Frequencies. Frequency Table

Koko: px
Aloita esitys sivulta:

Download "Frequencies. Frequency Table"

Transkriptio

1 GET FILE='C:\Documents and Settings\haukkala\My Documents\kvanti\kvanti_harjo'+ '_label.sav'. DATASET NAME DataSet WINDOW=FRONT. FREQUENCIES VARIABLES=koulv paino /ORDER= ANALYSIS. Frequencies [DataSet] C:\Documents and Settings\haukkala\My Documents\kvanti \kvanti_harjo_label.sav Statistics N Valid Missing Koulutusv Paino uodet grammoina Frequency Table Valid Missing Cumulative Frequency Percent Valid Percent Percent,0,0,0,,, 6,,, 6,,,5,4,4,8 5,5,5,4 90 5,6 5,6 8,0 49 4,5 4,6,6 0 9, 9,,8 7 9,6 9,7 4,6 7 9,6 9,7 5, 6 9, 9,4 60,7 07 6, 6, 66,8 5 6,9 7,0 7,8 47 7, 7, 8, 99 5,9 5,9 87,0 5 4,4 4,5 9,5 5 4,0 4,0 95,5 58,7,7 97, 48,4,4 98,7 6,5,5 99, 4,4,4 99,6 4,, 99,7 5,, 99,9,, 99,9,0,0 99,9,0,0 00,0,0,0 00, , 00,0 9, ,0 Page

2 CORRELATIONS /VARIABLES=paino koulv ika /PRINT=TWOTAIL NOSIG /STATISTICS DESCRIPTIVES /MISSING=PAIRWISE. s Descriptive Statistics Mean Std. Deviation N 76,596 5, ,90, ,5,4 95 s Pearson Sig. (-tailed) N Pearson Sig. (-tailed) N Pearson Sig. (-tailed) N **. is significant at the 0.0 level (-tailed). Paino Koulutusv grammoina uodet -,5**,56** ,5** -,49** ,56** -,49** GRAPH /SCATTERPLOT(BIVAR)=koulv WITH paino /MISSING=LISTWISE. Graph GRAPH /SCATTERPLOT(BIVAR)=koulv WITH paino BY sukup /MISSING=LISTWISE. Graph Page

3 40,00 Mies Nainen Fit line for Mies Nainen 0,00 00,00 80,00 60,00 40,00 R Sq Linear = 0,00 R Sq Linear = 0,07 R Sq Linear = 0,06 0, REGRESSION /MISSING LISTWISE /STATISTICS COEFF OUTS R ANOVA ZPP /CRITERIA=PIN(.05) POUT(.0) /NOORIGIN /DEPENDENT paino /METHOD=ENTER koulv. Partial Corr [DataSet] C:\Documents and Settings\haukkala\My Documents\kvanti \kvanti_harjo_label.sav Page

4 s Control Variables -none- a & Koulutusv Paino uodet grammoina,000 -,5., ,5,000, ,48,54 6 6,07 -, ,000 -,06., ,06,000, Page 4

5 s Control Variables -none- a & a. Cells contain zero-order (Pearson) correlations. -,48,07 6 6,54 -, ,000 -,04., ,04,000, Partial Corr s Control Variables Koulutusv Paino uodet grammoina,000 -,065., ,065,000, [DataSet] C:\Documents and Settings\haukkala\My Documents\kvanti \kvanti_harjo_label.sav Variables Entered/Removed b Variables Variables Entered Removed Method Koulutusvu odet a. Enter a. All requested variables entered. b. Dependent Variable: Page 5

6 Summary Adjusted R Std. Error of R R Square Square the Estimate,5 a,06,05 4,97 a. Predictors:, ANOVA b Residual a. Predictors:, b. Dependent Variable: Sum of Squares Mean Square F Sig. 0,95 0,95 5,596,000 a 75550,5 6 4, ,48 6 Coefficients a Unstandardized Standardized Coefficients Coefficients B Std. Error Beta t Sig. 8,60,860 95,564,000 -,504,069 -,5-7,,000 Page 6

7 Coefficients a a. Dependent Variable: s Zero-order Partial Part -,5 -,5 -,5 NONPAR CORR /VARIABLES=paino koulv ika /PRINT=BOTH TWOTAIL NOSIG /MISSING=PAIRWISE. [DataSet] C:\Documents and Settings\haukkala\My Documents\kvanti \kvanti_harjo_label.sav Variables Entered/Removed b Variables Variables Entered Removed Method Koulutusvu odet a. Enter a. Enter a. Enter a. All requested variables entered. b. Dependent Variable: Summary Adjusted R Std. Error of R R Square Square the Estimate,5 a,06,05 4,97,67 b,08,07 4,8806,507 c,57,56,09 Summary Change Statistics R Square Change F Change Sig. F Change,06 5,596 6,000,0 4,77 6,000,9 04,07 60,000 a. Predictors:, b. Predictors:,, c. Predictors:,,, Page 7

8 ANOVA d Residual Residual Residual a. Predictors:, b. Predictors:,, Sum of Squares Mean Square F Sig. 0,95 0,95 5,596,000 a 75550,5 6 4, ,48 6 7, ,974 48,66,000 b 74489,5 6, , , , 86,758,000 c , , ,48 6 c. Predictors:,,, d. Dependent Variable: Coefficients a Unstandardized Standardized Coefficients Coefficients B Std. Error Beta t Sig. 8,60,860 95,564,000 -,504,069 -,5-7,,000 7,094,768 40,77,000 -,87,076 -,07 -,77,000,65,05, 6,50,000 9,76,668 55,69,000 -,40,067 -,05 -,0,06,7,0,8 7,708,000-4,488,45 -,480 -,57,000 Page 8

9 Coefficients a a. Dependent Variable: s Zero-order Partial Part -,5 -,5 -,5 -,5 -,065 -,064,54,, -,5 -,06 -,0,54,,5 -,485 -,485 -,478 Excluded Variables c Collinearity Partial Statistics Beta In t Sig. Tolerance, a 6,50,000,,808 -,479 a -,87,000 -,48,995 -,480 b -,57,000 -,485,995 a. Predictors in the :, b. Predictors in the :,, c. Dependent Variable: Page 9

Kvantitatiivinen genetiikka moniste s. 56

Kvantitatiivinen genetiikka moniste s. 56 Kvantitatiivinen genetiikka moniste s. 56 - määrällisten ominaisuuksien periytymisen hallinta - mendelismi oli aluksi vastatuulessa siksi että darwinistit, joilla oli paljon valtaa Britanniassa, olivat

Lisätiedot

Data-analyysi II. Sisällysluettelo. Simo Kolppo [Type the document subtitle]

Data-analyysi II. Sisällysluettelo. Simo Kolppo [Type the document subtitle] Data-analyysi II [Type the document subtitle] Simo Kolppo 26.3.2014 Sisällysluettelo Johdanto... 1 Tutkimuskysymykset... 1 Aineistojen esikäsittely... 1 Economic Freedom... 1 Nuorisobarometri... 2 Aineistojen

Lisätiedot

[MTTTA] TILASTOMENETELMIEN PERUSTEET, KEVÄT 209 https://coursepages.uta.fi/mttta/kevat-209/ HARJOITUS 5 viikko 8 RYHMÄT: ke 2.5 3.45 ls. C6 Leppälä to 08.30 0.00 ls. C6 Korhonen to 2.5 3.45 ls. C6 Korhonen

Lisätiedot

Frequencies. [DataSet1] C:\Documents and Settings\kurssi\Työpöytä\Kurssin.sav. Page 1. Notes. 14-maalis :56:17. Output Created Comments Data

Frequencies. [DataSet1] C:\Documents and Settings\kurssi\Työpöytä\Kurssin.sav. Page 1. Notes. 14-maalis :56:17. Output Created Comments Data FREQUECIES VARIABLES=sukup sivsaa ika alki koulv bdi_ paino q6 q t upi3 /STATISTICS=STDDEV RAGE MIIMUM MAXIMUM MEA MEDIA MODE /HISTOGRAM ORMAL /ORDER=AALYSIS. Frequencies otes Input Value Handling Resources

Lisätiedot

Esim Brand lkm keskiarvo keskihajonta A ,28 5,977 B ,06 3,866 C ,95 4,501

Esim Brand lkm keskiarvo keskihajonta A ,28 5,977 B ,06 3,866 C ,95 4,501 Esim. 2.1.1. Brand lkm keskiarvo keskihajonta A 10 251,28 5,977 B 10 261,06 3,866 C 10 269,95 4,501 y = 260, 76, n = 30 SS 1 = (n 1 1)s 2 1 = (10 1)5, 977 2 321, 52 SS 2 = (n 2 1)s 2 2 = (10 1)3, 8662

Lisätiedot

Harjoittele tulkintoja

Harjoittele tulkintoja Harjoittele tulkintoja Syksy 9: KT (55 op) Kvantitatiivisen aineiston keruu ja analyysi SPSS tulosteiden tulkintaa/til Analyysit perustuvat aineistoon: Haavio-Mannila, Elina & Kontula, Osmo (1993): Suomalainen

Lisätiedot

Sisällysluettelo 6 REGRESSIOANALYYSI. Metsämuuronen: Monimuuttujamenetelmien perusteet SPSS-ympäristössä ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON...

Sisällysluettelo 6 REGRESSIOANALYYSI. Metsämuuronen: Monimuuttujamenetelmien perusteet SPSS-ympäristössä ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON... Sisällysluettelo ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON...5 SISÄLLYSLUETTELO... 6 LYHYT SANASTO VASTA-ALKAJILLE... 7 1. MONIMUUTTUJAMENETELMÄT IHMISTIETEISSÄ... 9 1.1 MONIMUUTTUJA-AINEISTON ERITYISPIIRTEITÄ...

Lisätiedot

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA

1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Päättely yhden selittäjän lineaarisesta regressiomallista Ennustaminen, Ennuste, Ennusteen luottamusväli, Estimaatti, Estimaattori,

Lisätiedot

Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta?

Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Yhden otoksen suhteellisen osuuden testaus Ongelma: Poikkeaako perusjoukon suhteellinen osuus vertailuarvosta? Hypoteesit H 0 : p = p 0 H 1 : p p 0 tai H 1 : p > p 0 tai H 1 : p < p 0 Suhteellinen osuus

Lisätiedot

voidaan hylätä, pienempi vai suurempi kuin 1 %?

voidaan hylätä, pienempi vai suurempi kuin 1 %? [TILTP1] TILASTOTIETEEN JOHDANTOKURSSI, Syksy 2011 http://www.uta.fi/~strale/tiltp1/index.html 30.9.2011 klo 13:07:54 HARJOITUS 5 viikko 41 Ryhmät ke 08.30 10.00 ls. C8 Leppälä to 12.15 13.45 ls. A2a Laine

Lisätiedot

ATH-aineiston tilastolliset analyysit SPSS/PASW SPSS analyysit / Risto Sippola 1

ATH-aineiston tilastolliset analyysit SPSS/PASW SPSS analyysit / Risto Sippola 1 ATH-aineiston tilastolliset analyysit SPSS/PASW 16.2.2011 SPSS analyysit / Risto Sippola 1 Aineiston avaaminen Aineisto on saatu SPSS-muotoon ja tallennettu koneelle sijaintiin, josta sitä voidaan käyttää

Lisätiedot

Demotehtävä + liitteet (muuttujaluettelo, käytettävät analyysimenetelmät hypoteeseineen, osa SPSS-ohjelman tulostuslistasta)

Demotehtävä + liitteet (muuttujaluettelo, käytettävät analyysimenetelmät hypoteeseineen, osa SPSS-ohjelman tulostuslistasta) 1 KTE.139 Tutkimusaineiston analyysi Demot 5 ja 6 (7.3.-18.3.2005) Ritva Sakari-Rantala (sakari@sport.jyu.fi, puh. 260 2094) Demotehtävä + liitteet (muuttujaluettelo, käytettävät analyysimenetelmät hypoteeseineen,

Lisätiedot

Mat Tilastollisen analyysin perusteet. Painotettu PNS-menetelmä. Avainsanat:

Mat Tilastollisen analyysin perusteet. Painotettu PNS-menetelmä. Avainsanat: Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Mallin valinta Painotettu PNS-menetelmä Alaspäin askellus, Askellus, Askeltava valikointi, Diagnostinen grafiikka, Diagnostiset

Lisätiedot

SPSS-pikaohje. Jukka Jauhiainen OAMK / Tekniikan yksikkö

SPSS-pikaohje. Jukka Jauhiainen OAMK / Tekniikan yksikkö SPSS-pikaohje Jukka Jauhiainen OAMK / Tekniikan yksikkö SPSS on ohjelmisto tilastollisten aineistojen analysointiin. Hyvinvointiteknologian ATK-luokassa on asennettuna SPSS versio 13.. Huom! Ainakin joissakin

Lisätiedot

Teema 10: Regressio- ja varianssianalyysi

Teema 10: Regressio- ja varianssianalyysi Teema 1: Regressio- ja varianssianalyysi Regressioanalyysi lienee t-testin ohella maailman eniten käytetty tilastollinen menetelmä. Sitä sivuttiin jo alustavasti Teemassa 4. Varianssianalyysi liittyy useallakin

Lisätiedot

Teema 3: Tilastollisia kuvia ja tunnuslukuja

Teema 3: Tilastollisia kuvia ja tunnuslukuja Teema 3: Tilastollisia kuvia ja tunnuslukuja Tilastoaineiston peruselementit: havainnot ja muuttujat havainto: yhtä havaintoyksikköä koskevat tiedot esim. henkilön vastaukset kyselylomakkeen kysymyksiin

Lisätiedot

SPSS-perusteet. Sisältö

SPSS-perusteet. Sisältö SPSS-perusteet Sisältö Ikkunat 3 Päävalikot 5 Valikot 6 Aineiston käsittely 6 Muuttujamuunnokset 7 Aineistojen kuvailu analyysit 8 Havaintomatriisin luominen ja käsittely 10 Muulla sovelluksella tehdyn

Lisätiedot

SPSS OPAS. Metropolia Liiketalous

SPSS OPAS. Metropolia Liiketalous 1 Metropolia Liiketalous SPSS OPAS Aihe sivu 1. Ohjelman periaate 2 2. Aineistoikkuna 3 3. Frekvenssit 4 4. Muuttujien arvojen luokittelu 5 5. Tunnusluvut 6 6. Ristiintaulukointi 7 7. Hajontakaavio 8 8.Korrelaatio

Lisätiedot

Graph. COMPUTE x=rv.normal(0,0.04). COMPUTE y=rv.normal(0,0.04). execute.

Graph. COMPUTE x=rv.normal(0,0.04). COMPUTE y=rv.normal(0,0.04). execute. COMPUTE x=rv.ormal(0,0.04). COMPUTE y=rv.ormal(0,0.04). execute. compute hplib_man_r = hplib_man + x. compute arvokons_man_r = arvokons_man + y. GRAPH /SCATTERPLOT(BIVAR)=hplib_man_r WITH arvokons_man_r

Lisätiedot

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot)

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot) R-ohjelman käyttö data-analyysissä Panu Somervuo 2014 Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. 0) käynnistetään R-ohjelma Huom.1 allaolevissa ohjeissa '>' merkki on R:n

Lisätiedot

2. Aineiston kuvailua

2. Aineiston kuvailua 2. Aineiston kuvailua Avaa (File/Open/Data ) aineistoikkunaan tiedosto tilp150.sav. Aineisto on koottu Tilastomenetelmien peruskurssilla olleilta. Tiedot osallistumisesta demoihin, tenttipisteet, tenttien

Lisätiedot

MONIMUUTTUJAMENETELMISTÄ RAKENNEYHTÄLÖMALLINNUKSEEN MUUTTUJIEN NORMAALISUUS. Statistics

MONIMUUTTUJAMENETELMISTÄ RAKENNEYHTÄLÖMALLINNUKSEEN MUUTTUJIEN NORMAALISUUS. Statistics MONIMUUTTUJAMENETELMISTÄ RAKENNEYHTÄLÖMALLINNUKSEEN 28.4.2016 MANNE KALLIO 2016 MUUTTUJIEN NORMAALISUUS : Frequencies Statistics Output: Skewness ja kurtosis -1 1 < 2 X std.error Skewnessin ja kurtosiksen

Lisätiedot

1. USEAN SELITTÄJÄN LINEAARINEN REGRESSIOMALLI JA OSITTAISKORRELAATIO

1. USEAN SELITTÄJÄN LINEAARINEN REGRESSIOMALLI JA OSITTAISKORRELAATIO Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Usean selittäjän lineaarinen regressiomalli Estimaatti, Estimaattori, Estimointi, Jäännösneliösumma, Jäännöstermi, Jäännösvarianssi,

Lisätiedot

1. REGRESSIOMALLIN SYSTEMAATTISEN OSAN MUOTO

1. REGRESSIOMALLIN SYSTEMAATTISEN OSAN MUOTO Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Regressiodiagnostiikka Cooken etäisyys, Funktionaalinen muoto, Diagnostinen grafiikka, Diagnostiset testit, Heteroskedastisuus,

Lisätiedot

TKMS7a-f/LRS20a-f/MAS2/KVS2/TMS82a-f/JOM/TJM/YRM Monimuuttujamenetelmien soveltaminen taloustieteissä. Tentti

TKMS7a-f/LRS20a-f/MAS2/KVS2/TMS82a-f/JOM/TJM/YRM Monimuuttujamenetelmien soveltaminen taloustieteissä. Tentti TKMS7a-f/LRS20a-f/MAS2/KVS2/TMS82a-f/JOM/TJM/YRM Monimuuttujamenetelmien soveltaminen taloustieteissä Tentti 13.5.2014 Moduuli a: Faktorianalyysi Jos olet samaa mieltä esitetyn väitteen kanssa vastaa K,

Lisätiedot

E80. Data Uncertainty, Data Fitting, Error Propagation. Jan. 23, 2014 Jon Roberts. Experimental Engineering

E80. Data Uncertainty, Data Fitting, Error Propagation. Jan. 23, 2014 Jon Roberts. Experimental Engineering Lecture 2 Data Uncertainty, Data Fitting, Error Propagation Jan. 23, 2014 Jon Roberts Purpose & Outline Data Uncertainty & Confidence in Measurements Data Fitting - Linear Regression Error Propagation

Lisätiedot

SPSS ohje. Metropolia Business School/ Pepe Vilpas

SPSS ohje. Metropolia Business School/ Pepe Vilpas 1 SPSS ohje Page 1. Perusteita 2 2. Frekvenssijakaumat 3 3. Muuttujan luokittelu 4 4. Kaaviot 5 5. Tunnusluvut 6 6. Tunnuslukujen vertailu ryhmissä 7 9. Ristiintaulukointi ja Chi-testi 8 10. Hajontakaavio

Lisätiedot

A250A0050 Ekonometrian perusteet Tentti

A250A0050 Ekonometrian perusteet Tentti A250A0050 Ekonometrian perusteet Tentti 28.9.2016 Tentissä ei saa käyttää laskinta. Tentistä saa max 80 pistettä. Hyväksytysti suoritetusta harjoitustyöstä saa max 20 pistettä. Huom. Merkitse vastauspaperin

Lisätiedot

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2 OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 2 Luento 2 Kuvailevat tilastolliset menetelmät Käytetyimmät tilastolliset menetelmät käyttäjäkokemuksen

Lisätiedot

(d) Laske selittäjään paino liittyvälle regressiokertoimelle 95 %:n luottamusväli ja tulkitse tulos lyhyesti.

(d) Laske selittäjään paino liittyvälle regressiokertoimelle 95 %:n luottamusväli ja tulkitse tulos lyhyesti. 2. VÄLIKOE vuodelta -14 1. Liitteessä 1 on esitetty R-ohjelmalla saatuja tuloksia aineistosta, johon on talletettu kahdenkymmenen satunnaisesti valitun miehen paino (kg), vyötärön ympärysmitta (cm) ja

Lisätiedot

1. a) Luettele hyvän kvantitatiivisen tutkimuksen perusvaatimukset. b) Miten tutkimusraportissa arvioit tutkimuksen luotettavuutta?

1. a) Luettele hyvän kvantitatiivisen tutkimuksen perusvaatimukset. b) Miten tutkimusraportissa arvioit tutkimuksen luotettavuutta? 1. a) Luettele hyvän kvantitatiivisen tutkimuksen perusvaatimukset. b) Miten tutkimusraportissa arvioit tutkimuksen luotettavuutta? 2. Tehtävät 2-4 sekä 6 10 liittyvät keväällä 2002 suoritettuun ammattikorkeakoulusta

Lisätiedot

Tilastollisten menetelmien perusteet II TILTP3 Luentorunko

Tilastollisten menetelmien perusteet II TILTP3 Luentorunko Tilastollisten menetelmien perusteet II TILTP3 Luentorunko Raija Leppälä 29. helmikuuta 2012 Sisältö 1 Johdanto 2 1.1 Jatkuvista jakaumista 2 1.1.1 Normaalijakauma 2 1.1.2 Studentin t-jakauma 3 1.2 Satunnaisotos,

Lisätiedot

SPSS-ohjeita. Metropolia Pertti Vilpas

SPSS-ohjeita. Metropolia Pertti Vilpas 1 Metropolia Pertti Vilpas SPSS-ohjeita Aihe sivu 1. Ohjelman periaate 2 2. Aineistoikkuna 3 3. Frekvenssit 4 4. Muuttujien arvojen luokittelu 5 5. Tunnusluvut 6 6. Ristiintaulukointi 7 7. Hajontakaavio

Lisätiedot

Health 2000/2011 Surveys. Statistical Analysis using SAS and SAS-Callable SUDAAN Packages 17.6.2013. Esa Virtala. etunimi.sukunimi@thl.

Health 2000/2011 Surveys. Statistical Analysis using SAS and SAS-Callable SUDAAN Packages 17.6.2013. Esa Virtala. etunimi.sukunimi@thl. Health 2000/2011 Surveys Statistical Analysis using SAS and SAS-Callable SUDAAN Packages 17.6.2013 Esa Virtala etunimi.sukunimi@thl.fi Terveyden ja hyvinvoinnin laitos (THL) PL 30 00271 Helsinki Puhelin:

Lisätiedot

, Määrälliset tutkimusmenetelmät 2 4 op

, Määrälliset tutkimusmenetelmät 2 4 op 6206209, Määrälliset tutkimusmenetelmät 2 4 op Jyrki Reunamo, Helsingin yliopisto, Opettajankoulutuslaitos 19.2.2015 1 Varianssianalyysi (Pallant 2007, Tähtinen & Isoaho 2001) Verrataan ryhmien keskiarvoja.

Lisätiedot

Ohjeita kvantitatiiviseen tutkimukseen

Ohjeita kvantitatiiviseen tutkimukseen 1 Metropolia ammattikorkeakoulu Liiketalouden yksikkö Pertti Vilpas Ohjeita kvantitatiiviseen tutkimukseen Osa 2 KVANTITATIIVISEN TUTKIMUSAINEISTON ANALYYSI Sisältö: 1. Frekvenssi- ja prosenttijakaumat.2

Lisätiedot

Perusnäkymä yksisuuntaiseen ANOVAaan

Perusnäkymä yksisuuntaiseen ANOVAaan Metsämuuronen 2006. TTP Tutkimuksen tekemisen perusteet ihmistieteissä Taulukko.51.1 Analyysiin mukaan tulevat muuttujat Mja selite Merkitys mallissa F1 Ensimmäinen faktoripistemuuttuja Selitettävä muuttuja

Lisätiedot

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT

1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yksisuuntainen varianssianalyysi Bartlettin testi, Bonferronin menetelmä, F-testi, Jäännösneliösumma, χ 2 -testi, Kokonaiskeskiarvo,

Lisätiedot

I. Principles of Pointer Year Analysis

I. Principles of Pointer Year Analysis I. Principles of Pointer Year Analysis Fig 1. Maximum (red) and minimum (blue) pointer years. 1 Fig 2. Principle of pointer year calculation. Fig 3. Skeleton plot graph created by Kinsys/Kigraph programme.

Lisätiedot

2. Aineiston kuvaaminen graafisesti 1

2. Aineiston kuvaaminen graafisesti 1 2. Aineiston kuvaaminen graafisesti 1 Esimerkki 3. Frekvenssijakaumien muokkaaminen [Hei08, s.151-152] 1. Avataan http://users.metropolia.fi/~pasitr/opas/ran15a/02/esim/pytinki2003.sav. 2. Suoritetaan

Lisätiedot

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös):

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös): Tilastollinen tietojenkäsittely / SPSS Harjoitus 5 Tarkastellaan ensin aineistoa KUNNAT. Kyseessähän on siis kokonaistutkimusaineisto, joten tilastollisia testejä ja niiden merkitsevyystarkasteluja ei

Lisätiedot

VARIANSSIANALYYSI ANALYSIS OF VARIANCE

VARIANSSIANALYYSI ANALYSIS OF VARIANCE VARIANSSIANALYYSI ANALYSIS OF VARIANCE 1 Suomalaisten aikuisten pituusjakauma:.8.7.6.5.4.3.2.1 14 15 16 17 18 19 2 21 Jakauma ei ole normaali, sen olettaminen sellaiseksi johtaa virheellisiin päätelmiin.

Lisätiedot

Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 2003 LKM 14.8% 11.2% 19.7% 4.9% 3.6% 45.

Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 2003 LKM 14.8% 11.2% 19.7% 4.9% 3.6% 45. Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 8.8% 8.9%.%.% 9.7%.7% Etelä Länsi Itä Oulu Lappi Ahvenanmaa Länsi Etelä Itä Oulu Lappi Ahvenanmaa Läänien

Lisätiedot

MTTTP5, luento Luottamusväli, määritelmä

MTTTP5, luento Luottamusväli, määritelmä 23.11.2017/1 MTTTP5, luento 23.11.2017 Luottamusväli, määritelmä Olkoot A ja B satunnaisotoksen perusteella määriteltyjä satunnaismuuttujia. Väli (A, B) on parametrin 100(1 - ) %:n luottamusväli, jos P(A

Lisätiedot

Raija Leppälä. Ohjeita tilastollisen tutkimuksen toteuttamiseksi IBM SPSS Statistics -ohjelmiston avulla

Raija Leppälä. Ohjeita tilastollisen tutkimuksen toteuttamiseksi IBM SPSS Statistics -ohjelmiston avulla Raija Leppälä Ohjeita tilastollisen tutkimuksen toteuttamiseksi IBM SPSS Statistics -ohjelmiston avulla TAMPEREEN YLIOPISTO INFORMAATIOTIETEIDEN YKSIKÖN RAPORTTEJA 55/2017 TAMPERE 2017 TAMPEREEN YLIOPISTO

Lisätiedot

Opetus talteen ja jakoon oppilaille. Kokemuksia Aurajoen lukion tuotantoluokan toiminnasta Anna Saivosalmi 9.9.2011

Opetus talteen ja jakoon oppilaille. Kokemuksia Aurajoen lukion tuotantoluokan toiminnasta Anna Saivosalmi 9.9.2011 Opetus talteen ja jakoon oppilaille Kokemuksia Aurajoen lukion tuotantoluokan toiminnasta Anna Saivosalmi 9.9.2011 Aurajoen lukio ISOverstaan jäsen syksystä 2010 lähtien ISOverstas on maksullinen verkko-oppimisen

Lisätiedot

MS-C2{04 Tilastollisen analyysin perusteet

MS-C2{04 Tilastollisen analyysin perusteet MS-C2{04 Tilastollisen analyysin perusteet Tentti 7.4.20 4A/irtanen Kirjoita selvästi jokaiseen koepaperiin alla mainitussa järjestyksessä: OHlprrn (i) (ii) MS-C204 TAP 7.4.204 opiskelijanumero + kirjain

Lisätiedot

3. Useamman selittäajäan regressiomalli. p-selittäaväaäa muuttujaa. Y i = + 1 X i1 +...+ p X ip + u i

3. Useamman selittäajäan regressiomalli. p-selittäaväaäa muuttujaa. Y i = + 1 X i1 +...+ p X ip + u i 3. Useamman selittäajäan regressiomalli p-selittäaväaäa muuttujaa Y i = + 1 X i1 +...+ p X ip + u i i = 1,...,n (> p), missäa n = havaintojen lukumäaäaräa otoksessa. Oletukset kuten aiemmin: (1) E(u i

Lisätiedot

Menestyminen valintakokeissa ja todennäköisyyslaskussa

Menestyminen valintakokeissa ja todennäköisyyslaskussa 21.5.21 Menestyminen valintakokeissa ja todennäköisyyslaskussa Esa Pursiheimo 45761L 1 JOHDANTO...2 2 LÄHTÖTIEDOT JA OTOS...3 3 PÄÄSYKOETULOKSIEN YHTEISJAKAUMA...4 4 REGRESSIOANALYYSI...9 4.1 MALLI JA

Lisätiedot

Ohjeita tilastollisen tutkimuksen toteuttamiseksi SPSS for Windows -ohjelmiston avulla

Ohjeita tilastollisen tutkimuksen toteuttamiseksi SPSS for Windows -ohjelmiston avulla 1 Ohjeita tilastollisen tutkimuksen toteuttamiseksi SPSS for Windows -ohjelmiston avulla Raija Leppälä Opetusmoniste B 53 3. uudistettu painos Matematiikan, tilastotieteen ja filosofian laitos Toukokuu

Lisätiedot

Mediaanikorko on kiinteäkorkoiselle lainalle korkeampi. Tämä hypoteesi vastaa taloustieteen käsitystä korkojen määräytymismekanismista.

Mediaanikorko on kiinteäkorkoiselle lainalle korkeampi. Tämä hypoteesi vastaa taloustieteen käsitystä korkojen määräytymismekanismista. Mat-2.04 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Testit järjestysasteikollisille muuttujille Testit laatueroasteikollisille muuttujille Hypoteesi, Mannin ja Whitneyn testi (Wilcoxonin

Lisätiedot

Sisällysluettelo 6 VARIANSSIANALYYSI. Metsämuuronen: Monimuuttujamenetelmien perusteet SPSS-ympäristössä ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON...

Sisällysluettelo 6 VARIANSSIANALYYSI. Metsämuuronen: Monimuuttujamenetelmien perusteet SPSS-ympäristössä ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON... Sisällysluettelo ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON...5 SISÄLLYSLUETTELO... 6 LYHYT SANASTO VASTA-ALKAJILLE... 7 1. MONIMUUTTUJAMENETELMÄT IHMISTIETEISSÄ... 9 1.1 MONIMUUTTUJA-AINEISTON ERITYISPIIRTEITÄ...

Lisätiedot

Gap-filling methods for CH 4 data

Gap-filling methods for CH 4 data Gap-filling methods for CH 4 data Sigrid Dengel University of Helsinki Outline - Ecosystems known for CH 4 emissions; - Why is gap-filling of CH 4 data not as easy and straight forward as CO 2 ; - Gap-filling

Lisätiedot

7. Lohkominen ja sulautus 2 k kokeissa. Lohkominen (Blocking)

7. Lohkominen ja sulautus 2 k kokeissa. Lohkominen (Blocking) 7. Lohkominen ja sulautus 2 k kokeissa Lohkominen (Blocking) Lohkotekijät muodostuvat faktoreista, joiden suhteen ei voida tehdä (täydellistä) satunnaistamista. Esimerkiksi faktorikokeessa raaka-aine-erät

Lisätiedot

Juho Saari, professori, johtaja, Itä-Suomen yliopisto HUONO-OSAISUUS ELÄMÄN EDELLYTYKSET YHTEISKUNNAN POHJALLA

Juho Saari, professori, johtaja, Itä-Suomen yliopisto HUONO-OSAISUUS ELÄMÄN EDELLYTYKSET YHTEISKUNNAN POHJALLA Juho Saari, professori, johtaja, Itä-Suomen yliopisto HUONO-OSAISUUS ELÄMÄN EDELLYTYKSET YHTEISKUNNAN POHJALLA TUTKIMUKSEN LINJAT (2007-2013) (Kaikkiaan 65 johdettua tutkimushanketta, 1991-2013) Hyvinvointi

Lisätiedot

voidaan hylätä, pienempi vai suurempi kuin 1 %?

voidaan hylätä, pienempi vai suurempi kuin 1 %? [MTTTP1] TILASTOTIETEEN JOHDANTOKURSSI, Syksy 2017 http://www.uta.fi/sis/mtt/mtttp1/syksy_2017.html HARJOITUS 5 viikko 42 6.10.2017 klo 10:42:20 Ryhmät: ke 08.30 10.00 LS C6 Paajanen ke 10.15 11.45 LS

Lisätiedot

1. PARAMETRIEN ESTIMOINTI

1. PARAMETRIEN ESTIMOINTI Mat-.04 Tlastollse aalyys perusteet Mat-.04 Tlastollse aalyys perusteet / Ratkasut Aheet: Avasaat: Yhde selttäjä leaare regressomall Estmaatt, Estmaattor, Estmot, Jääöselösumma, Jääösterm, Jääösvarass,

Lisätiedot

TUTKIMUSOPAS. SPSS-opas

TUTKIMUSOPAS. SPSS-opas TUTKIMUSOPAS SPSS-opas Johdanto Tässä oppaassa esitetään SPSS-tilasto-ohjelman alkeita, kuten Excel-tiedoston avaaminen, tunnuslukujen laskeminen ja uusien muuttujien muodostaminen. Lisäksi esitetään esimerkkien

Lisätiedot

BIOSTATISTIIKKAA ESIMERKKIEN AVULLA. Kurssimoniste (luku 4) Janne Pitkäniemi. Helsingin Yliopisto Kansanterveystieteen laitos

BIOSTATISTIIKKAA ESIMERKKIEN AVULLA. Kurssimoniste (luku 4) Janne Pitkäniemi. Helsingin Yliopisto Kansanterveystieteen laitos BIOSTATISTIIKKAA ESIMERKKIEN AVULLA Kurssimoniste (luku 4) Janne Pitkäniemi Helsingin Yliopisto Kansanterveystieteen laitos Helsinki, 005 Biostatistiikkaa esimerkkien avulla 1 Janne Pitkäniemi, syksy 005

Lisätiedot

Summamuuttujat, aineiston pilkkominen ja osa-aineiston poiminta 1

Summamuuttujat, aineiston pilkkominen ja osa-aineiston poiminta 1 Summamuuttujat, aineiston pilkkominen ja osa-aineiston poiminta 1 Summamuuttujat, aineiston pilkkominen ja osa-aineiston poiminta I Summamuuttujien muodostus Olemassa olevista muuttujista voidaan laskea

Lisätiedot

MTTTP1, luento KERTAUSTA

MTTTP1, luento KERTAUSTA 26.9.2017/1 MTTTP1, luento 26.9.2017 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2017/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen

Lisätiedot

Mat Tilastollisen analyysin perusteet

Mat Tilastollisen analyysin perusteet / Mat-2.21 04 Tilastollisen analyysin perusteet Tentti 24.5.2013/Virtanen Kirjoita selvasti jokaiseen koepaperiin alia mainitussa jarjestyksessa: Mat-2.2104 Tap 24.5.2013 opiskelijanumero kirjain TEKSTATEN

Lisätiedot

MTTTP1, luento KERTAUSTA

MTTTP1, luento KERTAUSTA 25.9.2018/1 MTTTP1, luento 25.9.2018 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2018/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen

Lisätiedot

MTTTP1, luento KERTAUSTA

MTTTP1, luento KERTAUSTA 19.3.2019/1 MTTTP1, luento 19.3.2019 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2018/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen

Lisätiedot

Kvantitatiiviset tutkimusmenetelmät maantieteessä

Kvantitatiiviset tutkimusmenetelmät maantieteessä Kvantitatiiviset tutkimusmenetelmät maantieteessä Harjoitukset: 2 Muuttujan normaaliuden testaaminen, merkitsevyys tasot ja yhden otoksen testit FT Joni Vainikka, Yliopisto-opettaja, GO218, joni.vainikka@oulu.fi

Lisätiedot

Lumipallo regressioanalyysista. Logistinen regressioanalyysi. Soveltuvan menetelmän valinta. Regressioanalyysi. Logistinen regressioanalyysi I

Lumipallo regressioanalyysista. Logistinen regressioanalyysi. Soveltuvan menetelmän valinta. Regressioanalyysi. Logistinen regressioanalyysi I Lumipallo regressioanalyysista jokainen kirjoittaa lapulle yhden lauseen regressioanalyysista ja antaa sen seuraavalle Logistinen regressioanalyysi Y250. Kvantitatiiviset menetelmät (6 op) Hanna Wass tutkijatohtori

Lisätiedot

4.1 Frekvenssijakauman muodostaminen tietokoneohjelmilla

4.1 Frekvenssijakauman muodostaminen tietokoneohjelmilla 4 Aineiston kuvaaminen numeerisesti 1 4.1 Frekvenssijakauman muodostaminen tietokoneohjelmilla Tarkastellaan lasten syntymäpainon frekvenssijakauman (kuva 1, oikea sarake) muodostamista Excel- ja SPSS-ohjelmalla.

Lisätiedot

A B DIFFERENCE

A B DIFFERENCE I Mat-2.21 04 Tilastollisen analyysin perusteet Tentti 10.5.2013Nirtanen Ki~oita selvasti jokaiseen koepaperiin alia mainitussa ja~estyksessa: 0HJEITA Mat-2.2104 Tap 10.5.2013 opiskelijanumero ki~ain TEKSTATEN

Lisätiedot

Usean selittävän muuttujan regressioanalyysi

Usean selittävän muuttujan regressioanalyysi Tarja Heikkilä Usean selittävän muuttujan regressioanalyysi Yhden selittävän muuttujan regressioanalyysia on selvitetty kirjan luvussa 11, jonka esimerkissä18 muodostettiin lapsen syntymäpainolle lineaarinen

Lisätiedot

2. Yhden selittäajäan lineaarinen regressiomalli. 2.1 Malli ja parametrien estimointi. Malli:

2. Yhden selittäajäan lineaarinen regressiomalli. 2.1 Malli ja parametrien estimointi. Malli: 2. Yhden selittäajäan lineaarinen regressiomalli Regressio-termi peräaisin Galtonilta. IsÄan ja pojan pituus: PitkÄa isäa lyhyempi poika, lyhyt isäa pidempi poika. Son height (cm) 21 2 19 18 17 16 15 15

Lisätiedot

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3

OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3 OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 3 Tutkimussuunnitelman rakenne-ehdotus Otsikko 1. Motivaatio/tausta 2. Tutkimusaihe/ -tavoitteet ja kysymykset

Lisätiedot

Christina Gustafsson. Tilastollinen tietojenkäsittely STAT2100 IBM SPSS Statistics 22 for Windows Osa 2

Christina Gustafsson. Tilastollinen tietojenkäsittely STAT2100 IBM SPSS Statistics 22 for Windows Osa 2 Christina Gustafsson Tilastollinen tietojenkäsittely STAT2100 IBM SPSS Statistics 22 for Windows Osa 2 Kevät 2014 SISÄLLYSLUETTELO 5. YKSIULOTTEISET JAKAUMAT... 2 5.1. Frequencies-proseduuri... 2 5.2.

Lisätiedot

xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n =

xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n = 1. Tutkitaan paperin ominaispainon X(kg/dm 3 ) ja puhkaisulujuuden Y (m 2 ) välistä korrelaatiota. Tiettyä laatua olevasta paperierästä on otettu satunnaisesti 10 arkkia ja määritetty jokaisesta arkista

Lisätiedot

YFI:n yhteinen opiskelijapalaute 2013 Raportti

YFI:n yhteinen opiskelijapalaute 2013 Raportti YFI:n yhteinen opiskelijapalaute 2013 Raportti Antti Seppänen Sosiologia Yhteiskuntatieteiden ja filosofian laitos Jyväskylän yliopisto Kesä 2013 1 Sisällys 1 Johdanto...2 2 Ketkä kyselyyn vastasivat?...4

Lisätiedot

Christina Gustafsson. Tilastollinen tietojenkäsittely STAT2100 IBM SPSS Statistics 22 for Windows Osa 3

Christina Gustafsson. Tilastollinen tietojenkäsittely STAT2100 IBM SPSS Statistics 22 for Windows Osa 3 Christina Gustafsson Tilastollinen tietojenkäsittely STAT2100 IBM SPSS Statistics 22 for Windows Osa 3 Kevät 2014 SISÄLLYSLUETTELO 9. REGRESSIOSTA... 2 10. EPÄPARAMETRISIA TESTEJÄ... 7 10.1. Kahden riippumattoman

Lisätiedot

3. Useamman selittäajäan regressiomalli. p-selittäaväaäa muuttujaa

3. Useamman selittäajäan regressiomalli. p-selittäaväaäa muuttujaa 3. Useamman selittäajäan regressiomalli p-selittäaväaäa muuttujaa Y i = + 1 X i1 +...+ p X ip + u i i = 1,...,n (> p), missäa n = havaintojen lukumäaäaräa otoksessa. Oletukset kuten aiemmin: (1) E(u i

Lisätiedot

Pertti Vilpas Metropolia 1. KVANTITATIIVINEN TUTKIMUS

Pertti Vilpas Metropolia 1. KVANTITATIIVINEN TUTKIMUS 1 Pertti Vilpas Metropolia 1. KVANTITATIIVINEN TUTKIMUS Tutkimuksen aineiston keräämisessä voidaan käyttää joko laadullista tai määrällistä tutkimusmenetelmää. Tutkimusmenetelmiä voidaan myös yhdistää,

Lisätiedot

Perusestimointi 5 Analyysiä survey-datalla Tee Suomen datalla jokin oma kokeilu käyttäen tätä mallia Esimerkki PISA 2006:sta SAS:lla

Perusestimointi 5 Analyysiä survey-datalla Tee Suomen datalla jokin oma kokeilu käyttäen tätä mallia Esimerkki PISA 2006:sta SAS:lla Perusestimointi 5 Analyysiä survey-datalla Tee Suomen datalla jokin oma kokeilu käyttäen tätä mallia Esimerkki PISA 2006:sta SAS:lla proc surveymeans data=pisa.impuoecd; where cnt='fin' or cnt='deu' or

Lisätiedot

Residuaalit. Residuaalit. UK Ger Fra US Austria. Maat

Residuaalit. Residuaalit. UK Ger Fra US Austria. Maat TAMPEREEN YLIOPISTO Tilastollisen mallintamisen harjoitustyö Teemu Kivioja ja Mika Helminen Epätasapainoisen koeasetelman analyysi Worksheet 5 Matematiikan, tilastotieteen ja filosofian laitos Tilastotiede

Lisätiedot

vkp 4*(1+0)/(32-3)-1= vkp 2*(1+0)/(32-3)=

vkp 4*(1+0)/(32-3)-1= vkp 2*(1+0)/(32-3)= JÄRJESTYSKORRELAATIO 1. Hannu ja Kerttu pitävät karamelleista, mutta heidän mieltymyksensä poikkeavat hieman. Hannun mielestä punaiset karkit ovat parhaita ja keltaiset miellyttävät häntä vähiten. Kerttu

Lisätiedot

Muuttujien väliset riippuvuudet esimerkkejä

Muuttujien väliset riippuvuudet esimerkkejä Tarja Heikkilä Muuttujien väliset riippuvuudet esimerkkejä Sisältö MUUTTUJIEN VÄLISTEN YHTEYKSIEN TUTKIMINEN TILASTOLLINEN TESTAUS MERKITSEVYYSTASO MUUTTUJIEN VÄLISTEN YHTEYKSIEN TUTKIMINEN SPSS-OHJELMALLA

Lisätiedot

1. KAKSISUUNTAINEN VARIANSSIANALYYSI: TULOSTEN TULKINTA

1. KAKSISUUNTAINEN VARIANSSIANALYYSI: TULOSTEN TULKINTA Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Kaksisuuntainen varianssianalyysi Bonferronin menetelmä, F-testi, Jäännösneliösumma, Kaksisuuntainen varianssianalyysi Kokonaiskeskiarvo,

Lisätiedot

I Keskiarvot ja hajonnat muuttujista 3-26 niin, että luokittelevana muuttujana on muuttuja 2 eli sukupuoli

I Keskiarvot ja hajonnat muuttujista 3-26 niin, että luokittelevana muuttujana on muuttuja 2 eli sukupuoli I Keskiarvot ja hajonnat muuttujista 3-26 niin, että luokittelevana muuttujana on muuttuja 2 eli sukupuoli Group Statistics Luk1 Kirj1 Kielt1 Khuol1 Kirjall1 Ilmharj1 äyt1 Viest1 Sanaluokat1 Luk2 Kirj2

Lisätiedot

Suhtautuminen Sukupuoli uudistukseen Mies Nainen Yhteensä Kannattaa Ei kannata Yhteensä

Suhtautuminen Sukupuoli uudistukseen Mies Nainen Yhteensä Kannattaa Ei kannata Yhteensä 806109 TILASTOTIETEEN PERUSMENETELMÄT I Harjoitus 7, viikko 9, kevät 2011 (Muut kuin taloustieteiden tiedekunnan opiskelijat) MUISTA MIKROLUOKKAHARJOITUKSET VIIKOILLA 8 JA 9! 1. Eräässä suuressa yrityksessä

Lisätiedot

Ilmoittaudu Weboodissa klo (sali L4) pidettävään 1. välikokeeseen!

Ilmoittaudu Weboodissa klo (sali L4) pidettävään 1. välikokeeseen! 8069 TILASTOTIETEEN PERUSMENETELMÄT I Harjoitus 7, viikko 9, kevät 2013 (Muut kuin taloustieteiden tiedekunnan opiskelijat) MUISTA MIKROLUOKKAHARJOITUKSET VIIKOLLA 9! Ilmoittaudu Weboodissa 4.3.2013 klo

Lisätiedot

Ratkaisuja luvun 15 tehtäviin

Ratkaisuja luvun 15 tehtäviin Tarja Heikkilä 1. Luettele hyvän tutkimuksen perusvaatimukset ja riskitekijät. Katso Hyvän tutkimuksen perusvaatimukset luvusta 1 ja Tutkimusraporttien arviointi luvusta 4. Esimerkkejä riskitekijöistä

Lisätiedot

The relationship between leisuretime physical activity and work stress with special reference to heart rate variability analyses

The relationship between leisuretime physical activity and work stress with special reference to heart rate variability analyses The relationship between leisuretime physical activity and work stress with special reference to heart rate variability analyses Teisala Tiina, TtM, tohtorikoulutettava Jyväskylän yliopisto Terveystieteiden

Lisätiedot

Prospektiteoreettinen näkökulma

Prospektiteoreettinen näkökulma Miten paljon saneerausohjelmien onnistumiseen vaikuttaa yrittäjän kannustimet? Prospektiteoreettinen näkökulma Tapio Laakso 29.1.2010 Onnistumisen hyöty yrittäjälle vs. keskeytymisriski (Selvittäjän rooli?

Lisätiedot

Toimittaja 1 2 3 Erä 1 2 3 4 1 2 3 4 1 2 3 4 1 2 2 1 1 0 1 0 2 2 1 3 1 3 0 4 2 4 0 3 4 0 1 2 0 4 1 0 3 2 2 2 0 2 2 1

Toimittaja 1 2 3 Erä 1 2 3 4 1 2 3 4 1 2 3 4 1 2 2 1 1 0 1 0 2 2 1 3 1 3 0 4 2 4 0 3 4 0 1 2 0 4 1 0 3 2 2 2 0 2 2 1 Mat-.03 Koesuunnittelu ja tilastolliset mallit / Ratkaisut Aiheet: Avainsanat: Hierarkkiset koeasetelmat -faktorikokeet Vastepintamenetelmä Aritmeettinen keskiarvo, Estimaatti, Estimaattori, -testi, aktorikokeet,

Lisätiedot

Opiskelijakyselyn palaute, kevät 2012

Opiskelijakyselyn palaute, kevät 2012 Opiskelijakyselyn palaute, kevät 2012 Yhteenveto tuloksista Juha P. Lindstedt, Tytti Kemppainen Raportti Laatujärjestelmäpalvelut 12.11.2012 Tiivistelmä Laatujärjestelmäpalvelut 12.11.2012 Tekijä Juha

Lisätiedot

ATH-koulutus: Stata 11 THL ATH-koulutus / Tommi Härkänen 1

ATH-koulutus: Stata 11 THL ATH-koulutus / Tommi Härkänen 1 ATH-koulutus: Stata 11 THL 16.2.2011 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1 Sisältö Otanta-asetelman kuvaaminen Stata 11:llä Perustunnusluvut Regressioanalyysit Mallivakiointi 16. 2. 2011 ATH-koulutus

Lisätiedot

RISTIINTAULUKOINTI JA Χ 2 -TESTI

RISTIINTAULUKOINTI JA Χ 2 -TESTI RISTIINTAULUKOINTI JA Χ 2 -TESTI Kvantitatiiviset tutkimusmenetelmät maantieteessä Ti 27.10.2015, To 2.11.2015 Miisa Pietilä & Laura Hokkanen miisa.pietila@oulu.fi laura.hokkanen@outlook.com KURSSIKERRAN

Lisätiedot

Lohkotekijät muodostuvat faktoreista, joiden suhteen ei voida tehdä (täydellistä) satunnaistamista.

Lohkotekijät muodostuvat faktoreista, joiden suhteen ei voida tehdä (täydellistä) satunnaistamista. 7. Lohkominen ja sulautus 2 k kokeissa Lohkominen (Blocking) Lohkotekijät muodostuvat faktoreista, joiden suhteen ei voida tehdä (täydellistä) satunnaistamista. Esimerkiksi faktorikokeessa raaka-aine-erät

Lisätiedot

3. Useamman selittäajäan regressiomalli

3. Useamman selittäajäan regressiomalli 3. Useamman selittäajäan regressiomalli p-selittäaväaäa muuttujaa Y i = α + β 1 X i1 +...+ β p X ip + u i i = 1,...,n (> p), missäa n = havaintojen lukumäaäaräa otoksessa. Oletukset kuten aiemmin: (1)

Lisätiedot

Opiskelija viipymisaika pistemäärä

Opiskelija viipymisaika pistemäärä 806109 TILASTOTIETEEN PERUSMENETELMÄT I Harjoitus 7, viikko 9, kevät 2012 (Muut kuin taloustieteiden tiedekunnan opiskelijat) MUISTA MIKROLUOKKAHARJOITUKSET VIIKOILLA 8 JA 9! 1. Jatkoa harjoituksen 5 tehtävään

Lisätiedot

7. Lohkominen ja sulautus 2 k kokeissa. Lohkominen (Blocking)

7. Lohkominen ja sulautus 2 k kokeissa. Lohkominen (Blocking) 7. Lohkominen ja sulautus 2 k kokeissa Lohkominen (Blocking) Lohkotekijät muodostuvat faktoreista, joiden suhteen ei voida tehdä (täydellistä) satunnaistamista. Esimerkiksi faktorikokeessa raaka-aine-erät

Lisätiedot

... Vinkkejä lopputyön raportin laadintaan. Sisältö 1. Johdanto 2. Analyyseissä käytetyt muuttujat 3. Tulososa 4. Reflektio (korvaa Johtopäätökset)

... Vinkkejä lopputyön raportin laadintaan. Sisältö 1. Johdanto 2. Analyyseissä käytetyt muuttujat 3. Tulososa 4. Reflektio (korvaa Johtopäätökset) LIITE Vinkkejä lopputyön raportin laadintaan Sisältö 1. Johdanto 2. Analyyseissä käytetyt muuttujat 3. Tulososa 4. Reflektio (korvaa Johtopäätökset) 1. Johdanto Kerro johdannossa lukijalle, mitä jatkossa

Lisätiedot

Riitta Kilpeläinen Elia Liitiäinen Belle Selene Xia University of Eastern Finland Department of Forest Sciences Department of Economics and HECER

Riitta Kilpeläinen Elia Liitiäinen Belle Selene Xia University of Eastern Finland Department of Forest Sciences Department of Economics and HECER Riitta Kilpeläinen Elia Liitiäinen Belle Selene Xia University of Eastern Finland Department of Forest Sciences Department of Economics and HECER Suorat oppimistulosten mittaamistavat Suorat mittaamistavat

Lisätiedot

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi Mat-2.2104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yhteensopivuuden ja homogeenisuden testaaminen Bowmanin ja Shentonin testi, Hypoteesi, 2 -homogeenisuustesti, 2 -yhteensopivuustesti,

Lisätiedot