteisto (A) Laitteisto Laitteisto Laitteisto =============================================== 25 26
14 Tilastollinen malli: (36) y ijkl = μ + τ i + β j + γ k(j) +(τβ) ij +(τγ) ik(j) + ε (ijk)l, jossa τ i on tekijän A (laitteisto) vaikutus (i =1, 2, 3), β j on tekijän B (tuotantolinja) vaikutus (j =1, 2), γ k(j) tekijän C (kokoaja) vaikutus tekijän B (tuotantolinja) tasolla j, (τβ) ij on ei-hierarkisten tekijöiden A ja B yhdysvaikutus ja (τγ) ik(j) on AC (kokoaja laitteisto) yhdysvaikutus,tekijän B (tuotantolinja) tasolla j. SAS-toteutus: options ls = 80; Title "Esimerkki 9.5: Hierarkinen kolmen faktorin sekamalli"; data example95; input layout fixture operator datalines; ; run; proc glm data = example95; Title2 "Piirilevyn valmistusmenetlmat"; class layout fixture operator; model time = layout fixture operator(layout) layout*fixture fixture*operator(layout); random operator(layout) fixture*operator(layout) / test; run; quit; 27 28
15 Dependent Variable: time Source DF Type III SS Mean Square F Value Pr > F layout Error Error: MS(operator(layout)) Source DF Type III SS Mean Square F Value Pr > F fixture operator(layout) layout*fixture Error Error: MS(fixtu*operat(layout)) Source DF Type III SS Mean Square F Value Pr > F fixtu*oper(layout) Error: MS(Error) Tuotantolinjalla (layout) ei ole vaikutusta eikä kokoajalla (operator). Sen sijaan laitteistolla (fixture) ja laitteiston ja kokoajan yhdysvaikutus tuotantolinjan sisällä on tilastollisesti merkitsevä vaikutus. Täten eri laitteistot näyttävät vaikuttavan eri tavoin kokoajien suoriutumiseen tehtävästä. 9.2 Osapalsta-asetelma (The Split-Plot Design) Joissakin useamman tekijän asetelmissa (useampisuuntaisessa varianssianalyysissa) ei ole mahdollista satunnaistaa toistoja täydellisesti. Esimerkki 9.6: Tutkitaan sellun valmistusprosessin vaikutusta paperin vetolujuuteen (y). Koetta varten päätetään valmistaa sellua kolmella eri menetelmällä (puun määrä seoksessa,faktori A) neljässä eri keittolämpötilassa (faktori B): ( o C) 90,110,130 ja 150. Kysymyksessä on siis 3 4 kahden tekijän koeasetelma (kaksisuuntainen varianssianalyysi),jossa on 12 käsittelykombinaatiota. Tarkastelemalla yksittäisiä keskiarvoja,saadaan selville koonpano,jolla suoriutumisaika on lyhin
16 Toistoja tehdään kolme per käsittelykombinaatio. Päivässä ehditään tehdä 12 koetta. Niinpä päätetään toteuttaa yksi täysi koe jokaisena seuraavana kolmena päivänä. Päivät muodostavat täten periaatteessa lohkotekijän (toistot eivät ole satunnaistettavissa päivien yli). Kunakin päivänä koe toteutetaan seuraavasti: Tehdään ensin erä selluraaka-ainetta tietyllä mentelmällä (järjestys päivän sisällä voidaan satunnaistaa),jaetaan erä neljään osaan ja keitetään niistä lopulliset selluerät eri lämpötilassa. Näin saadaan kunakin päivänä 12 selluerää,yksi kullakin valmistustavalla (menetelmä/lämpötila)
17 Tilanne näyttää lohkokeelta,jossa päivät muodostavat lohkon. Kuitenkin päivän sisällä ei tapahdu täydellistä satunnaistamista,sillä käytännön syistä valmistetaan kerrallaan yhdellä valmistusmenetelmällä erä,jaetaan se neljään osaan yksi kutakin lämpötilavaihtoehtoa varten. Täydellinen satunnaistaminen vaatisi satunnaistamisen valmistusmentelmä-lämpötila kombinaatioiden eli kaikkien 12:n käsittely-yhdistelmän yli,mikä käytännön toteutuksena olisi liian hankala. Data: ============================================================== Toisto 1 Toisto 2 Toisto 3 (lohko) (lohko) (lohko) Valmistusmenetelma (A) Lampotila (Factor B) ============================================================== Tällä tavoin toteutettu koe on esimerkki ns. osapalsta (split-plot) asetelmasta,jossa jokainen lohko (päivä) jaetaan kolmeen osaan (pääpalstaan,main plots),jotka muodostuvat valmistusmenetelmistä ja joiden toteutusjärjestys voidaan satunnaistaa. Pääpalstan mukaisia käsittelyjä sanotaan pääkäsittelyiksi (main plots,main treatments)
18 Jokainen pääpalsta (main plot) jaetaan osapalstaan (subplot,split-plot). Yllä nämä muodostuvat lämpötiloista (voidaan myös toteuttaa satunnaisessa järjestyksessä). Näitä vastaavia käsittelyjä sanotaan alikäsittelyiksi (subplot treatments). Split-lot asetelman tilastollinen malli: (37) y ijk = μ + τ i + β j +(τβ) ij + γ k +(τγ) ik +(βγ) jk +(τβγ) ijk + ε ijk i =1,...,r, j =1,...,a, k =1,...,b,jossa τ i, β j ja (τβ) ij liittyvät pääpalstaan (main plot), edustaen lohkovaikutusta τ i,pääkäsittelyn A vaikutusta β j ja koko palstan virhetermiin (τβ) ij (whole plot error) (= lohko A). γ k,(τγ) ik,(βγ) jk ja (τβγ) ijk liittyvät alipalstaan (subplot); alipalstan käsittelyn B (subplot treatment) vaikutus γ k,lohko B vaikutus (τγ) ik, AB yhdysvaikus (βγ) jk ja alipalstan virhetermi (lohko AB) (τβγ) ijk
19 Huom 9.5: Split-plot asetelmassa perusajatuksena on, että varsinaisilla faktoreilla ja lohko tekijällä ei ole yhdysvaikutusta. Täten niihin liittyvä vaihtely on virhevaihtelua,jota voidaan käyttää varsinaisten faktoreiden vaikutustan F -testeissä. Koeasetelman neliösummat lasketaan samalla tavalla kuin kolmisuuntaisessa (kolmen tekijän) varianssianalyysissa,jossa on vain yksi toisto (täten virhevarianssi ei ole estimoitavissa). Esimerkki 9.7: Paperikuidun vetolujuuden SAS-toteutus: data example96; * input R A B label R = "Replicate (toisto), Block factor" A = "Pulp preparation method (valmistusmenetelma)" B = "Temperateure (lampotila)"; do B = 90 to 150 by 20; do R = 1 to 3; do A = 1 to 3; input output; end; end; end; datalines; ; run; 37 38
20 proc glm data = example96; Title2 "Pulp tensile"; class R A B; model y = R A R*A B R*B A*B R*A*B /ss3; Random R; test h = A e = R*A; test h = B e = R*B; test h = A*B e = R*A*B; run; quit; Split-Plot example Pulp tensile The GLM Procedure Class Level Information Class Levels Values R A B Number of Observations Read 36 Number of Observations Used 36 Dependent Variable: y Sum of Source DF Squares Mean Square F Value Pr > F Model Error Total R-Square Coeff Var Root MSE y Mean Source DF Type III SS Mean Square F Value Pr > F R A R*A B R*B A*B R*A*B
21 Source R A R*A B R*B A*B R*A*B Type III Expected Mean Square Var(Error) + 12 Var(R) + Q(R*A,R*B,R*A*B) Var(Error) + Q(A,R*A,A*B,R*A*B) Var(Error) + Q(R*A,R*A*B) Var(Error) + Q(B,R*B,A*B,R*A*B) Var(Error) + Q(R*B,R*A*B) Var(Error) + Q(A*B,R*A*B) Var(Error) + Q(R*A*B) Tests of Hypotheses Using the Type III MS for R*A as an Error Term Source DF Type III SS Mean Square F Value Pr > F A Tests of Hypotheses Using the Type III MS for R*B as an Error Term Source DF Type III SS Mean Square F Value Pr > F B Tests of Hypotheses Using the Type III MS for R*A*B as an Error Term Source DF Type III SS Mean Square F Value Pr > F A*B Havaitaan,että vetolujuuteen vaikuttaa ensisijaisesti lämpötila (faktori B). Myös valmistusmenetelmä (faktori A) on 5 prosentin tasolla tilastollisesti merkitsevä (kuitenkin rajalla),samoin yhdysvaikutus (AB) on rajalla. Lämpötilaluokissa laskettujen keskiarvojen perusteella vetolujuus näyttää kasvavan paperissa sen mukaan mitä korkeammassa läpötilassa sellu on keitetty
9.1 Hierarkiset asetelmat (Nested Designs)
9. Muita koeasetelmia 9.1 Hierarkiset asetelmat (Nested Designs) Tietyissä koetilanteissa yhden faktorin tasot ovat samanlaisia joskaan ei täysin identtisiä toisen faktorin eri tasoilla. Tällaista asetelmaa
Lisätiedot9. Muita koeasetelmia. Kaksitasoiset hierarkiset asetelmat (Two-Stage Nested Designs) 9.1 Hierarkiset asetelmat (Nested Designs)
9. Muita koeasetelmia 9.1 Hierarkiset asetelmat (Nested Designs) Tietyissä koetilanteissa yhden faktorin tasot ovat samanlaisia joskaan ei täysin identtisiä toisen faktorin eri tasoilla. Tällaista asetelmaa
Lisätiedot7. Lohkominen ja sulautus 2 k kokeissa. Lohkominen (Blocking)
7. Lohkominen ja sulautus 2 k kokeissa Lohkominen (Blocking) Lohkotekijät muodostuvat faktoreista, joiden suhteen ei voida tehdä (täydellistä) satunnaistamista. Esimerkiksi faktorikokeessa raaka-aine-erät
LisätiedotFaktorikokeilla tarkoitetaan koesuunnitelmaa, jossa koe toistetaan kaikilla faktoreiden tasojen kombninaatioilla.
5. Johdatus faktorikokeisiin 5.1 Taustaa Faktorikokeilla tarkoitetaan koesuunnitelmaa, jossa koe toistetaan kaikilla faktoreiden tasojen kombninaatioilla. Täten, jos faktorilla A on a tasoa ja faktorilla
LisätiedotLohkotekijät muodostuvat faktoreista, joiden suhteen ei voida tehdä (täydellistä) satunnaistamista.
7. Lohkominen ja sulautus 2 k kokeissa Lohkominen (Blocking) Lohkotekijät muodostuvat faktoreista, joiden suhteen ei voida tehdä (täydellistä) satunnaistamista. Esimerkiksi faktorikokeessa raaka-aine-erät
Lisätiedotproc glm data = ex61; Title2 "Aliasing Structure of the 2_IV^(5-1) design"; model y = A B C D E /Aliasing; run; quit;
Title "Exercises 6"; Data ex61; input A B C D E y @@; Label A = "Furnance Temperature" B = "Heating Time" C = "Transfer Time" D = "Hold Down Time" E = "Quench of Oil Temperature" y = "Free Height of Leaf
Lisätiedot7. Lohkominen ja sulautus 2 k kokeissa. Lohkominen (Blocking)
7. Lohkominen ja sulautus 2 k kokeissa Lohkominen (Blocking) Lohkotekijät muodostuvat faktoreista, joiden suhteen ei voida tehdä (täydellistä) satunnaistamista. Esimerkiksi faktorikokeessa raaka-aine-erät
Lisätiedot5. Johdatus faktorikokeisiin. Tekijän omaa vaikutusta vastemuuttujaan sanotaan. 5.1 Taustaa
5. Johdatus faktorikokeisiin 5.1 Taustaa Faktorikokeilla tarkoitetaan koesuunnitelmaa, jossa koe toistetaan kaikilla faktoreiden tasojen kombninaatioilla. Täten, jos faktorilla A on a tasoa ja faktorilla
Lisätiedot5. Johdatus faktorikokeisiin. Tekijän omaa vaikutusta vastemuuttujaan sanotaan. 5.1 Taustaa
5. Johdatus faktorikokeisiin 5.1 Taustaa Faktorikokeilla tarkoitetaan koesuunnitelmaa, jossa koe toistetaan kaikilla faktoreiden tasojen kombninaatioilla. Täten, jos faktorilla A on a tasoa ja faktorilla
LisätiedotTavoite on eliminoida sen vaikutus koetuloksista. 4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat. Eliminointimenetelmiä:
4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat 4.1 Satunnaistettu lohkokoe (Randomized Block Design) Kiusatekijä (nuisance factor): Kiusatekijä on taustatekijä, joka voi vaikuttaa
Lisätiedot4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat. Kiusatekijä on taustatekijä, joka voi vaikuttaa
4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat 4.1 Satunnaistettu lohkokoe (Randomized Block Design) Kiusatekijä (nuisance factor): Kiusatekijä on taustatekijä, joka voi vaikuttaa
Lisätiedot2 k -faktorikokeet. Vilkkumaa / Kuusinen 1
2 k -faktorikokeet Vilkkumaa / Kuusinen 1 Motivointi 2 k -faktorikoe on k-suuntaisen varianssianalyysin erikoistapaus, jossa kaikilla tekijöillä on vain kaksi tasoa, matala (-) ja korkea (+). 2 k -faktorikoetta
Lisätiedot3. Yhden faktorin kokeet. 3.1 Varianssianalyysi. Yhden faktorin koeasetelma, jossa faktorilla on a tasoa (kokeessa on a käsittelyä).
3. Yhden faktorin kokeet 3.1 Varianssianalyysi Yhden faktorin koeasetelma, jossa faktorilla on a tasoa (kokeessa on a käsittelyä). Esimerkki 3.1: Tutkitaan kankaassa käytettävän synteettisen kuidun vetolujuutta,
Lisätiedot3. Yhden faktorin kokeet. 3.1 Varianssianalyysi. Yhden faktorin koeasetelma, jossa faktorilla on a tasoa (kokeessa on a käsittelyä).
3. Yhden faktorin kokeet 3.1 Varianssianalyysi Yhden faktorin koeasetelma, jossa faktorilla on a tasoa (kokeessa on a käsittelyä). Esimerkki 3.1: Tutkitaan kankaassa käytettävän synteettisen kuidun vetolujuutta,
LisätiedotOsafaktorikokeet. Kurssipalautetta voi antaa Oodissa Kuusinen/Heliövaara 1
Osafaktorikokeet Kurssipalautetta voi antaa Oodissa 27.4.-25.5. Kuusinen/Heliövaara 1 Osafaktorikokeet Kun faktorien määrä 2 k -faktorikokeessa kasvaa, tarvittavien havaintojen määrä voi ylittää kokeen
LisätiedotKaksisuuntainen varianssianalyysi. Heliövaara 1
Kaksisuuntainen varianssianalyysi Heliövaara 1 Kaksi- tai useampisuuntainen varianssianalyysi Kaksi- tai useampisuuntaisessa varianssianalyysissa perusjoukko on jaettu ryhmiin kahden tai useamman tekijän
LisätiedotA250A0050 Ekonometrian perusteet Tentti
A250A0050 Ekonometrian perusteet Tentti 28.9.2016 Tentissä ei saa käyttää laskinta. Tentistä saa max 80 pistettä. Hyväksytysti suoritetusta harjoitustyöstä saa max 20 pistettä. Huom. Merkitse vastauspaperin
LisätiedotVARIANSSIANALYYSI ANALYSIS OF VARIANCE
VARIANSSIANALYYSI ANALYSIS OF VARIANCE 1 Suomalaisten aikuisten pituusjakauma:.8.7.6.5.4.3.2.1 14 15 16 17 18 19 2 21 Jakauma ei ole normaali, sen olettaminen sellaiseksi johtaa virheellisiin päätelmiin.
LisätiedotLähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). tulee katettua (complete replicate). Havaintojen
6. 2 k faktorikokeet Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). Vähintään 2 k havaintoa, jotta kaikki vaihtoehdot tulee katettua (complete replicate). Havaintojen kokonaismäärä N = 2
LisätiedotYhden faktorin koeasetelma, jossa faktorilla on a tasoa (kokeessa on a käsittelyä).
3. Yhden faktorin kokeet 3.1 Varianssianalyysi Yhden faktorin koeasetelma, jossa faktorilla on a tasoa (kokeessa on a käsittelyä). Esimerkki 3.1: Tutkitaan kankaassa käytettävän synteettisen kuidun vetolujuutta,
LisätiedotLohkoasetelmat. Vilkkumaa / Kuusinen 1
Lohkoasetelmat Vilkkumaa / Kuusinen 1 Motivointi 1/3 Kaksisuuntaisella varianssianalyysilla voidaan tutkia kahden tekijän A ja B vaikutusta sekä niiden yhdysvaikutusta tutkimuksen kohteeseen Kaksisuuntaisessa
LisätiedotKaksisuuntainen varianssianalyysi. Vilkkumaa / Kuusinen 1
Kaksisuuntainen varianssianalyysi Vilkkumaa / Kuusinen 1 Motivointi Luennot 6 ja 7: yksisuuntaisella varianssianalyysilla testataan ryhmäkohtaisten odotusarvojen yhtäsuuruutta, kun perusjoukko on jaettu
Lisätiedot6. 2 k faktorikokeet. Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). määrä per faktoritasokombinaatio (balansoidussa)kokeessa.
6. 2 k faktorikokeet Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). Vähintään 2 k havaintoa, jotta kaikki vaihtoehdot tulee katettua (complete replicate). Havaintojen kokonaismäärä N =2
LisätiedotKoesuunnittelu 2 k -faktorikokeet. TKK (c) Ilkka Mellin (2005) 1
Koesuunnittelu 2 k -faktorikokeet TKK (c) Ilkka Mellin (2005) 2 k -faktorikokeet 2 2 -faktorikokeet 2 3 -faktorikokeet 2 k -faktorikokeet TKK (c) Ilkka Mellin (2005) 2 2 k -faktorikokeet: Mitä opimme?
LisätiedotKaksisuuntaisen varianssianalyysin tilastollisessa malli voidaan esittää seuraavassa muodossa:
Mat-.03 Koesuunnittelu ja tilastolliset mallit Mat-.03 Koesuunnittelu ja tilastolliset mallit / Ratkaisut Aiheet: Avainsanat: Kaksisuuntainen varianssianalsi Aritmeettinen keskiarvo, Estimointi, F-testi,
LisätiedotAltistusaika 1 kk 2 kk 3 kk 1.35 1.53 1.38 1.35 1.63 1.51 1.60 1.40 2.18 1.77 1.66 1.98 1.73 1.76 1.60 1.72
Mat-.03 Koesuunnittelu ja tilastolliset mallit Mat-.03 Koesuunnittelu ja tilastolliset mallit / Ratkaisut iheet: vainsanat: Kaksisuuntainen varianssianalsi Lohkoasetelmat Latinalaiset neliöt ritmeettinen
LisätiedotLohkoasetelmat. Heliövaara 1
Lohkoasetelmat Heliövaara 1 Kiusatekijä Kaikissa kokeissa, kokeen tuloksiin voi vaikuttaa vaihtelu joka johtuu kiusatekijästä. Kiusatekijä on tekijä, jolla mahdollisesti on vaikutusta vastemuuttujan arvoon,
LisätiedotHierarkkiset koeasetelmat. Heliövaara 1
Hierarkkiset koeasetelmat Heliövaara 1 Hierarkkiset koeasetelmat Kaksiasteista hierarkkista koeasetelmaa käytetään tarkasteltaessa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan kahden tekijän
LisätiedotLatinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt
TKK (c) Ilkka Mellin (005) Koesuunnittelu TKK (c) Ilkka Mellin (005) : Mitä opimme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan yhden tekijän vaikutusta vastemuuttujaan,
Lisätiedot8. Osittaiset 2 k faktorikokeet. Niinpä, jos voidaan olettaa, että korekeamman
8. Osittaiset 2 k faktorikokeet Faktoreiden lukumäärän k kasvaessa 2 k koeasetelmassa kasvaa koetoistojen (runs) määrää nopeasti täydessä toteutuksessa (complete replicate). Esimerkiksi 2 6 asetelman täysi
Lisätiedot4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat. Tavoite on eliminoida sen vaikutus koetuloksista. Eliminointimenetelmiä:
4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat Tavoite on eliminoida sen vaikutus koetuloksista. 4.1 Satunnaistettu lohkokoe (Randomized Block Design) Kiusatekijä (nuisance factor):
LisätiedotTestaa onko myrkkypitoisuus eri ryhmissä sama. RATK. Lasketaan kaikkien havaintoarvojen summa: k T i = = 486.
Mat-.103 Koesuunnittelu ja tilastolliset mallit Harjoitus 8, kevät 004 Esimerkkiratkaisut. 1. Myrkyllistä ainetta oli kaadettu jokeen, joka johtaa suurelle kalastusalueelle. Tie- ja vesirakennusinsinöörit
Lisätiedotxi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n =
1. Tutkitaan paperin ominaispainon X(kg/dm 3 ) ja puhkaisulujuuden Y (m 2 ) välistä korrelaatiota. Tiettyä laatua olevasta paperierästä on otettu satunnaisesti 10 arkkia ja määritetty jokaisesta arkista
LisätiedotOsafaktorikokeet. Heliövaara 1
Osafaktorikokeet Heliövaara 1 Osafaktorikokeet Kun faktorien määrä 2 k -faktorikokeessa kasvaa, tarvittavien havaintojen määrä voi ylittää kokeentekijän resurssit. Myös estimoitavien korkean asteen yhdysvaikutustermien
LisätiedotVastepintamenetelmä. Heliövaara 1
Vastepintamenetelmä Kurssipalautteen antamisesta saa hyvityksenä yhden tenttipisteen. Palautelomakkeeseen tulee lähiaikoina linkki kurssin kotisivuille. Heliövaara 1 Vastepintamenetelmä Vastepintamenetelmässä
Lisätiedot2. Keskiarvojen vartailua
2. Keskiarvojen vartailua Esimerkki 2.1: Oheiset mittaukset liittyvät Portland Sementin sidoslujuuteen (kgf/cm 2 ). Mittaukset y 1 ovat nykyisestä seoksesta ja mittaukset y 2 uudesta seoksesta, jossa lisäaineena
LisätiedotPerusnäkymä yksisuuntaiseen ANOVAaan
Metsämuuronen 2006. TTP Tutkimuksen tekemisen perusteet ihmistieteissä Taulukko.51.1 Analyysiin mukaan tulevat muuttujat Mja selite Merkitys mallissa F1 Ensimmäinen faktoripistemuuttuja Selitettävä muuttuja
LisätiedotToimittaja 1 2 3 Erä 1 2 3 4 1 2 3 4 1 2 3 4 1 2 2 1 1 0 1 0 2 2 1 3 1 3 0 4 2 4 0 3 4 0 1 2 0 4 1 0 3 2 2 2 0 2 2 1
Mat-.03 Koesuunnittelu ja tilastolliset mallit / Ratkaisut Aiheet: Avainsanat: Hierarkkiset koeasetelmat -faktorikokeet Vastepintamenetelmä Aritmeettinen keskiarvo, Estimaatti, Estimaattori, -testi, aktorikokeet,
LisätiedotUseampisuuntainen varianssianalyysi. Useampisuuntainen varianssianalyysi. Useampisuuntainen varianssianalyysi
(c) lkka Mellin (005) Useampisuuntainen varianssianalsi ohdatus tilastotieteeseen Useampisuuntainen varianssianalsi (c) lkka Mellin (005) Useampisuuntainen varianssianalsi: Mitä opimme? arkastelemme tässä
LisätiedotLohkoasetelmat. Kuusinen/Heliövaara 1
Lohkoasetelmat Kuusinen/Heliövaara 1 Kiusatekijä Kaikissa kokeissa kokeen tuloksiin voi vaikuttaa vaihtelu, joka johtuu kiusatekijästä. Kiusatekijä on tekijä, jolla on mahdollisesti vaikutusta vastemuuttujan
LisätiedotYksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1
Yksisuuntainen varianssianalyysi (jatkoa) Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään tiedetään, että ainakin kaksi
Lisätiedot6. 2 k faktorikokeet. Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). määrä per faktoritasokombinaatio (balansoidussa)kokeessa.
6. 2 k faktorikokeet Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). Vähintään 2 k havaintoa, jotta kaikki vaihtoehdot tulee katettua (complete replicate). Havaintojen kokonaismäärä N =2
LisätiedotTilastollisten menetelmien käyttö Kelan tutkimustoiminnassa
Tilastollisten menetelmien käyttö Kelan tutkimustoiminnassa Risto Lehtonen Helsingin yliopisto Kela 1 Tilastokeskuksen SAS-seminaari 16.11.2009 Aiheita Kelan tutkimustoiminta SAS-sovellukset vaativien
Lisätiedot1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT
Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yksisuuntainen varianssianalyysi Bartlettin testi, Bonferronin menetelmä, F-testi, Jäännösneliösumma, χ 2 -testi, Kokonaiskeskiarvo,
Lisätiedot1. KAKSISUUNTAINEN VARIANSSIANALYYSI: TULOSTEN TULKINTA
Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Kaksisuuntainen varianssianalyysi Bonferronin menetelmä, F-testi, Jäännösneliösumma, Kaksisuuntainen varianssianalyysi Kokonaiskeskiarvo,
LisätiedotVastepintamenetelmä. Kuusinen/Heliövaara 1
Vastepintamenetelmä Kuusinen/Heliövaara 1 Vastepintamenetelmä Vastepintamenetelmässä pyritään vasteen riippuvuutta siihen vaikuttavista tekijöistä approksimoimaan tekijöiden polynomimuotoisella funktiolla,
LisätiedotOHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3
OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 3 Tutkimussuunnitelman rakenne-ehdotus Otsikko 1. Motivaatio/tausta 2. Tutkimusaihe/ -tavoitteet ja kysymykset
LisätiedotKeskipisteen lisääminen 2 k -faktorikokeeseen (ks. Montgomery 9-6)
Mat-.3 Koesuunnittelu ja tilastolliset mallit kevät Keskipisteen lisääminen k -faktorikokeeseen (ks. Montgomery 9-6) Esim (Montg. ex. 9-, 6-): Tutkitaan kemiallisen prosessin saannon Y riippuvuutta faktoreista
LisätiedotRegressioanalyysi. Vilkkumaa / Kuusinen 1
Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen
LisätiedotEsim Brand lkm keskiarvo keskihajonta A ,28 5,977 B ,06 3,866 C ,95 4,501
Esim. 2.1.1. Brand lkm keskiarvo keskihajonta A 10 251,28 5,977 B 10 261,06 3,866 C 10 269,95 4,501 y = 260, 76, n = 30 SS 1 = (n 1 1)s 2 1 = (10 1)5, 977 2 321, 52 SS 2 = (n 2 1)s 2 2 = (10 1)3, 8662
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan
LisätiedotYksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1
Yksisuuntainen varianssianalyysi (jatkoa) Kuusinen/Heliövaara 1 Odotusarvoparien vertailu Jos yksisuuntaisen varianssianalyysin nollahypoteesi H 0 : µ 1 = µ 2 = = µ k = µ hylätään, tiedetään, että ainakin
LisätiedotVäliestimointi (jatkoa) Heliövaara 1
Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).
Lisätiedot[MTTTA] TILASTOMENETELMIEN PERUSTEET, KEVÄT 209 https://coursepages.uta.fi/mttta/kevat-209/ HARJOITUS 5 viikko 8 RYHMÄT: ke 2.5 3.45 ls. C6 Leppälä to 08.30 0.00 ls. C6 Korhonen to 2.5 3.45 ls. C6 Korhonen
LisätiedotResiduaalit. Residuaalit. UK Ger Fra US Austria. Maat
TAMPEREEN YLIOPISTO Tilastollisen mallintamisen harjoitustyö Teemu Kivioja ja Mika Helminen Epätasapainoisen koeasetelman analyysi Worksheet 5 Matematiikan, tilastotieteen ja filosofian laitos Tilastotiede
LisätiedotSovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin
LisätiedotJos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden
1.12.2006 1. Satunnaisjakauman tiheysfunktio on Ü µ Üe Ü, kun Ü ja kun Ü. Määritä parametrin estimaattori momenttimenetelmällä ja suurimman uskottavuuden menetelmällä. Ratkaisu: Jotta kyseessä todella
LisätiedotKoesuunnittelu ja tilastolliset mallit Johdanto. TKK (c) Ilkka Mellin (2005) 1
Koesuunnittelu ja tilastolliset mallit Johdanto TKK (c) Ilkka Mellin (2005) 1 Koesuunnittelu: Johdanto Johdattelevia esimerkkejä Tilastolliset kokeet TKK (c) Ilkka Mellin (2005) 2 Koesuunnittelu: Johdanto
LisätiedotOdotusarvoparien vertailu. Vilkkumaa / Kuusinen 1
Odotusarvoparien vertailu Vilkkumaa / Kuusinen 1 Motivointi Viime luennolta: yksisuuntaisella varianssianalyysilla testataan nollahypoteesia H 0 : μ 1 = μ 2 = = μ k = μ Jos H 0 hylätään, tiedetään, että
LisätiedotKertausluento. Vilkkumaa / Kuusinen 1
Kertausluento Vilkkumaa / Kuusinen 1 Kokeellinen tutkimus Kokeellisessa tutkimuksessa on tavoitteena selvittää, miten erilaiset käsittelyt vaikuttavat tutkimuksen kohteisiin - Esim. miten lämpötila ja
Lisätiedot54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös):
Tilastollinen tietojenkäsittely / SPSS Harjoitus 5 Tarkastellaan ensin aineistoa KUNNAT. Kyseessähän on siis kokonaistutkimusaineisto, joten tilastollisia testejä ja niiden merkitsevyystarkasteluja ei
LisätiedotMat Tilastollisen analyysin perusteet, kevät 2007
Mat-.04 Tilastollisen analsin perusteet, kevät 007. luento: Kaksisuuntainen varianssianalsi Kai Virtanen Kaksisuuntaisen varianssianalsin perusasetelma Jaetaan perusjoukko rhmiin kahden tekän A ja B suhteen
LisätiedotOngelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta?
Yhden otoksen suhteellisen osuuden testaus Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Hypoteesit H 0 : p = p 0 H 1 : p p 0 tai H 1 : p > p 0 tai H 1 : p < p 0 Suhteellinen osuus
LisätiedotVastepintamenetelmä. Vilkkumaa / Kuusinen 1
Vastepintamenetelmä Vilkkumaa / Kuusinen 1 Motivointi Varianssianalyysissa tutkitaan tekijöiden vaikutusta vasteeseen siten, että tekijöiden tasot on ennalta valittu. - Esim. tutkitaan kemiallisen prosessin
Lisätiedot806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.
806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ
Lisätiedotvoidaan hylätä, pienempi vai suurempi kuin 1 %?
[TILTP1] TILASTOTIETEEN JOHDANTOKURSSI, Syksy 2011 http://www.uta.fi/~strale/tiltp1/index.html 30.9.2011 klo 13:07:54 HARJOITUS 5 viikko 41 Ryhmät ke 08.30 10.00 ls. C8 Leppälä to 12.15 13.45 ls. A2a Laine
Lisätiedotvoidaan hylätä, pienempi vai suurempi kuin 1 %?
[MTTTP1] TILASTOTIETEEN JOHDANTOKURSSI, Syksy 2017 http://www.uta.fi/sis/mtt/mtttp1/syksy_2017.html HARJOITUS 5 viikko 42 6.10.2017 klo 10:42:20 Ryhmät: ke 08.30 10.00 LS C6 Paajanen ke 10.15 11.45 LS
LisätiedotOpetus talteen ja jakoon oppilaille. Kokemuksia Aurajoen lukion tuotantoluokan toiminnasta Anna Saivosalmi 9.9.2011
Opetus talteen ja jakoon oppilaille Kokemuksia Aurajoen lukion tuotantoluokan toiminnasta Anna Saivosalmi 9.9.2011 Aurajoen lukio ISOverstaan jäsen syksystä 2010 lähtien ISOverstas on maksullinen verkko-oppimisen
Lisätiedot1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA
Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Päättely yhden selittäjän lineaarisesta regressiomallista Ennustaminen, Ennuste, Ennusteen luottamusväli, Estimaatti, Estimaattori,
LisätiedotJohdatus varianssianalyysiin. Vilkkumaa / Kuusinen 1
Johdatus varianssianalyysiin Vilkkumaa / Kuusinen 1 Motivointi Luento 4: kahden riippumattoman otoksen odotusarvoja voidaan vertailla t-testillä H 0 : μ 1 = μ 2, T = ˉX 1 ˉX 2 s 2 1 + s2 2 n 1 n 2 a t(min[(n
LisätiedotTutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen)
1 MTTTP3 Luento 29.1.2015 Luku 6 Hypoteesien testaus Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? H 0 : µ = µ 0 H 1 : µ < µ 0 Nollahypoteesi Vaihtoehtoinen hypoteesi
LisätiedotOtanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 3: Frekvenssiaineistojen asetelmaperusteinen analyysi: Perusteita
Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 3: Frekvenssiaineistojen asetelmaperusteinen analyysi: Perusteita risto.lehtonen@helsinki.fi OHC Survey Tilastollinen analyysi Kysymys: Millä
LisätiedotKoesuunnittelu Latinalaiset neliöt. TKK (c) Ilkka Mellin (2005) 1
Koesuunnittelu Latinalaiset neliöt TKK (c) Ilkka Mellin (2005) 1 Latinalaiset neliöt Latinalaisten neliöiden koeasetelma ja sen malli Latinalaisten neliöiden koeasetelman analysointi Laskutoimitusten suorittaminen
LisätiedotMS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)
MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2017 Käytännön järjestelyt Luennot: Luennot maanantaisin (sali E) ja keskiviikkoisin (sali U4) klo 10-12 Luennoitsija: (lauri.viitasaari@aalto.fi)
LisätiedotMatriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi
Matriisit, L20 Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ) ( 0, 4 ), ( ) ( 1 4 2, a 11 a 12 a 21 a 22 ) Merkintöjä 1 Matriisi on suorakulmainen lukukaavio.
LisätiedotTilastollisen analyysin perusteet Luento 4: Testi suhteelliselle osuudelle
Tilastollisen analyysin perusteet Luento 4: Sisältö Testiä suhteelliselle voidaan käyttää esimerkiksi tilanteessa, jossa tarkastellaan viallisten tuotteiden osuutta tuotantoprosessissa. Tilanne palautuu
LisätiedotMS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)
MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2017 Todennäköisyyslaskennan kertaus Satunnaismuuttujat ja tn-jakaumat Tunnusluvut χ 2 -, F- ja t-jakauma Riippumattomuus Tilastotieteen
Lisätiedot3. Useamman selittäajäan regressiomalli. p-selittäaväaäa muuttujaa. Y i = + 1 X i1 +...+ p X ip + u i
3. Useamman selittäajäan regressiomalli p-selittäaväaäa muuttujaa Y i = + 1 X i1 +...+ p X ip + u i i = 1,...,n (> p), missäa n = havaintojen lukumäaäaräa otoksessa. Oletukset kuten aiemmin: (1) E(u i
Lisätiedot2 2 -faktorikokeen määritelmä
TKK (c) Ilkka Mellin (005) Koesuunnittelu TKK (c) Ilkka Mellin (005) : Mitä opimme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan kahden tai useamman tekijän vaikutusta
LisätiedotJakaumien merkitys biologisissa havaintoaineistoissa: Löytyykö ratkaisu Yleistetyistä Lineaarisista (Seka)Malleista?
1 Hydrobiologian tutkijaseminaari 20.3.2000 Jakaumien merkitys biologisissa havaintoaineistoissa: Löytyykö ratkaisu Yleistetyistä Lineaarisista (Seka)Malleista? Jari Hänninen Turun yliopisto Saaristomeren
LisätiedotHarjoitus 7: NCSS - Tilastollinen analyysi
Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen
LisätiedotMTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu
5.3.2018/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 5.3.2018, osa 1 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2017
LisätiedotOletetaan, että virhetermit eivät korreloi toistensa eikä faktorin f kanssa. Toisin sanoen
Yhden faktorin malli: n kpl sijoituskohteita, joiden tuotot ovat r i, i =, 2,..., n. Olkoon f satunnaismuuttuja ja oletetaan, että tuotot voidaan selittää yhtälön r i = a i + b i f + e i avulla, missä
LisätiedotTilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä
Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi Esimerkit laskettu JMP:llä Antti Hyttinen Tampereen teknillinen yliopisto 29.12.2003 ii Ohjelmien
LisätiedotMatriisit, L20. Laskutoimitukset. Matriisikaavoja. Aiheet. Määritelmiä ja merkintöjä. Laskutoimitukset. Matriisikaavoja. Matriisin transpoosi
Matriisit, L20 Merkintöjä 1 Matriisi on suorakulmainen lukukaavio. Matriiseja ovat esimerkiksi: ( 2 0.4 8 0 2 1 ( 0, 4, ( ( 1 4 2, a 11 a 12 a 21 a 22 Kaavio kirjoitetaan kaarisulkujen väliin (amer. kirjoissa
LisätiedotOtanta-aineistojen analyysi
Helsingin yliopisto Otanta-aineistojen analyysi Kevät 2010 Periodi III Risto Lehtonen Teema 2 Estimaattoreiden varianssien estimointi Survey-analyysin lähestymistavat Kuvaileva survey Descriptive survey
Lisätiedotnopeasti täydessä toteutuksessa (complete replicate).
8. Osittaiset 2 k faktorikokeet Faktoreiden lukumäärän k kasvaessa 2 k koeasetelmassa kasvaa koetoistojen (runs) määrää nopeasti täydessä toteutuksessa (complete replicate). Esimerkiksi 2 6 asetelman täysi
LisätiedotABHELSINKI UNIVERSITY OF TECHNOLOGY
Johdatus regressioanalyysiin Regressioanalyysin idea Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun selittävien muuttujien havaittujen arvojen vaihtelun avulla.
LisätiedotEstimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio
17.11.2015/1 MTTTP5, luento 17.11.2015 Luku 5 Parametrien estimointi 5.1 Piste-estimointi Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla
LisätiedotMat Tilastollisen analyysin perusteet, kevät 2007
Mat-.104 Tilastollisen analyysin perusteet, kevät 007 8. luento: Usean selittäjän lineaarinen regressiomalli Kai Virtanen 1 Usean selittäjän lineaarinen regressiomalli Selitettävän muuttujan havaittujen
Lisätiedot1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi
Mat-2.2104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yhteensopivuuden ja homogeenisuden testaaminen Bowmanin ja Shentonin testi, Hypoteesi, 2 -homogeenisuustesti, 2 -yhteensopivuustesti,
LisätiedotRegressioanalyysi. Kuusinen/Heliövaara 1
Regressioanalyysi Kuusinen/Heliövaara 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun joidenkin
LisätiedotTilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003
Nimi Opiskelijanumero Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003 Normaalisti jakautuneiden yhdistyksessä on useita tuhansia jäseniä. Yhdistyksen sääntöjen mukaan sääntöihin tehtävää muutosta
LisätiedotTilastollisten menetelmien perusteet II TILTP3 Luentorunko
Tilastollisten menetelmien perusteet II TILTP3 Luentorunko Raija Leppälä 29. helmikuuta 2012 Sisältö 1 Johdanto 2 1.1 Jatkuvista jakaumista 2 1.1.1 Normaalijakauma 2 1.1.2 Studentin t-jakauma 3 1.2 Satunnaisotos,
LisätiedotSisällysluettelo 6 VARIANSSIANALYYSI. Metsämuuronen: Monimuuttujamenetelmien perusteet SPSS-ympäristössä ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON...
Sisällysluettelo ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON...5 SISÄLLYSLUETTELO... 6 LYHYT SANASTO VASTA-ALKAJILLE... 7 1. MONIMUUTTUJAMENETELMÄT IHMISTIETEISSÄ... 9 1.1 MONIMUUTTUJA-AINEISTON ERITYISPIIRTEITÄ...
LisätiedotTestit laatueroasteikollisille muuttujille
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten
LisätiedotTerra Preta kasvatuskoe Pilkon pellolla 2012-2013
Terra Preta kasvatuskoe Pilkon pellolla 2012-2013 Karelia ammattikorkeakoulu Biotalouden keskus Simo Paukkunen Lokakuu 2013 Sisällys 1 Johdanto... 1 2 Aineisto ja menetelmät... 1 3 Tulokset... 6 3.1 Oraiden
LisätiedotMS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op)
MS-C2103 Koesuunnittelu ja tilastolliset mallit (5 op) Aalto-yliopisto 2016 Käytannön järjestelyt Luennot: Luennot ma 4.1. (sali E) ja ti 5.1 klo 10-12 (sali C) Luennot 11.1.-10.2. ke 10-12 ja ma 10-12
LisätiedotEstimointi. Luottamusvälin laskeminen keskiarvolle α/2 α/2 0.1
Estimointi - tehdään päätelmiä perusjoukon ominaisuuksista (keskiarvo, riskisuhde jne.) otoksen perusteella - mitä suurempi otos, sitä tarkemmat estimaatit Otokseen perustuen määritellään otantajakaumalta
Lisätiedot