8. Osittaiset 2 k faktorikokeet. Niinpä, jos voidaan olettaa, että korekeamman

Koko: px
Aloita esitys sivulta:

Download "8. Osittaiset 2 k faktorikokeet. Niinpä, jos voidaan olettaa, että korekeamman"

Transkriptio

1 8. Osittaiset 2 k faktorikokeet Faktoreiden lukumäärän k kasvaessa 2 k koeasetelmassa kasvaa koetoistojen (runs) määrää nopeasti täydessä toteutuksessa (complete replicate). Esimerkiksi 2 6 asetelman täysi toteutus vaatii 64koetoistoa. Vapausasteita on kaikkiaan 63, joista vain 6 tarvitaan päävaikutusten estimointiin ja 15 toisen asteen yhdysvaikutusten estimoimiseksi. Niinpä, jos voidaan olettaa, että korekeamman asteen tekijät ovat käytännön kannalta merkityksettömiä, voidaan alemman asteen vaikutukset estimoida toteuttamalla vain osa täyden asetelman vaihtoehdoista. Tällaista koeasetelmaa sanotaan osittaiseksi faktorikokeeksi (fractional factorial design). Käyttökelpoinen etenkin, kun etsitään merkittäviä faktoreita suuresta määrästä potentiaalisia faktoreita. Loput 42 kuluvat kolmannen ja sitä korkeamman asteen yhdysvaikutusten estimointiin. 1 2 Osittaisten faktorikokeiden käyttökelpoisuus nojautuu kolmeen periaatteeseen: (1) The sparsity of effects principle (Vaikutustekijöiden vähälukuisuus): Ainoastaan päävaikutukset ja alhaisen asteen yhdysvaikutukset vaikuttavat koetulokseen. (2) The projection property (Projisointiominaisuus): Identifioimalla osittaiskokeiden avulla merkittävät faktorit voidaan niiden suhteen toteuttaa korkeamman asteen yhdysvaikutukset sisältävä koe. 8.1 The one-half fraction of the 2 k design (2 k kokeen puolitettu ositus) Jos 2 k kokeen toistoista voidaan toteuttaa vain puolet, eli 2 k /2=2 k 1, sanotaan asetelmaa 2 k kokeen puolitetuksi osittaiskokeeksi (one-half fraction) tai 2 k 1 asetelmaksi (2 k 1 design). (3) Sequential experimentation (Peräkkäistoteutus) Kahden tai useamman osittaiskokeen toistot (runs) voidaan yhdistää laajemmaksi asetelmaksi, josta saadan estimoitua halutut pää- ja yhdysvaikutukset. Näihin palataan tuonnempana. 3 4

2 Käytännössä puolitettu asetelma toteutetaan siten, että tehdään kokeet, joissa korkeimman asteen yhdysvaikutustekijä on samaa merkkiä. Esimerkki 8.1: 2 3 kokeen puolitettu osakoe 2 3 1, jossa on siis 2 2 =4käsittelykombinaatiota. Vaihtoehtoina on toteuttaa käsittelyt, joissa ABC =+1 tai ABC = 1. Vaihtoehdossa ABC = +1 toteutetaan Itse asiassa estimoitaessa päävaikutuksia A, B ja C, estimoiduksi tuleekin päävaikutusten ja toisen asteen yhdysvaikutusten yhdistetyt tekijät, eli A + BC, B + AC ja C + AB. Tämä on hinta, joka joudutaan osittaiskokeessa maksamaan. Tässä konkretisoituu osittaiskokeen perusoletus: The sparsity of effects principle, joka kokeessa tarkoittaa, että ainoastaan päävaikusten tulisi olla todellisuudessa merkityksellisiä. Vaihtoehto ABC = 1 johtaa käsittelyihin A B C AB AC BC ABC A B C AB AC BC ABC Havaitaan, että AB = C, AC = B ja BC = A, täten kokeessa toisen asteen yhdysvaikutukset sulautuvat päävaikutuksiin, eikä niitä voida erikseen estimoida. Havaitaan: AB = C, AC = B ja BC = A, eli yhdysvaikutukset jälleen sulautuvat päävaikutuksiin ja kun estimoidaan päävaikutukset A, B ja C estimoidaan itse asiassa A BC, B AC ja C AB. 5 6 Huom. 8.1: Tekijää ABC sanotaan kokeen generaattoriksi. Huom. 8.2: Merkitsemällä ABC:n +1 saraketta 1 1 (1) I = 1 1 vektorilla, sanotaan relaatiota (2) I = ABC Huom. 8.3: Relaation (3) I =+ABC määräämää ositusta sanotaan pääositukseksi (principal fraction) ja (4) I = ABC määräämää ositusta sanotaan komplementaariseksi (complementary) ositukseksi koeasetelman määrittäväksi relaatioksi (defining relation). 7 8

3 Asetelman resoluutio (design resolution) Edellä olevan esimerkin asetelmaa sanotaan resoluutio III asetelmaksi (resolution III design). Siinä toisen asteen yhdysvaikutukset sulautuvat päävaikutuksiin (tai päävaikutukset sulautuvat toisen asteen tekijöiden kanssa). Yleisesti sanotaan, että asetelman resoluutio on R, josmikään p:n faktorin vaikutus ei sulaudu sellaisten vaikutusten kanssa, jotka muodostuvat vähemmästä kuin R p faktorista asetelmassa R =3, p =1 ja päävaikutukset sulautuvat R p =3 1 = 2 faktorin muodostamiin (yhdys)vaikutuksiin. I = ABC (tai I = ABC) määräämää asetelmaa sanotaan usein myös III asetelmaksi, joka osoittaa, että kysymyksessä on puolitettu osittaiskoe, jonka resoluutio on III Käytännön sovelluksissa resoluutiot III, ja Vovatkäytettyjä: III resoluution kokeet (Resolution III designs): Päävaikutukset sulautuvat toisen asteen vaikutusten kanssa, mutta eivät muiden päävaikutukten kanssa. Toisen asteen vaikutukset voivat sulautua muihin toisen asteen vaikutuksiin. Tavoitteena on aina korkein mahdollinen resoluutio, jolloin pienin määrä interaktioita sulautuu. resoluution kokeet (Resolution designs): Päävaikutukset eivät sulaudu päävaikutusten kanssa eivätkä toisen asteen vaikutusten kanssa, mutta toisen asteen vaikutukset ovat sulautuneet joidenkin muiden toisen asteen vaikutusten kanssa. Esimerkiksi 2 4 1, asetelma, jossa I = ABCD, onasetelma(2 4 1 ). Resoluution V kokeet (Resolution V designs): Päävaikutukset eivätkä toisen asteen vaikutukset sulaudu muihin pää- tai toisen asteen vaikutuksiin. Toisen asteen vaikutukset ovat sulautuneet kolmannen asteen yhdysvaikutusten kanssa. Esimerkiksi 2 5 1, jossa I = ABCDE on V asetelma

4 Puolittaisen osakokeen asetelman konstruointi 2 k puolittaisen asetelman eli 2 k 1 -asetelman korkeimman resoluution koe saadaan konstruoitua muodostamalla täysi 2 k 1 -kokeen asetelma, siten, että viimeinen faktori K = ABC (K 1). Esimerkki 8.2: asetelma Full 2 3 factorial 2 4 1, I = ABCD Run A B C A B C D = ABC Havaitaan esimerkiksi, että AD = A(ABC) =A 2 BC = BC eli AD sulautuu BC:n kanssa. Huomattavaa kuitenkin on, että valitsemalla mitkä tahansa kolme faktoria, kuten A, C ja D, niin ACD, AC, eikä CD sulaudu mihinkään tekijöiden A, C ja D muodostamiin pää- tai yhdysvaikutuksiin. Toisin sanoen yllä oleva faktorikokeen. asetelma sisältää täyden Huom. 8.4: Mitä tahansa interaktion termiä voidaan käyttää viimeisen (k:nnen) faktorin sarakkeen muodostamiseksi, mutta ainoastaan ABC (K 1) tuottaa korkeimman resoluution mukaisen asetelman. Osittaiskokeen projisointi faktorikokeeksi (Projection property): Jokainen resoluution R osittaiskoe sisältää täyden R 1 faktorin kokeen (ks. Esim. 8.2). Toisin sanoen resoluution R koe projisoituu täydeksi R 1 faktorin kokeeksi. Käyttökelpoinen, jos havaitaan, että viimeisellä faktorilla ei ole vaikutusta vastemuuttujaan. Yleistys: Jokainen 2 k 1 prosjisoituu kahden toiston täydeksi 2 k 2 faktorikokeeksi, neljän toiston täydeksi 2 k 3 faktorikokeeksi, jne

5 Esimerkki 8.3: Suodatusesimerkki (Esim. 6.4). Alkuperäinen asetelma on 2 4, jossa on yksi toisto (replicate) kullakin faktorikombinaatiolla. Päävaikutukset A, C ja D sekä yhdysvaikutukset AC ja AD osoittautuivat nollasta poikkeavikisi. Oletetaan, että olisi toteutettu asetelma, jossa I = ABCD, eli asetelma (resoluution ), jossa toteutettavat käsittelyt ovat kuten Esimerkissä 8.2. Title "Design of Experiments: Example 8.3 2ˆ(4-1) resolution "; data ex83; input A B C D y; datalines; ; Title2 "Regression coefficients for the full model"; proc glm data = ex83; model y = A B C D A*B A*C A*D /ss3; run; proc glm:llä toteutettuna saadaan regressioestimaatit tekijöille A, B, C, D, AB, AC, AD. Todellisuudessa edellä olevat tekijät sisältävät myös sulautunvan termin tekijät, eli A A + BCD, B B + ACD, C C + ACD, D D + ABC, AB AB + DC, AC AC + BD, AD AD + BC Tuloksiksi saadaan: Intercept A [+ BCD] 9.50 B [+ ACD] 0.75 C [+ ABD] 7.00 D [+ ABC] 8.25 AB [+ CD] AC [+ BD] AD [+ BC] 9.50 B:n ja AB:n kertoimet ovat selvästi merkityksettömiä. Pudottamalla ne pois vapautuu kaksi vapausastetta, jolloin voidaan aidosti estimoida jäljellä olevien parametrien merkitsevyyttä. Toteuttamalla proc glm data = ex83; model y = A C D A*C A*D /ss3; run; saadaan The GLM Procedure Dependent Variable: y R-Square Coeff Var Root MSE y Mean Source DF Type III SS Mean Square F Value Pr > F A C D A*C A*D Standard Parameter Estimate Error t Value Pr > t Intercept <.0001 A C D A*C A*D

6 Lopputulos on lähes sama kuin Esimerkissä 6.4. Ero johtuu pääasiassa siitä, että kukin tekijä on sulautuneiden tekijöiden summa. Kuitenkin, koska esimerkiksi B:n päävaikustus on merkityksetön, niin on uskottavaa, että myös korkeamman asteen termit, joissa B on mukana ovat merkityksettöminä, eli A + BCD A, AC + BD AC ja AD + BC AD. Esimerkki 8.4: asetelma piirilevyn tuotannon parantamisessa. Vastemuuttuja: y: piirilevytuotannon tuottavuus (process yield), sopivissa yksiköissä mitattuna. Faktorit: A: Apperture setting (small, large) B: Exposure time (20 percent below nominal, 20 percent above nominal) C: Develop time (30s, 40s) D: Mask dimension (small, large) E: Etch time (14.5 min, 15.5 min) Generaattorin I = ABCDE mukaisen asetelman havainnot: ==================================== Run A B C D E = ABCD y ==================================== Kuitenkaan päävaikutukset eivätkä toisen asteen vaikutukset sulaudu muihin päävaikutuksiin tai toisen asteen vaikutuksiin. Täten kysymyksessä on resoluution V asetelma, eli koeasetelma V Jokainen päävaikutus sulautuu neljännen asteen yhdysvaikutuksen kannsa, esimerkiksi A = BCDE. Vastaavasti jokainen toisen asteen yhdysvaikutus sulautuu jonkin kolmannen asteen yhdysvaikutuksen kanssa, esimerkiksi AB = CDE

7 SAS-ajo: Title "Design of Experiments, Example 8.4"; Title2 "Integrated circuit process improvement"; options ls = 80; data example84; input A B C D E y; label A = "Aperture: -1 = small, +1 = large" B = "Exposure time: -1 = -20%, +1 = +20%" C = "Develop time: -1 = 30s, +1 = 40s" D = "Mask dimension: -1 = Small, +1 = Large" E = "Etch time: -1 = 14.5 min, +1 = 15.5 min" y = "Process yield"; datalines; ; run; Kokoamalla tulokset estimoinnista, saadaan ======================================================== Regression Effect Coefficient Estimate Parameter Estimate (= 2 x reg coeff) SS Intercept A B C D E A*B A*C A*D A*E B*C B*D B*E C*D C*E D*E ======================================================== Huom. Regressio-kertoimet ilmaisevat yhden yksik\"on muutoksen ja "effect estimate" ilmaisee muutoksen -1:sta +1:een, eli kahden yksikon muuoksen. Taten effect estimate = 2 x regression coefficeint. proc glm data = example84; Title3 "Regression coefficients"; model y = A B C D E@2; run; quit; Silmämääräisesti havaitaan välittömästi, että muut kuin päävaikutukset A (= A + BCDE), B (= B + ACDE), C (= C +ABDE) ja yhdysvaikutus AB (= AB +CDE) ovat selvästi vähämerkityksellisiä. 2 A Normal Quantile Plot B Alla oleva normaalijakauman kvantiilikuvio (qq-plot) vahvistaa tämän näkemyksen. Huom. Vaikka kaikkiin termeihin sulautuu korkeamman asteen termejä, ne eivät ole ilmeisesti merkityksellisiä, sillä kaikki sulautuvat tekijät ovat vähintään kolmatta astetta, eikä mikään niistä sinänsä näytä olevan merkityksellinen AB C Tulkitsemalla merkityksettömät termit satunnaiskohinaksi ja tekijät muuttujiksi, jotka saavat arvoja välillä [ 1, 1], estimoidaan malli (5) y = μ + β aa + β ab + β cc + β ab AB + ε. Saadaan: proc glm data = example84; model y = A B C A*B; run; 27 28

8 R-Square Coeff Var Root MSE y Mean Source DF Type III SS Mean Square F Value Pr > F A <.0001 B <.0001 C <.0001 A*B <.0001 s r e s Standard Parameter Estimate Error t Value Pr > t Intercept <.0001 A <.0001 B <.0001 C <.0001 A*B < yhat Residuaalikuviot näyttävät jäännösten olevan satunnaisia. Regressiokertoimet ovat positiivisia, joten tuotos maksimoituu, kun faktoreiden arvot valitaan +1:stä vastaaviksi Peräkkäisyys (Sequences of Fractional Factorials) Osaittaisfaktorikokeiden etu on niiden ekonomisuus ja tehokkuus. Edut korostuvat, jos koeasetelmat on tehtävissä peräkkäin. Esimerkiksi k = 4faktorin kokeessa täydessä kokeessa on 2 4 =16käsittelykombinaatiota. Yleensä kannattaa toteuttaa koe peräkkäisenä sitem, että ensin toteutetaan asetelma, esimerkiksi I = ABCD (kahdeksan käsittelyä). Jos ei saada selkeää kuvaa faktoreiden (yhdys) vaikutuksista, voidaan toteuttaa I = ABCD. Tällöin koko koe muodostaa lohkokokeen, jossa lohkotekijänä onabcd. Korkein yhdysvaikutus (ABCD) informaatio menetetään, mutta useimmissa tapauksissa tätä toista puolikasta ei tarvitse toteuttaa, jolloin syntyy (merkittävä) säästö

9 Esimerkki 8.5: Tarkastellaan Esimerkin 8.1 (Esim. 6.4 aineisto) komplementaarista puolta (I = ABCD) =============== A B C D y =============== ========================================= I = ABCD A B C D AB AC AD y = mean(factor. y) ========================================= ======================================================== I = -ABCD A B C D AB AC AD y ======================================================== ================================== Aliased effects in I = -ABCD in I = ABCD A - BCD = A + BCD = 19.0 B - ACD = 4.75 B + ACD = 1.5 C - ABD = 5.75 C + ABD = 14.0 D - ABC = D + ABC = 16.5 AB - CD = 1.25 AB + CD = -1.0 AC - BD = AC + BD = AD - BC = AD + BC = 19.0 ================================== True Effect Estimates (from the Aliased effects) A = = [(A-BCD)+(A+BCD)]/2 B = 3.13 C = 9.88 D = AB = 0.13 AC = AD = ABC = 1.88 = [(D+ABC)-(D-ABC)]/2 ABD = 4.13 ACD = BCD = Havaitaan, että estimaatit (= 2 reg.coeff) ovat samat kuin alkuperäisessä täydessä kokeessa. 8.2 The One-Quarter Fraction of the 2 k Design (2 k asetelman neljännes ositus) 2 k -asetelman neljännesositus saadaan, kun kokeesta tehdään 2 k 2 =2 k /4käsittelykombinaatiota. Toteutus: Laaditaan 2 k 2 asetelmaa vastaava täysi faktorikoe ja määrätään jäljelle jäävien kahden faktorin käsittelyt kahden sopivan yhdysvaikutuksen avulla. Täten 2 k 2 asetelmassa on kaksi generaattoria. Merkitään generaattoreita P :llä jaq:lla. Yhdysvaikutuksista ainoastaan AC ja AD ovat merkityksellisiä, I = P ja I = Q ovat asetelman generoivat relaatiot

10 Generaattorin etumerkki määrää minkä neljänneksen mukaan koe toteutetaan. ±P ja ±Q ovat P :n ja Q:n muodostman generaattoriperheen jäseniä. Ositus, jossa molemmat P ja Q ovat positiivisia määrittää pääosituksen (pricnipal fraction). Asetelman (täysin) määrittävä relaatio (complete defining relation) muodostuu sarakkeiden mukaan, jotka ovat ykkösvektoreita (= I). Näitä ovatp, Q ja PQ (I = P = Q = PQ). Termiä PQ sanotaan yleistetyksi yhdysvaikutukseksi (generalized interaction). Tekijöitä P, Q ja PQ määrittävässä relaatiossa kutsutaan sanoiksi (words). Huom. 8.5: Asetelman resoluutio on sama kuin määrittävän generaattorin lyhimmän sanan pituus (eli kirjaimien lukumäärä). Sulautuvat tekijät, joita sanotaan usein myös alias tekijöiksi, muodostuvat kun kerrotaan tekijöiden sarakkeet P :llä Q:lla ja PQ:lla Esimerkki 8.6: aliasrakenne. Valitaan generaattorit I = ABCE ja I = BCDF. Asetelman määrittävä relaatio on tällöin (6) I = ABCE = BCDF = ADEF, joten asetelman resoluutio on. Aliasrakenne (sulautumiset) ================================================= A = BCE = DEF = ABCDF AB = CE = ACDF = BDEF B = ACE = CDF = ABDEF AC = BE = ABDF = CDEF C = ABE = BDF = ACDEF AD = EF = BCDE = ABCF D = BCF = AEF = ABCDE AE = BC = DF = ABCDEF E = ABC = ADF = BCDEF AF = DE = BCEF = ABCD F = BCD = ADE = ABCEF BD = CF = ACDE = ABEF BF = CD = ACEF = ABDE Taulukosta havaitaan, että jokainen päävaikutus sulautuu joidenkin kolmen ja viiden faktorin yhdysvaikutusten kanssa, mutta ei toisen asteen vaikutusten kanssa. Toisen asteen vaikutukset ovat sulautuneet joidenkin toisen asteen vaikutusten kanssa. Täten kysymyksessä tosiaankin on resoluution, eli asetelma ABD = CDE = ACF = BEF ACD = BDE = ABF = CEF ================================================= Täten, kun estimoidaan päävaikutus A, estimoidaan tosiasiassa efekti A + BCE + DEF + ABCDF

11 Esimerkki 8.7: Parts manufacture in an injection molding process show excessive shrinkage. Six factors impact on the shrinkage are investigated: A: Mold temperature B: Screw speed C: Holding time D: Cycle time E: Gate size F : Holding pressure Each factor has two levels. y: Shrinkage in percentage (response variable) design is used with one replicate, i.e a 16 runs two-level fractional factorial design. Generating relations: I = ABCE and I = BCDF. Complete generating relations: Data: ================================== Basic design A B C D E = ABC F = BCD y ================================= implying a I = ABCE = BCDF = ADEF, design SAS-ajo options ls = 80; Title "Example 8.7: Injection Molding Process"; Title2 "A 2ˆ6-2 Resolution Design"; data example86; input A B C D y; E = A*B*C; F = B*C*D; label A = "Mold temperature" B = "Screw speed" C = "Holding time" D = "Cycle time" E = "Gate size" F = "Holding pressure" y = "Shrinkage of manufatured parts (x 10)"; datalines; ; run; =================================== Parameter Estimate SS Intercept A B C D E F A*B A*C A*D A*E A*F B*D B*F A*B*D A*C*D =================================== Tekijöiden A (alias A + BCE + DEF + ABCDF), B (B + ACE + CDF + ABDEF) ja AB (AB + CE + ACDF + BDEF) kertoimet poikkeavat ainoastaan merkittävästi nollata. Tämä näkyy selvästi narmaalijakauman kavantiilikuviosta. proc glm data = example86; Title3 "Regression Estimates of the Full Model"; model y = A B C D E F A*B A*C A*D A*E A*F B*D B*F A*B*D A*C*D / ss3; run; quit; 43 44

12 Regressiokertoimien normaalijakauman qq-plot (vasen kuvio) ja AB-interaktio (oikealla) A B 8 6 Normal value (z) 1.5 B A AB Shrinkage B+ B+ Normal value (z) AB Residuals B- B Residual 0-6 Factor C Factor regression estimate Mold temperature (A) Merkittäviä tekijöitä ovat siis vain A ja B sekä niiden yhdysvaikutus. Oikean puolen kuvioista nähdään, että prosessiiin ei paljoakaan vaikuta A:n taso (mold temperature), jos B (screw speed) on -1 eli alhaalla. Sen sijaan prosessi on sensitiivinen lämpötilalle, jos B Residuaalien normaalisuuskuvio ei osoita suurempia poikkeamia. Residuaalien variaatio näyttää kuitenkin olevan riippuvainen C:n arvoista. Säätämällä C alimpaan arvoon minimoituu myös vaihtelu, eli tuotteet ovat homogeenisempia. on +1 (screw speed high). Pitämällä B alhaalla on kutistuminen noin 10 prosentin luokkaa riippumatta lämpötilasta. Pienimpään kutistumaan päästään siis, kun A ja B ovat alimmissa arvoissaan Huom. 8.6: asetelma voidaan projisoida yhden toiston täydeksi 2 4 faktorikokeeksi, kahden toiston kokeeksi ja neljän toiston 2 2 kokeeksi. Esimerkki 8.8: Esimerkissä 8.7 vain faktoreilla A ja B sekä yhdysvaikutuksella AB on vaikutusta, joten yllä oleva koe projisoitui 2 2 kokeeksi, jossa on n =4 toistoa per käsittely kombinaatio. Huom 8.7: Yleisesi 2 k 2 osakoe voidaan projisoida joidenkin r:n faktorin, r k 2täydeksi faktorikokeeksi tai osakokeeksi. Täydet 2 r kokeet voidaan muodostaa faktoreista, joiden kombinaatiot eivät muodosta sanoja (words) täysin määrittävässä relaatiossa (complete defining relation, I = P = Q = PQ). 8.3 Yleinen 2 k p Osakoe (General 2 k p Fractional Factorial Design) 2 k -kokeen osakoetta, jossa totetutetaan 2 k p käsittelykombinaatiota sanotaan 2 k -kokeen 1/2 p -osakokeeksi, lyhysti 2 k p -osakokeeksi (2 k p fractional factorial design). Määrittävä relaatio (complete defining relation) muodostuu p:stä (riippumattomasta) generaattoristajaniiden2 p p 1 yleistetystä yhdysvaikutuksesta. Aliasrakenne saadaan selville kertomalla jokainen pää- ja yhdysvaikutustemi määrittävän relaation tekijöillä

13 Resoluutio ilmaisee kuinka pahasti asetelman vaikutukset ovat sulautuneita (mitä alhaisempi sitä huonompi). Lähtökohtaisesti generaattorit valitaan siten, että saavutetaan mahdollisimman korkea resoluutio. Lisäksi, jos on useampia saman resoluutiotason asetelmia, niin yleensä kannattaa valita se, jolla on vähiten alimman tason aliasrekanteita. Esimerkki 8.8: Kolmen asetelman kahden faktorin interaktion aliasrakenteet: Generaattorit I Generaattorit II Generaattorit III F = ABC F = ABC F = ABCD G = BCD G = ADE G = ABDE AB = AC AB = AF CE = FG AC = BF AC = BF CF = EG AD = FG AD = EG CG = EF AG = DF AE = DG BD = CG AF = BC BG = CD AG = DE AF = BC = DG Vähiten toisen asteen yhdysvaikutusten aliasrakenteita muodostuu generaattoreiden III mukaisessa asetelmassa, joten se on paras vaihtoehto Määrittävän relaation (complete defining relation) sanojen pituuskaavio (length pattern) on lukujono, jossa kukin luku ilmaisee vastaavan sanan pituuden relaatiossa. Esimerkiksi asetelman määrittävn relaation I = ABCF = BCDG = ADF G pituuskaavio on {4, 4, 4}. Määrittävä relaatio, jossa on pienin määrä pituudeltaan lyhimpiä sanoja muodostaa pienimmän aberraation asetelman (minimum aberration design). Voidaan osoittaa, että minimoimalla aberraatio resoluution R asetelmassa takaa, että pienin määrä päävaikutuksia sulautuu asteen R 1 yhdysvaikutusten kanssa, pienin määrä kahden tekijän yhdysvaikutuksia sulautuu asteen R 2 yhdysvaikutustan kanssa, jne. Esimerkki 8.9: Esimerkin 8.8 astelmien pituuskaaviot: I: 4, 4, 4,II:4, 4, 5jaIII:5, 5, 4. Täten asetelmassa III on pienin määrä lyhimpiä sanoja, joten se on pienimmän aberraation asetelma. Seuraavan sivun taulukkoon on koottu pienimmän aberraation asetelmia, kun k

14 Selected 2 k p Fractional Factorial Designs: Number of Number Design factors,k Fraction of runs generators III 4 C = ±AC D = ±ABC V 16 E = ±ABCD D = ±AB E = ±AC VI 32 F = ±ABCDE E = ±ABC F = ±BCD III 8 D = ±AB E = ±AC F = ±BC VII 64 G = ±ABCDEF F = ±ABCD G = ±ABDE E = ±ABC F = ±BCD G = ±ACD V 64 G = ±ABCD H = ±ABEF F = ±ABC G = ±ABD H = ±BCDE E = ±BCD F = ±ACD G = ±ABC H = ±ABD 53 Esimerkki 8.9: Olkoon k = 7 ja tavoitteena on estimoida päävaikutukset ja saada joitain käsitystä toisen asteen yhdysvaikutuksia. Kolmen ja korkeamman asteen yhdysvaikutusten uskotaan olevan käytännössä merkityksettömiä. Näillä perusteilla resoluution asetelma on sopiva, sillä siinä päävaikutukset eivät sulaudu toisen asteen termien kanssa. Toisen asteen termit sulautuvat johinkin toisen asteen termeihin (tarkoituksena onkin saada jotain käsitystä toisen asteen yhdysvaikutuksista). Yllä olevan taukukon mukaan vaihtoehtoina ovat (1/4ositus, 32 toistoa) tai (1/8 ositus, 16 toistoa). 54 Tutkimalla aliasrakenteita tehdään lopullinen valinta. (ks. /pri/section3/eqns/2to7m2.txt ja /pri/section3/eqns/2to7m3.txt) Tässä tavoitteisiin nähden riittäväksi osoittautuu asetelma. 8.4Placket-Burman asetelmat Placket-Burman (PB) koeasetelmat ovat osittaiskokeita, joissa voi olla maksimissaan k = N 1 faktoria, missä N neljällä jaollinen toistojen lukumäärä (12, 20, 24, 28, 36). Jos N on kakkosen potenssi, PB-asetelma palautuu tavanomaiseksi osittaiskokeeksi. PB-asetelmaa voidaan käyttää tapauksissa, joissa yhdysvaikutusten oletetaan olevan merkityksettömiä. Tällöin suuresta määrästä faktoreita voidaan PB-menetelmällä tehokkaasti seuloa tärkeimmät. Lisää asiasta:

8. Osittaiset 2 k faktorikokeet. Niinpä, jos voidaan olettaa, että korekeamman

8. Osittaiset 2 k faktorikokeet. Niinpä, jos voidaan olettaa, että korekeamman 8. Osittaiset 2 k faktorikokeet Faktoreiden lukumäärän k kasvaessa 2 k koeasetelmassa kasvaa koetoistojen (runs) määrää nopeasti täydessä toteutuksessa (complete replicate). Esimerkiksi 2 6 asetelman täysi

Lisätiedot

nopeasti täydessä toteutuksessa (complete replicate).

nopeasti täydessä toteutuksessa (complete replicate). 8. Osittaiset 2 k faktorikokeet Faktoreiden lukumäärän k kasvaessa 2 k koeasetelmassa kasvaa koetoistojen (runs) määrää nopeasti täydessä toteutuksessa (complete replicate). Esimerkiksi 2 6 asetelman täysi

Lisätiedot

proc glm data = ex61; Title2 "Aliasing Structure of the 2_IV^(5-1) design"; model y = A B C D E /Aliasing; run; quit;

proc glm data = ex61; Title2 Aliasing Structure of the 2_IV^(5-1) design; model y = A B C D E /Aliasing; run; quit; Title "Exercises 6"; Data ex61; input A B C D E y @@; Label A = "Furnance Temperature" B = "Heating Time" C = "Transfer Time" D = "Hold Down Time" E = "Quench of Oil Temperature" y = "Free Height of Leaf

Lisätiedot

7. Lohkominen ja sulautus 2 k kokeissa. Lohkominen (Blocking)

7. Lohkominen ja sulautus 2 k kokeissa. Lohkominen (Blocking) 7. Lohkominen ja sulautus 2 k kokeissa Lohkominen (Blocking) Lohkotekijät muodostuvat faktoreista, joiden suhteen ei voida tehdä (täydellistä) satunnaistamista. Esimerkiksi faktorikokeessa raaka-aine-erät

Lisätiedot

Lohkotekijät muodostuvat faktoreista, joiden suhteen ei voida tehdä (täydellistä) satunnaistamista.

Lohkotekijät muodostuvat faktoreista, joiden suhteen ei voida tehdä (täydellistä) satunnaistamista. 7. Lohkominen ja sulautus 2 k kokeissa Lohkominen (Blocking) Lohkotekijät muodostuvat faktoreista, joiden suhteen ei voida tehdä (täydellistä) satunnaistamista. Esimerkiksi faktorikokeessa raaka-aine-erät

Lisätiedot

7. Lohkominen ja sulautus 2 k kokeissa. Lohkominen (Blocking)

7. Lohkominen ja sulautus 2 k kokeissa. Lohkominen (Blocking) 7. Lohkominen ja sulautus 2 k kokeissa Lohkominen (Blocking) Lohkotekijät muodostuvat faktoreista, joiden suhteen ei voida tehdä (täydellistä) satunnaistamista. Esimerkiksi faktorikokeessa raaka-aine-erät

Lisätiedot

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1 2 k -faktorikokeet Vilkkumaa / Kuusinen 1 Motivointi 2 k -faktorikoe on k-suuntaisen varianssianalyysin erikoistapaus, jossa kaikilla tekijöillä on vain kaksi tasoa, matala (-) ja korkea (+). 2 k -faktorikoetta

Lisätiedot

Osafaktorikokeet. Heliövaara 1

Osafaktorikokeet. Heliövaara 1 Osafaktorikokeet Heliövaara 1 Osafaktorikokeet Kun faktorien määrä 2 k -faktorikokeessa kasvaa, tarvittavien havaintojen määrä voi ylittää kokeentekijän resurssit. Myös estimoitavien korkean asteen yhdysvaikutustermien

Lisätiedot

Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). tulee katettua (complete replicate). Havaintojen

Lähtökohta: k faktoria, kullakin kaksi tasoa (high, low). tulee katettua (complete replicate). Havaintojen 6. 2 k faktorikokeet Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). Vähintään 2 k havaintoa, jotta kaikki vaihtoehdot tulee katettua (complete replicate). Havaintojen kokonaismäärä N = 2

Lisätiedot

6. 2 k faktorikokeet. Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). määrä per faktoritasokombinaatio (balansoidussa)kokeessa.

6. 2 k faktorikokeet. Lähtökohta: k faktoria, kullakin kaksi tasoa (high, low). määrä per faktoritasokombinaatio (balansoidussa)kokeessa. 6. 2 k faktorikokeet Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). Vähintään 2 k havaintoa, jotta kaikki vaihtoehdot tulee katettua (complete replicate). Havaintojen kokonaismäärä N =2

Lisätiedot

Osafaktorikokeet. Kurssipalautetta voi antaa Oodissa Kuusinen/Heliövaara 1

Osafaktorikokeet. Kurssipalautetta voi antaa Oodissa Kuusinen/Heliövaara 1 Osafaktorikokeet Kurssipalautetta voi antaa Oodissa 27.4.-25.5. Kuusinen/Heliövaara 1 Osafaktorikokeet Kun faktorien määrä 2 k -faktorikokeessa kasvaa, tarvittavien havaintojen määrä voi ylittää kokeen

Lisätiedot

Hierarkkiset koeasetelmat. Heliövaara 1

Hierarkkiset koeasetelmat. Heliövaara 1 Hierarkkiset koeasetelmat Heliövaara 1 Hierarkkiset koeasetelmat Kaksiasteista hierarkkista koeasetelmaa käytetään tarkasteltaessa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan kahden tekijän

Lisätiedot

6. 2 k faktorikokeet. Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). määrä per faktoritasokombinaatio (balansoidussa)kokeessa.

6. 2 k faktorikokeet. Lähtökohta: k faktoria, kullakin kaksi tasoa (high, low). määrä per faktoritasokombinaatio (balansoidussa)kokeessa. 6. 2 k faktorikokeet Lähtökohta: k faktoria, kullakin kaksi tasoa ("high", "low"). Vähintään 2 k havaintoa, jotta kaikki vaihtoehdot tulee katettua (complete replicate). Havaintojen kokonaismäärä N =2

Lisätiedot

Faktorikokeilla tarkoitetaan koesuunnitelmaa, jossa koe toistetaan kaikilla faktoreiden tasojen kombninaatioilla.

Faktorikokeilla tarkoitetaan koesuunnitelmaa, jossa koe toistetaan kaikilla faktoreiden tasojen kombninaatioilla. 5. Johdatus faktorikokeisiin 5.1 Taustaa Faktorikokeilla tarkoitetaan koesuunnitelmaa, jossa koe toistetaan kaikilla faktoreiden tasojen kombninaatioilla. Täten, jos faktorilla A on a tasoa ja faktorilla

Lisätiedot

Kaksitasoiset hierarkiset asetelmat (Two-Stage Nested Designs) 9. Muita koeasetelmia. 9.1 Hierarkiset asetelmat (Nested Designs)

Kaksitasoiset hierarkiset asetelmat (Two-Stage Nested Designs) 9. Muita koeasetelmia. 9.1 Hierarkiset asetelmat (Nested Designs) 9. Muita koeasetelmia 9.1 Hierarkiset asetelmat (Nested Designs) Tietyissä koetilanteissa yhden faktorin tasot ovat samanlaisia joskaan ei täysin identtisiä toisen faktorin eri tasoilla. Tällaista asetelmaa

Lisätiedot

5. Johdatus faktorikokeisiin. Tekijän omaa vaikutusta vastemuuttujaan sanotaan. 5.1 Taustaa

5. Johdatus faktorikokeisiin. Tekijän omaa vaikutusta vastemuuttujaan sanotaan. 5.1 Taustaa 5. Johdatus faktorikokeisiin 5.1 Taustaa Faktorikokeilla tarkoitetaan koesuunnitelmaa, jossa koe toistetaan kaikilla faktoreiden tasojen kombninaatioilla. Täten, jos faktorilla A on a tasoa ja faktorilla

Lisätiedot

2 2 -faktorikokeen määritelmä

2 2 -faktorikokeen määritelmä TKK (c) Ilkka Mellin (005) Koesuunnittelu TKK (c) Ilkka Mellin (005) : Mitä opimme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan kahden tai useamman tekijän vaikutusta

Lisätiedot

5. Johdatus faktorikokeisiin. Tekijän omaa vaikutusta vastemuuttujaan sanotaan. 5.1 Taustaa

5. Johdatus faktorikokeisiin. Tekijän omaa vaikutusta vastemuuttujaan sanotaan. 5.1 Taustaa 5. Johdatus faktorikokeisiin 5.1 Taustaa Faktorikokeilla tarkoitetaan koesuunnitelmaa, jossa koe toistetaan kaikilla faktoreiden tasojen kombninaatioilla. Täten, jos faktorilla A on a tasoa ja faktorilla

Lisätiedot

Tekijä Pitkä matematiikka On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 4 5

Tekijä Pitkä matematiikka On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 4 5 Tekijä Pitkä matematiikka 6..06 8 On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 5 sivun AB pituudesta. Pitää siis osoittaa, että DE = AB. 5 Muodostetaan vektori DE. DE =

Lisätiedot

9.1 Hierarkiset asetelmat (Nested Designs)

9.1 Hierarkiset asetelmat (Nested Designs) 9. Muita koeasetelmia 9.1 Hierarkiset asetelmat (Nested Designs) Tietyissä koetilanteissa yhden faktorin tasot ovat samanlaisia joskaan ei täysin identtisiä toisen faktorin eri tasoilla. Tällaista asetelmaa

Lisätiedot

A250A0050 Ekonometrian perusteet Tentti

A250A0050 Ekonometrian perusteet Tentti A250A0050 Ekonometrian perusteet Tentti 28.9.2016 Tentissä ei saa käyttää laskinta. Tentistä saa max 80 pistettä. Hyväksytysti suoritetusta harjoitustyöstä saa max 20 pistettä. Huom. Merkitse vastauspaperin

Lisätiedot

Tavoite on eliminoida sen vaikutus koetuloksista. 4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat. Eliminointimenetelmiä:

Tavoite on eliminoida sen vaikutus koetuloksista. 4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat. Eliminointimenetelmiä: 4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat 4.1 Satunnaistettu lohkokoe (Randomized Block Design) Kiusatekijä (nuisance factor): Kiusatekijä on taustatekijä, joka voi vaikuttaa

Lisätiedot

Epäyhtälön molemmille puolille voidaan lisätä sama luku: kaikilla reaaliluvuilla a, b ja c on voimassa a < b a + c < b + c ja a b a + c b + c.

Epäyhtälön molemmille puolille voidaan lisätä sama luku: kaikilla reaaliluvuilla a, b ja c on voimassa a < b a + c < b + c ja a b a + c b + c. Epäyhtälö Kahden lausekkeen A ja B välisiä järjestysrelaatioita A < B, A B, A > B ja A B nimitetään epäyhtälöiksi. Esimerkiksi 2 < 6, 9 10, 5 > a + + 2 ja ( + 1) 2 2 + 2 ovat epäyhtälöitä. Epäyhtälössä

Lisätiedot

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot)

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot) R-ohjelman käyttö data-analyysissä Panu Somervuo 2014 Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. 0) käynnistetään R-ohjelma Huom.1 allaolevissa ohjeissa '>' merkki on R:n

Lisätiedot

VARIANSSIANALYYSI ANALYSIS OF VARIANCE

VARIANSSIANALYYSI ANALYSIS OF VARIANCE VARIANSSIANALYYSI ANALYSIS OF VARIANCE 1 Suomalaisten aikuisten pituusjakauma:.8.7.6.5.4.3.2.1 14 15 16 17 18 19 2 21 Jakauma ei ole normaali, sen olettaminen sellaiseksi johtaa virheellisiin päätelmiin.

Lisätiedot

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Päättely yhden selittäjän lineaarisesta regressiomallista Ennustaminen, Ennuste, Ennusteen luottamusväli, Estimaatti, Estimaattori,

Lisätiedot

Kertausluento. Vilkkumaa / Kuusinen 1

Kertausluento. Vilkkumaa / Kuusinen 1 Kertausluento Vilkkumaa / Kuusinen 1 Kokeellinen tutkimus Kokeellisessa tutkimuksessa on tavoitteena selvittää, miten erilaiset käsittelyt vaikuttavat tutkimuksen kohteisiin - Esim. miten lämpötila ja

Lisätiedot

[MTTTA] TILASTOMENETELMIEN PERUSTEET, KEVÄT 209 https://coursepages.uta.fi/mttta/kevat-209/ HARJOITUS 5 viikko 8 RYHMÄT: ke 2.5 3.45 ls. C6 Leppälä to 08.30 0.00 ls. C6 Korhonen to 2.5 3.45 ls. C6 Korhonen

Lisätiedot

Keskipisteen lisääminen 2 k -faktorikokeeseen (ks. Montgomery 9-6)

Keskipisteen lisääminen 2 k -faktorikokeeseen (ks. Montgomery 9-6) Mat-.3 Koesuunnittelu ja tilastolliset mallit kevät Keskipisteen lisääminen k -faktorikokeeseen (ks. Montgomery 9-6) Esim (Montg. ex. 9-, 6-): Tutkitaan kemiallisen prosessin saannon Y riippuvuutta faktoreista

Lisätiedot

9. Muita koeasetelmia. Kaksitasoiset hierarkiset asetelmat (Two-Stage Nested Designs) 9.1 Hierarkiset asetelmat (Nested Designs)

9. Muita koeasetelmia. Kaksitasoiset hierarkiset asetelmat (Two-Stage Nested Designs) 9.1 Hierarkiset asetelmat (Nested Designs) 9. Muita koeasetelmia 9.1 Hierarkiset asetelmat (Nested Designs) Tietyissä koetilanteissa yhden faktorin tasot ovat samanlaisia joskaan ei täysin identtisiä toisen faktorin eri tasoilla. Tällaista asetelmaa

Lisätiedot

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi Esimerkit laskettu JMP:llä Antti Hyttinen Tampereen teknillinen yliopisto 29.12.2003 ii Ohjelmien

Lisätiedot

30 + x. 15 + 0,5x = 2,5 + x 0,5x = 12,5 x = 25. 27,5a + 27,5b = 1,00 55 = 55. 2,5a + (30 2,5)b (27,5a + 27,5b) = 45 55.

30 + x. 15 + 0,5x = 2,5 + x 0,5x = 12,5 x = 25. 27,5a + 27,5b = 1,00 55 = 55. 2,5a + (30 2,5)b (27,5a + 27,5b) = 45 55. RATKAISUT, Insinöörimatematiikan koe 1.5.201 1. Kahdessa astiassa on bensiinin ja etanolin seosta. Ensimmäisessä astiassa on 10 litraa seosta, jonka tilavuudesta 5 % on etanolia. Toisessa astiassa on 20

Lisätiedot

Matematiikan olympiavalmennus

Matematiikan olympiavalmennus Matematiikan olympiavalmennus Syyskuun 2014 vaativammat valmennustehtävät, ratkaisuja 1. Onko olemassa ehdot a + b + c = d ja 1 ab + 1 ac + 1 bc = 1 ad + 1 bd + 1 cd toteuttavia reaalilukuja a, b, c, d?

Lisätiedot

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma.

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma. Pyramidi 3 Geometria tehtävien ratkaisut sivu 1 201 202 Saadaan tapaukset 1) Tason suorat l ja m voivat olla yhdensuuntaiset, mutta eri suorat, jolloin niillä ei ole yhteisiä pisteitä. l a) A B C A B C

Lisätiedot

ARVIOINTIPERIAATTEET

ARVIOINTIPERIAATTEET PSYKOLOGIAN YHTEISVALINNAN VALINTAKOE 2012 ARVIOINTIPERIAATTEET Copyright Helsingin yliopisto, käyttäytymistieteiden laitos, Materiaalin luvaton kopiointi kielletty. TEHTÄVÄ 1. (max. 34.5 pistettä) 1 a.i)

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Derivaatta Tarkastellaan funktion f keskimääräistä muutosta tietyllä välillä ( 0, ). Funktio f muuttuu tällä välillä määrän. Kun tämä määrä jaetaan välin pituudella,

Lisätiedot

Hilbertin aksioomat ja tarvittavat määritelmät Tiivistelmä Geometria-luentomonisteesta Heikki Pitkänen

Hilbertin aksioomat ja tarvittavat määritelmät Tiivistelmä Geometria-luentomonisteesta Heikki Pitkänen Hilbertin aksioomat ja tarvittavat määritelmät Tiivistelmä Geometria-luentomonisteesta Heikki Pitkänen 1. Hilbertin aksioomat 1-3 Oletetaan tunnetuiksi peruskäsitteet: piste, suora ja suora kulkee pisteen

Lisätiedot

Koesuunnittelu 2 k -faktorikokeet. TKK (c) Ilkka Mellin (2005) 1

Koesuunnittelu 2 k -faktorikokeet. TKK (c) Ilkka Mellin (2005) 1 Koesuunnittelu 2 k -faktorikokeet TKK (c) Ilkka Mellin (2005) 2 k -faktorikokeet 2 2 -faktorikokeet 2 3 -faktorikokeet 2 k -faktorikokeet TKK (c) Ilkka Mellin (2005) 2 2 k -faktorikokeet: Mitä opimme?

Lisätiedot

2.2 Täydellinen yhtälö. Ratkaisukaava

2.2 Täydellinen yhtälö. Ratkaisukaava . Täydellinen yhtälö. Ratkaisukaava Tulon nollasäännöstä näkee silloin tällöin omituisia sovellutuksia. Jotkut näet ajattelevat, että on olemassa myöskin tulon -sääntö tai tulon "mikä-tahansa"- sääntö.

Lisätiedot

Matematiikan tukikurssi 3.4.

Matematiikan tukikurssi 3.4. Matematiikan tukikurssi 3.4. Neliömuodot, Hessen matriisi, deiniittisyys, konveksisuus siinä tämän dokumentin aiheet. Neliömuodot ovat unktioita, jotka ovat muotoa T ( x) = x Ax, missä x = (x 1,, x n )

Lisätiedot

Toimittaja 1 2 3 Erä 1 2 3 4 1 2 3 4 1 2 3 4 1 2 2 1 1 0 1 0 2 2 1 3 1 3 0 4 2 4 0 3 4 0 1 2 0 4 1 0 3 2 2 2 0 2 2 1

Toimittaja 1 2 3 Erä 1 2 3 4 1 2 3 4 1 2 3 4 1 2 2 1 1 0 1 0 2 2 1 3 1 3 0 4 2 4 0 3 4 0 1 2 0 4 1 0 3 2 2 2 0 2 2 1 Mat-.03 Koesuunnittelu ja tilastolliset mallit / Ratkaisut Aiheet: Avainsanat: Hierarkkiset koeasetelmat -faktorikokeet Vastepintamenetelmä Aritmeettinen keskiarvo, Estimaatti, Estimaattori, -testi, aktorikokeet,

Lisätiedot

3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi

3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi 3. Kongruenssit 3.1 Jakojäännös ja kongruenssi Tässä kappaleessa esitellään kokonaislukujen modulaarinen aritmetiikka (ns. kellotauluaritmetiikka), jossa luvut tyypillisesti korvataan niillä jakojäännöksillä,

Lisätiedot

monissa laskimissa luvun x käänteisluku saadaan näyttöön painamalla x - näppäintä.

monissa laskimissa luvun x käänteisluku saadaan näyttöön painamalla x - näppäintä. .. Käänteisunktio.. Käänteisunktio Mikäli unktio : A B on bijektio, niin joukkojen A ja B alkioiden välillä vallitsee kääntäen yksikäsitteinen vastaavuus eli A vastaa täsmälleen yksi y B, joten myös se

Lisätiedot

Jakaumien merkitys biologisissa havaintoaineistoissa: Löytyykö ratkaisu Yleistetyistä Lineaarisista (Seka)Malleista?

Jakaumien merkitys biologisissa havaintoaineistoissa: Löytyykö ratkaisu Yleistetyistä Lineaarisista (Seka)Malleista? 1 Hydrobiologian tutkijaseminaari 20.3.2000 Jakaumien merkitys biologisissa havaintoaineistoissa: Löytyykö ratkaisu Yleistetyistä Lineaarisista (Seka)Malleista? Jari Hänninen Turun yliopisto Saaristomeren

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 8..5 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat. Kiusatekijä on taustatekijä, joka voi vaikuttaa

4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat. Kiusatekijä on taustatekijä, joka voi vaikuttaa 4. Satunnaistetut lohkokokeet, latinalaiset neliöt ja vastaavat asetelmat 4.1 Satunnaistettu lohkokoe (Randomized Block Design) Kiusatekijä (nuisance factor): Kiusatekijä on taustatekijä, joka voi vaikuttaa

Lisätiedot

c) Vektorit ovat samat, jos ne ovat samansuuntaiset ja yhtä pitkät. Vektorin a kanssa sama vektori on vektori d.

c) Vektorit ovat samat, jos ne ovat samansuuntaiset ja yhtä pitkät. Vektorin a kanssa sama vektori on vektori d. Tekijä Pitkä matematiikka 4 9.12.2016 20 a) Vektorin a kanssa samansuuntaisia ovat vektorit b ja d. b) Vektorit ovat erisuuntaiset, jos ne eivät ole yhdensuuntaiset (samansuuntaiset tai vastakkaissuuntaiset).

Lisätiedot

SAS/IML käyttö ekonometristen mallien tilastollisessa päättelyssä. Antti Suoperä 16.11.2009

SAS/IML käyttö ekonometristen mallien tilastollisessa päättelyssä. Antti Suoperä 16.11.2009 SAS/IML käyttö ekonometristen mallien tilastollisessa päättelyssä Antti Suoperä 16.11.2009 SAS/IML käyttö ekonometristen mallien tilastollisessa päättelyssä: Matriisi ja vektori laskennan ohjelmisto edellyttää

Lisätiedot

( ) ( ) ( ) ( ( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 271 Päivitetty 19.2.2006. 701 a) = keskipistemuoto.

( ) ( ) ( ) ( ( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 271 Päivitetty 19.2.2006. 701 a) = keskipistemuoto. Pyramidi Analyyttinen geometria tehtävien ratkaisut sivu 7 Päivitetty 9..6 7 a) + y = 7 + y = 7 keskipistemuoto + y 7 = normaalimuoto Vastaus a) + y = ( 7 ) + y 7= b) + y+ 5 = 6 y y + + = b) c) ( ) + y

Lisätiedot

(x 0 ) = lim. Derivoimissääntöjä. Oletetaan, että funktiot f ja g ovat derivoituvia ja c R on vakio. 1. Dc = 0 (vakiofunktion derivaatta) 2.

(x 0 ) = lim. Derivoimissääntöjä. Oletetaan, että funktiot f ja g ovat derivoituvia ja c R on vakio. 1. Dc = 0 (vakiofunktion derivaatta) 2. Derivaatta kuvaa funktion hetkellistä kasvunopeutta. Geometrisesti tulkittuna funktion derivaatta kohdassa x 0 on funktion kuvaajalle kohtaan x 0 piirretyn tangentin kulmakerroin. Funktio f on derivoituva

Lisätiedot

Vastaukset 1. A = (-4,3) B = (6,1) C = (4,8) D = (-7,-1) E = (-1,0) F = (3,-3) G = (7,-9) 3. tämä on ihan helppoa

Vastaukset 1. A = (-4,3) B = (6,1) C = (4,8) D = (-7,-1) E = (-1,0) F = (3,-3) G = (7,-9) 3. tämä on ihan helppoa Vastaukset 1. A = (4,3) B = (6,1) C = (4,8) D = (7,1) E = (1,0) F = (3,3) G = (7,9) 2. 3. tämä on ihan helppoa 4. 5. a) (0, 0) b) Kolmannessa c) Ensimmäisessä d) toisessa ja neljännessä 117 6. 7. 8. esimerkiksi

Lisätiedot

Lukumäärän laskeminen 1/7 Sisältö ESITIEDOT:

Lukumäärän laskeminen 1/7 Sisältö ESITIEDOT: Lukumäärän laskeminen 1/7 Sisältö Samapituisten merkkijonojen lukumäärä I Olkoon tehtävänä muodostaa annetuista merkeistä (olioista, alkioista) a 1,a 2,a 3,..., a n jonoja, joissa on p kappaletta merkkejä.

Lisätiedot

Johdanto 2. 2 Osamääräkunnan muodostaminen 7. 3 Osamääräkunnan isomorfismit 16. Lähdeluettelo 20

Johdanto 2. 2 Osamääräkunnan muodostaminen 7. 3 Osamääräkunnan isomorfismit 16. Lähdeluettelo 20 Osamääräkunta LuK-tutkielma Lauri Aalto Opiskelijanumero: 2379263 Matemaattisten tieteiden laitos Oulun yliopisto Kevät 2016 Sisältö Johdanto 2 1 Käsitteitä ja merkintöjä 3 2 Osamääräkunnan muodostaminen

Lisätiedot

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Kurssikoe on maanantaina 29.6. Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla. HY / Avoin ylioisto Johdatus yliopistomatematiikkaan, kesä 201 Harjoitus 7 Ratkaisut palautettava viimeistään perjantaina 26.6.201 klo 16.00. Huom! Luennot ovat salissa CK112 maanantaista 1.6. lähtien.

Lisätiedot

a b c d + + + + + + + + +

a b c d + + + + + + + + + 28. 10. 2010!"$#&%(')'+*(#-,.*/1032/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + + + 2. 3. 4. 5. 6. + + + + + + + + + + P1. Valitaan kannaksi sivu, jonka pituus on 4. Koska toinen jäljelle jäävistä sivuista

Lisätiedot

MS-A0004 - Matriisilaskenta Laskuharjoitus 3

MS-A0004 - Matriisilaskenta Laskuharjoitus 3 MS-A0004 - Matriisilaskenta Laskuharjoitus 3 atkaisut Tehtävä Merkitään matriisin rivejä, 2 ja 3. Gaussin eliminoinnilla saadaan 3 5 4 7 3 5 4 7 3 2 4 2+ 0 3 0 6 6 8 4 3+2 2 0 3 0 6 3 5 4 7 0 3 0 6 3+

Lisätiedot

Johdatus diskreettiin matematiikkaan Harjoitus 7, 28.10.2015

Johdatus diskreettiin matematiikkaan Harjoitus 7, 28.10.2015 Johdatus diskreettiin matematiikkaan Harjoitus 7, 28.10.2015 1. Onko olemassa yhtenäistä verkkoa, jossa (a) jokaisen kärjen aste on 6, (b) jokaisen kärjen aste on 5, ja paperille piirrettynä sivut eivät

Lisätiedot

Lohkoasetelmat. Heliövaara 1

Lohkoasetelmat. Heliövaara 1 Lohkoasetelmat Heliövaara 1 Kiusatekijä Kaikissa kokeissa, kokeen tuloksiin voi vaikuttaa vaihtelu joka johtuu kiusatekijästä. Kiusatekijä on tekijä, jolla mahdollisesti on vaikutusta vastemuuttujan arvoon,

Lisätiedot

Koesuunnittelu Latinalaiset neliöt. TKK (c) Ilkka Mellin (2005) 1

Koesuunnittelu Latinalaiset neliöt. TKK (c) Ilkka Mellin (2005) 1 Koesuunnittelu Latinalaiset neliöt TKK (c) Ilkka Mellin (2005) 1 Latinalaiset neliöt Latinalaisten neliöiden koeasetelma ja sen malli Latinalaisten neliöiden koeasetelman analysointi Laskutoimitusten suorittaminen

Lisätiedot

Tekijät: Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen, Pekka Vaaraniemi

Tekijät: Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen, Pekka Vaaraniemi 2. OSA: GEOMETRIA Tekijät: Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen, Pekka Vaaraniemi Alkupala Montako tasokuviota voit muodostaa viidestä neliöstä siten, että jokaisen neliön vähintään

Lisätiedot

Lohkoasetelmat. Vilkkumaa / Kuusinen 1

Lohkoasetelmat. Vilkkumaa / Kuusinen 1 Lohkoasetelmat Vilkkumaa / Kuusinen 1 Motivointi 1/3 Kaksisuuntaisella varianssianalyysilla voidaan tutkia kahden tekijän A ja B vaikutusta sekä niiden yhdysvaikutusta tutkimuksen kohteeseen Kaksisuuntaisessa

Lisätiedot

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt TKK (c) Ilkka Mellin (005) Koesuunnittelu TKK (c) Ilkka Mellin (005) : Mitä opimme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan yhden tekijän vaikutusta vastemuuttujaan,

Lisätiedot

Asenna myös mikroskopian lisäpala (MBF ImageJ for Microscopy Collection by Tony Collins) http://rsbweb.nih.gov/ij/plugins/mbf-collection.

Asenna myös mikroskopian lisäpala (MBF ImageJ for Microscopy Collection by Tony Collins) http://rsbweb.nih.gov/ij/plugins/mbf-collection. Asentaminen Ohjelman voi ladata vapaasti webistä (http://rsbweb.nih.gov/ij/) ja siitä on olemassa versiot eri käyttöjärjestelmille. Suurimmalle osalle käyttäjistä sopii parhaiten valmiiksi käännetty asennuspaketti

Lisätiedot

Esim Brand lkm keskiarvo keskihajonta A ,28 5,977 B ,06 3,866 C ,95 4,501

Esim Brand lkm keskiarvo keskihajonta A ,28 5,977 B ,06 3,866 C ,95 4,501 Esim. 2.1.1. Brand lkm keskiarvo keskihajonta A 10 251,28 5,977 B 10 261,06 3,866 C 10 269,95 4,501 y = 260, 76, n = 30 SS 1 = (n 1 1)s 2 1 = (10 1)5, 977 2 321, 52 SS 2 = (n 2 1)s 2 2 = (10 1)3, 8662

Lisätiedot

Residuaalit. Residuaalit. UK Ger Fra US Austria. Maat

Residuaalit. Residuaalit. UK Ger Fra US Austria. Maat TAMPEREEN YLIOPISTO Tilastollisen mallintamisen harjoitustyö Teemu Kivioja ja Mika Helminen Epätasapainoisen koeasetelman analyysi Worksheet 5 Matematiikan, tilastotieteen ja filosofian laitos Tilastotiede

Lisätiedot

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua Mallivastaukset - Harjoituskoe E E a) x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4,35 < 0 x 3 7 4 b) 0 / x + dx = 0 ln x + = ln + ln 0 + = ln 0 Vastaus: ln c) x 4 3x 4 = 0 Sijoitetaan x = u Tulon nollasääntö

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät: MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 10 1 Sarjakehitelmiä Palautetaan mieliin, että potenssisarja on sarja joka on muotoa a n (x x 0 ) n = a 0 + a 1 (x x 0 ) + a 2 (x x 0 ) 2 + a 3 (x x 0 ) 3 +. n=0 Kyseinen

Lisätiedot

Ilmoittaudu Weboodissa klo (sali L4) pidettävään 1. välikokeeseen!

Ilmoittaudu Weboodissa klo (sali L4) pidettävään 1. välikokeeseen! 8069 TILASTOTIETEEN PERUSMENETELMÄT I Harjoitus 7, viikko 9, kevät 2013 (Muut kuin taloustieteiden tiedekunnan opiskelijat) MUISTA MIKROLUOKKAHARJOITUKSET VIIKOLLA 9! Ilmoittaudu Weboodissa 4.3.2013 klo

Lisätiedot

Opiskelija viipymisaika pistemäärä

Opiskelija viipymisaika pistemäärä 806109 TILASTOTIETEEN PERUSMENETELMÄT I Harjoitus 7, viikko 9, kevät 2012 (Muut kuin taloustieteiden tiedekunnan opiskelijat) MUISTA MIKROLUOKKAHARJOITUKSET VIIKOILLA 8 JA 9! 1. Jatkoa harjoituksen 5 tehtävään

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

0, niin vektorit eivät ole kohtisuorassa toisiaan vastaan.

0, niin vektorit eivät ole kohtisuorassa toisiaan vastaan. Tekijä Pitkä matematiikka 4 9.1.016 168 a) Lasketaan vektorien a ja b pistetulo. a b = (3i + 5 j) (7i 3 j) = 3 7 + 5 ( 3) = 1 15 = 6 Koska pistetulo a b 0, niin vektorit eivät ole kohtisuorassa toisiaan

Lisätiedot

3. Useamman selittäajäan regressiomalli. p-selittäaväaäa muuttujaa. Y i = + 1 X i1 +...+ p X ip + u i

3. Useamman selittäajäan regressiomalli. p-selittäaväaäa muuttujaa. Y i = + 1 X i1 +...+ p X ip + u i 3. Useamman selittäajäan regressiomalli p-selittäaväaäa muuttujaa Y i = + 1 X i1 +...+ p X ip + u i i = 1,...,n (> p), missäa n = havaintojen lukumäaäaräa otoksessa. Oletukset kuten aiemmin: (1) E(u i

Lisätiedot

(d) Laske selittäjään paino liittyvälle regressiokertoimelle 95 %:n luottamusväli ja tulkitse tulos lyhyesti.

(d) Laske selittäjään paino liittyvälle regressiokertoimelle 95 %:n luottamusväli ja tulkitse tulos lyhyesti. 2. VÄLIKOE vuodelta -14 1. Liitteessä 1 on esitetty R-ohjelmalla saatuja tuloksia aineistosta, johon on talletettu kahdenkymmenen satunnaisesti valitun miehen paino (kg), vyötärön ympärysmitta (cm) ja

Lisätiedot

Tilastollisten menetelmien käyttö Kelan tutkimustoiminnassa

Tilastollisten menetelmien käyttö Kelan tutkimustoiminnassa Tilastollisten menetelmien käyttö Kelan tutkimustoiminnassa Risto Lehtonen Helsingin yliopisto Kela 1 Tilastokeskuksen SAS-seminaari 16.11.2009 Aiheita Kelan tutkimustoiminta SAS-sovellukset vaativien

Lisätiedot

Kaksisuuntaisen varianssianalyysin tilastollisessa malli voidaan esittää seuraavassa muodossa:

Kaksisuuntaisen varianssianalyysin tilastollisessa malli voidaan esittää seuraavassa muodossa: Mat-.03 Koesuunnittelu ja tilastolliset mallit Mat-.03 Koesuunnittelu ja tilastolliset mallit / Ratkaisut Aiheet: Avainsanat: Kaksisuuntainen varianssianalsi Aritmeettinen keskiarvo, Estimointi, F-testi,

Lisätiedot

Dynaaminen optimointi

Dynaaminen optimointi Dynaaminen optimointi Tapa ratkaista optimointitehtävä Tehtävä ratkaistaan vaiheittain ja vaiheet yhdistetään rekursiivisesti Perustuu optimaalisuusperiaatteeseen: Optimaalisen ratkaisupolun loppuosa on

Lisätiedot

ATH-koulutus: R ja survey-kirjasto THL 16.2.2011. 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1

ATH-koulutus: R ja survey-kirjasto THL 16.2.2011. 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1 ATH-koulutus: R ja survey-kirjasto THL 16.2.2011 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1 Sisältö Otanta-asetelman kuvaaminen R:llä ja survey-kirjastolla Perustunnusluvut Regressioanalyysit 16. 2. 2011

Lisätiedot

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13

Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.2014 klo 10 13 Helsingin, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 9.6.014 klo 10 13 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt: x + a) 3 x + 1 > 0 c) x x + 1 = 1 x 3 4 b) e x + e x 3

Lisätiedot

KOHDE: Kansakoulukuja 1 Fredrikinkatu 57 Tilatiedot 1. Kerros

KOHDE: Kansakoulukuja 1 Fredrikinkatu 57 Tilatiedot 1. Kerros Fredrikinkatu 57 Tilatiedot 1. Kerros Tilatunnus Tilanumero Käyttötarkoitus Pinta ala '2C94 1,H1 HISSI 1 3,9 '2C9D 1,H2 HISSI 2 3,9 '2CA6 1,H3 HISSI 3 2,0 '2CAF 1,H4 HISSI 4 2,0 '2BC5 101 SÄ 1,8 '2BAA

Lisätiedot

TW- EAV510 / TW- EAV510 AC: IPSeC- Ohjeistus

TW- EAV510 / TW- EAV510 AC: IPSeC- Ohjeistus TW- EAV510 / TW- EAV510 AC: IPSeC- Ohjeistus IPSec- yhteys kahden TW- EAV510/TW- EAV510AC laitteen välille HUOM! Jos yhteyttä käytetään 3G/4G/LTE- verkon yli, pitää käytössä olla operaattorilta julkiset

Lisätiedot

Vastepintamenetelmä. Kuusinen/Heliövaara 1

Vastepintamenetelmä. Kuusinen/Heliövaara 1 Vastepintamenetelmä Kuusinen/Heliövaara 1 Vastepintamenetelmä Vastepintamenetelmässä pyritään vasteen riippuvuutta siihen vaikuttavista tekijöistä approksimoimaan tekijöiden polynomimuotoisella funktiolla,

Lisätiedot

Projektiivisen geometrian alkeita

Projektiivisen geometrian alkeita Projektiivisen geometrian alkeita Jotkin kilpailutehtävät saattavat ratketa helpoimmin menetelmillä, jotka kuuluvat ns. projektiivisen geometrian alaan. Projektiivinen geometria on eräänlaista pelkän viivoittimen

Lisätiedot

Johdatus tilastotieteeseen Kaksisuuntainen varianssianalyysi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Kaksisuuntainen varianssianalyysi. TKK (c) Ilkka Mellin (2005) 1 ohdatus tilastotieteeseen Kaksisuuntainen varianssianalyysi TKK (c) Ilkka Mellin (2005) Kaksisuuntainen varianssianalyysi Varianssianalyysi: ohdanto Kaksisuuntainen varianssianalyysi ja sen suorittaminen

Lisätiedot

a) Arkistokatu ja Maaherrankatu ovat yhdensuuntaiset. Väite siis pitää paikkansa.

a) Arkistokatu ja Maaherrankatu ovat yhdensuuntaiset. Väite siis pitää paikkansa. Tekijä MAA3 Geometria 14.8.2016 1 a) Arkistokatu ja Maaherrankatu ovat yhdensuuntaiset. Väite siis pitää paikkansa. b) Pirttiniemenkatu ja Tenholankatu eivät ole yhdensuuntaisia. Väite ei siis pidä paikkaansa.

Lisätiedot

USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI

USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI TEORIA USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI Regressiomalleilla kuvataan tilanteita, jossa suureen y arvot riippuvat joukosta ns selittäviä muuttujia x 1, x 2,..., x p oletetun funktiomuotoisen

Lisätiedot

Lisää segmenttipuusta

Lisää segmenttipuusta Luku 24 Lisää segmenttipuusta Segmenttipuu on monipuolinen tietorakenne, joka mahdollistaa monenlaisten kyselyiden toteuttamisen tehokkaasti. Tähän mennessä olemme käyttäneet kuitenkin segmenttipuuta melko

Lisätiedot

2. Keskiarvojen vartailua

2. Keskiarvojen vartailua 2. Keskiarvojen vartailua Esimerkki 2.1: Oheiset mittaukset liittyvät Portland Sementin sidoslujuuteen (kgf/cm 2 ). Mittaukset y 1 ovat nykyisestä seoksesta ja mittaukset y 2 uudesta seoksesta, jossa lisäaineena

Lisätiedot

TILASTOLLINEN LAADUNVALVONTA

TILASTOLLINEN LAADUNVALVONTA 1 Aki Taanila TILASTOLLINEN LAADUNVALVONTA 31.10.2008 2 TILASTOLLINEN LAADUNVALVONTA Tasalaatuisuus on hyvä tavoite, jota ei yleensä voida täydellisesti saavuttaa: asiakaspalvelun laatu vaihtelee, vaikka

Lisätiedot

Harjoitustehtävät, syys lokakuu 2010. Helpommat

Harjoitustehtävät, syys lokakuu 2010. Helpommat Harjoitustehtävät, syys lokakuu 010. Helpommat Ratkaisuja 1. Kellon minuutti- ja tuntiosoittimet ovat tasan suorassa kulmassa kello 9.00. Milloin ne ovat seuraavan kerran tasan suorassa kulmassa? Ratkaisu.

Lisätiedot

9 Projektiivisen geometrian alkeita

9 Projektiivisen geometrian alkeita 9 9 Projektiivisen geometrian alkeita 800-luvun alussa syntynyt projektiivinen geometria oli ensimmäinen todellinen Eukleideen luoman geometrian alueen laajennus. Projektiivista geometriaa voi ja pitäisikin

Lisätiedot

Taloustieteen perusteet 31A00110 2016 Mallivastaukset 3, viikko 4

Taloustieteen perusteet 31A00110 2016 Mallivastaukset 3, viikko 4 Taloustieteen perusteet 31A00110 2016 Mallivastaukset 3, viikko 4 1. Tarkastellaan pulloja valmistavaa yritystä, jonka päiväkohtainen tuotantofunktio on esitetty alla olevassa taulukossa. L on työntekijöiden

Lisätiedot

Epäeuklidisista geometrioista

Epäeuklidisista geometrioista Epäeuklidisista geometrioista Euklidisen ja epäeuklidisen geometrian erottava tekijä on yhdensuuntaisuusaksiooma. Sen aksiooma-asemaa kritisoitiin jo antiikin aikana: sen arveltiin olevan todistettavissa

Lisätiedot

Esimerkki 8. Ratkaise lineaarinen yhtälöryhmä. 3x + 5y = 22 3x + 4y = 4 4x 8y = 32. 3 5 22 r 1 + r 3. 0 13 26 4 8 32 r 3 4r 1. LM1, Kesä 2014 47/68

Esimerkki 8. Ratkaise lineaarinen yhtälöryhmä. 3x + 5y = 22 3x + 4y = 4 4x 8y = 32. 3 5 22 r 1 + r 3. 0 13 26 4 8 32 r 3 4r 1. LM1, Kesä 2014 47/68 Esimerkki 8 Ratkaise lineaarinen yhtälöryhmä 3x + 5y = 22 3x + 4y = 4 4x 8y = 32. 3 5 22 r 1 + r 3 3 4 4 4 8 32 1 3 10 0 13 26 4 8 32 r 3 4r 1 1 3 10 3 4 4 r 2 3r 1 4 8 32 1 3 10 0 13 26 r 2 /13 0 4 8

Lisätiedot

Kemometriasta. Matti Hotokka Fysikaalisen kemian laitos Åbo Akademi Http://www.abo.fi/~mhotokka

Kemometriasta. Matti Hotokka Fysikaalisen kemian laitos Åbo Akademi Http://www.abo.fi/~mhotokka Kemometriasta Matti Hotokka Fysikaalisen kemian laitos Åbo Akademi Http://www.abo.fi/~mhotokka Mistä puhutaan? Määritelmiä Määritys, rinnakkaismääritys Mittaustuloksen luotettavuus Kalibrointi Mittausten

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon ongelma p. 1/18 Puuttuvan tiedon ongelma pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto mtl.uta.fi/tilasto/sekamallit/puupitkit.pdf

Lisätiedot

Salkin poliorokotekoe Ryhmän koko Sairastuvuus (per 100000) Hoitoryhmä 200000 28 Vertailuryhmä 200000 71 Ei saanut rokottaa 350000 46

Salkin poliorokotekoe Ryhmän koko Sairastuvuus (per 100000) Hoitoryhmä 200000 28 Vertailuryhmä 200000 71 Ei saanut rokottaa 350000 46 TKK (c) Ilkka Mellin (2005) 1 suunnittelu: Johdanto Johdattelevia esimerkkejä suunnittelu ja tilastolliset mallit Johdanto TKK (c) Ilkka Mellin (2005) 2 suunnittelu: Johdanto Johdattelevia esimerkkejä

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

Huomaa, että 0 kitkakerroin 1. Aika harvoin kitka on tasan 0. Koska kitkakerroin 1, niin

Huomaa, että 0 kitkakerroin 1. Aika harvoin kitka on tasan 0. Koska kitkakerroin 1, niin Kun alat vetää jotain esinettä pitkin alustaa, huomaat, että tarvitaan tietty nollaa suurempi voima ennen kuin mainittu esine lähtee edes liikkeelle. Yleensä on vielä niin, että liikkeelle lähteminen vaatii

Lisätiedot

Induktio kaavan pituuden suhteen

Induktio kaavan pituuden suhteen Induktio kaavan pituuden suhteen Lauselogiikan objektikieli määritellään kurssilla Logiikka 1B seuraavasti: 1. Lausemuuttujat p 1, p 2, p 3,... ovat kaavoja. 2. Jos A on kaava, niin A on kaava. 3. Jos

Lisätiedot