Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot)
|
|
- Aino Turunen
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 R-ohjelman käyttö data-analyysissä Panu Somervuo 2014 Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. 0) käynnistetään R-ohjelma Huom.1 allaolevissa ohjeissa '>' merkki on R:n prompti, eli sitä ei kirjoiteta itse kun annetaan R- komentoja. R-komennot ja R:n tulostus on esitetty Courier fontilla. Huom.2 kun luetaan dataa, on helpointa, että siirrytään R-ohjelmassa samaan hakemistoon, jossa data sijaitsee. Tämä tapahtuu File-valikon Change dir avulla. 1) luetaan data tiedostosta 'data.txt'. Määritetään, että desimaalierotin on pilkku ',' ja tiedoston ensimmäisellä rivillä on sarakkeiden nimet (header=t). Tiedoston sisältö luetaan muuttujaan, jonka nimeksi määrätään 'x'. > x=read.table("data.txt",dec=",", header=t) Kyseistä muuttujaa kutsutaan R-ohjelmassa data.frame:ksi. Siinä meillä on riveillä havaintoja (nyt 200 kpl) ja sarakkeissa havaintojen mittauksia (tässä tapauksessamme sukupuoli, muuttujat m1-5, ja hyvinvointi-arvo). dim(x) komento kertoo data-matriisin koon > dim(x) [1] eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot) 2) Katsotaan sarakkeiden lukuarvojen jakaumia > summary(x) sukupuoli m1 m2 m3 mies :100 Min. : Min. : Min. : nainen:100 1st Qu.: st Qu.: st Qu.: Median : Median : Median : Mean : Mean : Mean : rd Qu.: rd Qu.: rd Qu.: Max. : Max. : Max. : m4 m5 hyvinvointi Min. : A:50 Min. : st Qu.: B:50 1st Qu.: Median : C:50 Median : Mean : D:50 Mean : rd Qu.: rd Qu.: Max. : Max. : ) Piirretään boxplot: data-matriisin 'x' sarake, jonka nimi on 'hyvinvointi' sarakkeen 'sukupuoli' suhteen. Määritetään värit argumentilla col.
2 > boxplot(hyvinvointi ~ sukupuoli, data=x, col=c("blue","red")) 4) Käytetään t-testiä vertaamaan onko miesten ja naisten välillä tilastollisesti merkitsevää eroa > t.test(hyvinvointi ~ sukupuoli, data=x) Welch Two Sample t test data: hyvinvointi by sukupuoli t = , df = , p value = 1.137e 05 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: sample estimates: mean in group mies mean in group nainen Koska saatu p-arvo on pieni (1.137e-5), se kertoo että on hyvin epätodennäköistä saada samankokoinen tai suurempi ero ryhmien välille sattumalta (eli tilanteessa, jossa ryhmien välillä ei oikeasti olisi eroa), joten päätellään, että ryhmien välillä on oikeasti ero. 5) Piirretään boxplot: hyvinvointi-arvot versus muttujan m5-suhteen. Muuttuja m5 on faktori, jolla on neljä tasoa (A,B,C,D). Lisätään boxplottiin värejä parametrilla col. > boxplot(hyvinvointi ~ m5, data=x, col=c("red","blue","green","yellow"))
3 6) Käytetään yksisuuntaista varianssi-analyysiä (one-way ANOVA) testaamaan, onko ryhmien A,B,C,D keskiarvojen välillä ero. ANOVA:n tuloksena saadaan selville, poikkeaako joku ryhmien keskiarvoista muista, tämän jälkeen tehdään post hoc-testi käyttäen Tukeyn Honest Significant Differences testiä, josta saadaan selville minkä ryhmien välillä on eroja. Talletetaan ANOVA:n tulos muttujaan m. > m=aov(hyvinvointi ~ m5, data=x) > summary(m) Df Sum Sq Mean Sq F value Pr(>F) m e 12 *** Residuals > TukeyHSD(m) Tukey multiple comparisons of means 95% family wise confidence level Fit: aov(formula = hyvinvointi ~ m5, data = x) $m5 diff lwr upr p adj B A C A D A C B D B D C ) Piirretään scatterplot: muuttujan m1 ja hyvinvoinnin välillä. Määrätään x-akselin nimeksi 'ruokavalio' ja y-akselin nimeksi 'hyvinvointi'
4 > plot(x$m1, x$hyvinvointi, xlab="ruokavalio", ylab="hyvinvointi") 8) Sovitetaan lineaarinen regressiosuora > model1=lm(hyvinvointi ~ m1, data=x) 9) Lisätään suoran kuvaaja edelliseen kuvaan > abline(model1) 10) Testataan onko edellämainitun suoran kulmakertoimen arvo tilastollisesti merkitsevä > summary(model1) Call: lm(formula = hyvinvointi ~ m1, data = x) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) *** m e 10 *** Residual standard error: on 198 degrees of freedom Multiple R squared: , Adjusted R squared: F statistic: on 1 and 198 DF, p value: 7.946e 10
5 m1-efektin arvo on tilastollisesti erittäin merkitsevä (pieni p-arvo). Tässä mallissa m1-efekti on suoran kulmakerroin. Intercept on offset-arvo, eli suoran y-akselin arvo, kun x-akselin arvo on nolla. Sen merkitsevyydestä ei tässä esimerkissä olla kiinnostuneita. 11) Sovitetaan lineaarinen malli, jossa hyvinvointia yritetään selittää muuttujien sukupuoli, m1, ja m4 avulla > model2=lm(hyvinvointi ~ sukupuoli + m1 + m4, data=x) > summary(model2) Call: lm(formula = hyvinvointi ~ sukupuoli + m1 + m4, data = x) Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) sukupuolinainen e 06 *** m e 11 *** m Residual standard error: 1.41 on 196 degrees of freedom Multiple R squared: , Adjusted R squared: F statistic: on 3 and 196 DF, p value: 2.605e 13 Havaitaan että sekä sukupuolen, että muuttujan m1 vaikutus on tilastollisesti merkitsevä (pieni p- arvo), sen sijaan muuttujan m4 vaikutus ei ole tilastollisesti merkitsevä. Huom. tässä harjoituksessa ei ollut tarkoitus mennä tilastotieteen varsinaisiin syövereihin, mutta niinkuin kaikkien menetelmien käytössä ja tulosten tulkinnassa, on hyvä tietää mallien ja tilastollisten testien oletukset. Lineaarisissa malleissa yritetään selittää vastemuuttujaa tai selitettävää muuttujaa (meillä hyvinvointi) valittujen selittävien muuttujien lineaarikombinaatiolla. Selittävillä muuttujilla voi olla sekä pää-efekti että interaktio-efekti. Jälkimmäisessä tapauksessa päävaikutuksen efektillä ei ole varsinaisesti tulkintaa. Harjoitus-data esimerkissä selittävien muuttujien välillä ei ole voimakasta interaktiota (yhdysvaikutusta), jonka voi testata seuraavasti. R:ssä malli, jossa otetaan sekä pää-vaikutukset että interaktiotermit mukaan määritetään kertomerkin avulla (pelkkä sukupuoli+m1+m4 määrittely ottaisi mukaan vain selittävien muuttujien päävaikutukset). > model2i=lm(hyvinvointi ~ sukupuoli*m1*m4, data=x) > summary(model2i) Call: lm(formula = hyvinvointi ~ sukupuoli * m1 * m4, data = x) Residuals: Min 1Q Median 3Q Max
6 Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) sukupuolinainen m e 05 *** m sukupuolinainen:m sukupuolinainen:m m1:m sukupuolinainen:m1:m Residual standard error: 1.41 on 192 degrees of freedom Multiple R squared: , Adjusted R squared: F statistic: on 7 and 192 DF, p value: 1.588e 11 Tulostuksessa Coefficients, joiden nimissä on ':'-merkki tarkoittaa interaktio-termejä. Nähdään, että minkään näistä p-arvo ei ole pieni, joten merkitsevää yhdysvaikutusta ei siis ole valittujen muuttujien välillä. Näinollen vastemuuttujaa voidaan selittää päävaikutusten avulla (joista m1 on eniten merkitsevä). Huom. kuten nähdään, yhdysvaikutusten mukaanotto pienensi päävaikutusten merkitsevyyttä.
(d) Laske selittäjään paino liittyvälle regressiokertoimelle 95 %:n luottamusväli ja tulkitse tulos lyhyesti.
2. VÄLIKOE vuodelta -14 1. Liitteessä 1 on esitetty R-ohjelmalla saatuja tuloksia aineistosta, johon on talletettu kahdenkymmenen satunnaisesti valitun miehen paino (kg), vyötärön ympärysmitta (cm) ja
LisätiedotIlmoittaudu Weboodissa klo (sali L4) pidettävään 1. välikokeeseen!
8069 TILASTOTIETEEN PERUSMENETELMÄT I Harjoitus 7, viikko 9, kevät 2013 (Muut kuin taloustieteiden tiedekunnan opiskelijat) MUISTA MIKROLUOKKAHARJOITUKSET VIIKOLLA 9! Ilmoittaudu Weboodissa 4.3.2013 klo
LisätiedotSuhtautuminen Sukupuoli uudistukseen Mies Nainen Yhteensä Kannattaa Ei kannata Yhteensä
806109 TILASTOTIETEEN PERUSMENETELMÄT I Harjoitus 7, viikko 9, kevät 2011 (Muut kuin taloustieteiden tiedekunnan opiskelijat) MUISTA MIKROLUOKKAHARJOITUKSET VIIKOILLA 8 JA 9! 1. Eräässä suuressa yrityksessä
LisätiedotOpiskelija viipymisaika pistemäärä
806109 TILASTOTIETEEN PERUSMENETELMÄT I Harjoitus 7, viikko 9, kevät 2012 (Muut kuin taloustieteiden tiedekunnan opiskelijat) MUISTA MIKROLUOKKAHARJOITUKSET VIIKOILLA 8 JA 9! 1. Jatkoa harjoituksen 5 tehtävään
Lisätiedot2. Tietokoneharjoitukset
2. Tietokoneharjoitukset Demotehtävät 2.1 Jatkoa kotitehtävälle. a) Piirrä aineistosta pistediagrammi (KULUTUS, SAIRAST) ja siihen estimoitu regressiosuora. KULUTUS on selitettävä muuttuja. b) Määrää estimoidusta
LisätiedotResiduaalit. Residuaalit. UK Ger Fra US Austria. Maat
TAMPEREEN YLIOPISTO Tilastollisen mallintamisen harjoitustyö Teemu Kivioja ja Mika Helminen Epätasapainoisen koeasetelman analyysi Worksheet 5 Matematiikan, tilastotieteen ja filosofian laitos Tilastotiede
Lisätiedot1. Tietokoneharjoitukset
1. Tietokoneharjoitukset Aluksi Tällä kurssilla käytetään R-ohjelmistoa, jonka käyttämisestä lienee muutama sana paikallaan. R-ohjelmisto on laajasti käytetty vapaassa levityksessä oleva ammattimaiseen
LisätiedotYleinen lineaarinen malli eli usean selittäjän lineaarinen regressiomalli
MS-C2128 Ennustaminen ja aikasarja-analyysi 1. harjoitukset / Tehtävät Kotitehtävät: 2 Aiheet: Aluksi Yleinen lineaarinen malli eli usean selittäjän lineaarinen regressiomalli Tällä kurssilla käytetään
LisätiedotPerusnäkymä yksisuuntaiseen ANOVAaan
Metsämuuronen 2006. TTP Tutkimuksen tekemisen perusteet ihmistieteissä Taulukko.51.1 Analyysiin mukaan tulevat muuttujat Mja selite Merkitys mallissa F1 Ensimmäinen faktoripistemuuttuja Selitettävä muuttuja
LisätiedotOHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi. Luento 3
OHJ-7600 Ihminen ja tekniikka -seminaari, 4 op Käyttäjäkokemuksen kvantitatiivinen analyysi Luento 3 Tutkimussuunnitelman rakenne-ehdotus Otsikko 1. Motivaatio/tausta 2. Tutkimusaihe/ -tavoitteet ja kysymykset
LisätiedotATH-koulutus: R ja survey-kirjasto THL 16.2.2011. 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1
ATH-koulutus: R ja survey-kirjasto THL 16.2.2011 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1 Sisältö Otanta-asetelman kuvaaminen R:llä ja survey-kirjastolla Perustunnusluvut Regressioanalyysit 16. 2. 2011
LisätiedotTehtävä 1. (a) JYVÄSKYLÄN YLIOPISTO Matematiikan ja tilastotieteen laitos Parametrittomat ja robustit menetelmät Harjoitukset 7, vastaukset
JYVÄSKYLÄN YLIOPISTO Matematiikan ja tilastotieteen laitos Parametrittomat ja robustit menetelmät Harjoitukset 7, vastaukset 12.05.2009 Tehtävä 1 (a) x
LisätiedotVARIANSSIANALYYSI ANALYSIS OF VARIANCE
VARIANSSIANALYYSI ANALYSIS OF VARIANCE 1 Suomalaisten aikuisten pituusjakauma:.8.7.6.5.4.3.2.1 14 15 16 17 18 19 2 21 Jakauma ei ole normaali, sen olettaminen sellaiseksi johtaa virheellisiin päätelmiin.
Lisätiedotpisteet Frekvenssi frekvenssi Yhteensä
806118P JOHDATUS TILASTOTIETEESEEN Loppukoe 15.3.2018 (Jari Päkkilä) 1. Kevään -17 Johdaus tilastotieteeseen -kurssin opiskelijoiden harjoitusaktiivisuudesta saatujen pisteiden frekvenssijakauma: Harjoitus-
LisätiedotViherseinien efekti Tilastoanalyysi
Viherseinien efekti Tilastoanalyysi Risto Heikkinen Tutkimuskysymykset Seinän vaikutus koettuun haittoihin työympäristössä? Seinän vaikutus oireiden määrään? Mitkä tekijät selittävät viherseinän jatkokäytön
LisätiedotLisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo?
MTTTP5, kevät 2016 15.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen 1. Valitaan 25 alkion satunnaisotos jakaumasta N(µ, 25). Olkoon H 0 : µ = 12. Hylätään H 0, jos otoskeskiarvo
LisätiedotTilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä
Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi Esimerkit laskettu JMP:llä Antti Hyttinen Tampereen teknillinen yliopisto 29.12.2003 ii Ohjelmien
LisätiedotSPSS-perusteet. Sisältö
SPSS-perusteet Sisältö Ikkunat 3 Päävalikot 5 Valikot 6 Aineiston käsittely 6 Muuttujamuunnokset 7 Aineistojen kuvailu analyysit 8 Havaintomatriisin luominen ja käsittely 10 Muulla sovelluksella tehdyn
LisätiedotKvantitatiiviset menetelmät
Kvantitatiiviset menetelmät HUOM! Tentti pidetään tiistaina.. klo 6-8 V ls. Uusintamahdollisuus on rästitentissä.. ke 6 PR sali. Siihen tulee ilmoittautua WebOodissa 9. 8.. välisenä aikana. Soveltuvan
LisätiedotFrequencies. Frequency Table
GET FILE='C:\Documents and Settings\haukkala\My Documents\kvanti\kvanti_harjo'+ '_label.sav'. DATASET NAME DataSet WINDOW=FRONT. FREQUENCIES VARIABLES=koulv paino /ORDER= ANALYSIS. Frequencies [DataSet]
Lisätiedotvoidaan hylätä, pienempi vai suurempi kuin 1 %?
[TILTP1] TILASTOTIETEEN JOHDANTOKURSSI, Syksy 2011 http://www.uta.fi/~strale/tiltp1/index.html 30.9.2011 klo 13:07:54 HARJOITUS 5 viikko 41 Ryhmät ke 08.30 10.00 ls. C8 Leppälä to 12.15 13.45 ls. A2a Laine
LisätiedotNäistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina.
[MTTTP1] TILASTOTIETEEN JOHDANTOKURSSI, kevät 2019 https://coursepages.uta.fi/mtttp1/kevat-2019/ HARJOITUS 3 Joitain ratkaisuja 1. x =(8+9+6+7+10)/5 = 8, s 2 = ((8 8) 2 + (9 8) 2 +(6 8) 2 + (7 8) 2 ) +
LisätiedotMS-C2128 Ennustaminen ja aikasarja-analyysi 2. harjoitukset / Tehtävät Kotitehtävä: 3,4
MS-C2128 Ennustaminen ja aikasarja-analyysi 2. harjoitukset / Tehtävät Kotitehtävä: 3,4 Tehtävä 2.1. Jatkoa tietokonetehtävälle 1.2: (a) Piirrä aineistosta pisteparvikuvaaja (KULUTUS, SAIRAST) ja siihen
LisätiedotFoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 9. luento. Pertti Palo
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 9. luento Pertti Palo 22.11.2012 Käytännön asioita Eihän kukaan paikallaolijoista tee 3 op kurssia? 2. seminaarin ilmoittautuminen. 2. harjoitustyön
LisätiedotNäistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina.
[MTTTP1] TILASTOTIETEEN JOHDANTOKURSSI, Syksy 2017 http://www.uta.fi/sis/mtt/mtttp1/syksy_2017.html HARJOITUS 3 viikko 40 Joitain ratkaisuja 1. Suoritetaan standardointi. Standardoidut arvot ovat z 1 =
LisätiedotA130A0650-K Tilastollisen tutkimuksen perusteet 6 op Tentti / Anssi Tarkiainen & Maija Hujala
Kaavakokoelma, testinvalintakaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Tehtävä 1 a) Konepajan on hyväksyttävä alihankkijalta saatu tavaraerä, mikäli viallisten komponenttien
LisätiedotKandidaatintutkielman aineistonhankinta ja analyysi
Kandidaatintutkielman aineistonhankinta ja analyysi Anna-Kaisa Ylitalo M 315, anna-kaisa.ylitalo@jyu.fi Musiikin, taiteen ja kulttuurin tutkimuksen laitos Jyväskylän yliopisto 2018 2 Havaintomatriisi Havaintomatriisi
LisätiedotKaksisuuntaisen varianssianalyysin tilastollisessa malli voidaan esittää seuraavassa muodossa:
Mat-.03 Koesuunnittelu ja tilastolliset mallit Mat-.03 Koesuunnittelu ja tilastolliset mallit / Ratkaisut Aiheet: Avainsanat: Kaksisuuntainen varianssianalsi Aritmeettinen keskiarvo, Estimointi, F-testi,
LisätiedotSPSS-pikaohje. Jukka Jauhiainen OAMK / Tekniikan yksikkö
SPSS-pikaohje Jukka Jauhiainen OAMK / Tekniikan yksikkö SPSS on ohjelmisto tilastollisten aineistojen analysointiin. Hyvinvointiteknologian ATK-luokassa on asennettuna SPSS versio 13.. Huom! Ainakin joissakin
Lisätiedot54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös):
Tilastollinen tietojenkäsittely / SPSS Harjoitus 5 Tarkastellaan ensin aineistoa KUNNAT. Kyseessähän on siis kokonaistutkimusaineisto, joten tilastollisia testejä ja niiden merkitsevyystarkasteluja ei
LisätiedotTA4b Taloudellinen kasvu Harjoitus 1
TA4b Taloudellinen kasvu Harjoitus Heikki Korpela 9. huhtikuuta 207 Tehtävä. Maan taloutta kuvataan Solowin mallilla, jossa työntekijää kohden laskettu tuotantofunktio on y k 2. Olkoon nyt k 900, investointiaste
Lisätiedot[MTTTA] TILASTOMENETELMIEN PERUSTEET, KEVÄT 209 https://coursepages.uta.fi/mttta/kevat-209/ HARJOITUS 5 viikko 8 RYHMÄT: ke 2.5 3.45 ls. C6 Leppälä to 08.30 0.00 ls. C6 Korhonen to 2.5 3.45 ls. C6 Korhonen
LisätiedotData-analyysi II. Sisällysluettelo. Simo Kolppo [Type the document subtitle]
Data-analyysi II [Type the document subtitle] Simo Kolppo 26.3.2014 Sisällysluettelo Johdanto... 1 Tutkimuskysymykset... 1 Aineistojen esikäsittely... 1 Economic Freedom... 1 Nuorisobarometri... 2 Aineistojen
LisätiedotR: mikä, miksi ja miten?
R: mikä, miksi ja miten? Ilmari Ahonen Matematiikan ja tilastotieteen laitos, Turun yliopisto SSL R-Webinaari 2015 Vähän minusta Valmistuin maisteriksi Turun yliopistossa 2012 Teen neljättä vuotta väitöskirjaa
LisätiedotTilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit
Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit s t ja t kahden Sisältö t ja t t ja t kahden kahden t ja t kahden t ja t Tällä luennolla käsitellään epäparametrisia eli
LisätiedotTilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle
Tilastollisen analyysin perusteet Luento 11: Epäparametrinen vastine ANOVAlle - Sisältö - - - Varianssianalyysi Varianssianalyysissä (ANOVA) testataan oletusta normaalijakautuneiden otosten odotusarvojen
LisätiedotHarjoitukset 3 : Monimuuttujaregressio 2 (Palautus )
31C99904, Capstone: Ekonometria ja data-analyysi TA : markku.siikanen(a)aalto.fi & tuuli.vanhapelto(a)aalto.fi Harjoitukset 3 : Monimuuttujaregressio 2 (Palautus 7.2.2017) Tämän harjoituskerran tehtävät
LisätiedotEsim Brand lkm keskiarvo keskihajonta A ,28 5,977 B ,06 3,866 C ,95 4,501
Esim. 2.1.1. Brand lkm keskiarvo keskihajonta A 10 251,28 5,977 B 10 261,06 3,866 C 10 269,95 4,501 y = 260, 76, n = 30 SS 1 = (n 1 1)s 2 1 = (10 1)5, 977 2 321, 52 SS 2 = (n 2 1)s 2 2 = (10 1)3, 8662
Lisätiedot(b) Vedonlyöntikertoimet syytetyn ihonvärin eri luokissa
Oulun yliopiston matemaattisten tieteiden tutkimusyksikkö/tilastotiede 805306A JOHDATUS MONIMUUTTUJAMENETELMIIN, sl 2017 (Jari Päkkilä) Harjoitus 3, viikko 47 (19.20.11.): kotitehtävät Ratkaisuja 1. Floridan
LisätiedotRISTIINTAULUKOINTI JA Χ 2 -TESTI
RISTIINTAULUKOINTI JA Χ 2 -TESTI Kvantitatiiviset tutkimusmenetelmät maantieteessä Ti 27.10.2015, To 2.11.2015 Miisa Pietilä & Laura Hokkanen miisa.pietila@oulu.fi laura.hokkanen@outlook.com KURSSIKERRAN
Lisätiedot1. YKSISUUNTAINEN VARIANSSIANALYYSI: AINEISTON ESITYSMUODOT
Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yksisuuntainen varianssianalyysi Bartlettin testi, Bonferronin menetelmä, F-testi, Jäännösneliösumma, χ 2 -testi, Kokonaiskeskiarvo,
LisätiedotRistivalidointia ja grafiikkaa
Ristivalidointia ja grafiikkaa Jari Oksanen Maanantai 12. syyskuuta 2005 Tiivistelmä Tässä monisteessa on maantain tapahtumien yhteenveto. Aloitimme Eija Hurmeen kurssipäiväkirjalla ja sen jälkeen päätiomme
Lisätiedotxi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n =
1. Tutkitaan paperin ominaispainon X(kg/dm 3 ) ja puhkaisulujuuden Y (m 2 ) välistä korrelaatiota. Tiettyä laatua olevasta paperierästä on otettu satunnaisesti 10 arkkia ja määritetty jokaisesta arkista
Lisätiedot5 Osa 5: Ohjelmointikielen perusteita
5 Osa 5: Ohjelmointikielen perusteita 5.1 Omat funktiot R on lausekekieli: Kaikki komennot kuten funktiokutsut ja sijoitusoperaatiot ovat lausekkeita. Lausekkeet palauttavat jonkin arvon. Lausekkeita voidaan
LisätiedotSEM1, työpaja 2 (12.10.2011)
SEM1, työpaja 2 (12.10.2011) Rakenneyhtälömallitus Mplus-ohjelmalla POLKUMALLIT Tarvittavat tiedostot voit ladata osoitteesta: http://users.utu.fi/eerlaa/mplus Esimerkki: Planned behavior Ajzen, I. (1985):
Lisätiedotb1) harhattomuutta, b2) helppoutta, b3) herkkyyttä, b4) mitta-asteikkoa, b5) standardointia, b6) tarkkuutta.
806109P TILASTOTIETEEN PERUSMENETELMÄT I 1. välikoe 9.3.2012 (Jari Päkkilä) VALITSE VIIDESTÄ TEHTÄVÄSTÄ NELJÄ JA VASTAA VAIN NIIHIN! 1. Valitse kohdissa A-F oikea (vain yksi) vaihtoehto. Oikeasta vastauksesta
LisätiedotKokeellisen datan käsittely ja analysointi R:llä
TEKNILLINEN TIEDEKUNTA Kokeellisen datan käsittely ja analysointi R:llä Teemu Pätsi Ympäristötekniikka Kandidaatintyö Huhtikuu 2018 TEKNILLINEN TIEDEKUNTA Kokeellisen datan käsittely ja analysointi R:llä
Lisätiedotproc glm data = ex61; Title2 "Aliasing Structure of the 2_IV^(5-1) design"; model y = A B C D E /Aliasing; run; quit;
Title "Exercises 6"; Data ex61; input A B C D E y @@; Label A = "Furnance Temperature" B = "Heating Time" C = "Transfer Time" D = "Hold Down Time" E = "Quench of Oil Temperature" y = "Free Height of Leaf
LisätiedotMTTTP5, luento Luottamusväli, määritelmä
23.11.2017/1 MTTTP5, luento 23.11.2017 Luottamusväli, määritelmä Olkoot A ja B satunnaisotoksen perusteella määriteltyjä satunnaismuuttujia. Väli (A, B) on parametrin 100(1 - ) %:n luottamusväli, jos P(A
LisätiedotA250A0050 Ekonometrian perusteet Tentti
A250A0050 Ekonometrian perusteet Tentti 28.9.2016 Tentissä ei saa käyttää laskinta. Tentistä saa max 80 pistettä. Hyväksytysti suoritetusta harjoitustyöstä saa max 20 pistettä. Huom. Merkitse vastauspaperin
Lisätiedotpitkittäisaineistoissa
Puuttuvan tiedon ongelma p. 1/18 Puuttuvan tiedon ongelma pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto mtl.uta.fi/tilasto/sekamallit/puupitkit.pdf
LisätiedotLoad
Tampereen yliopisto Tilastollinen mallintaminen Mikko Alivuotila ja Anne Puustelli Lentokoneiden rakennuksessa käytettävien metallinkiinnittimien puristuskestävyys Matematiikan, tilastotieteen ja filosofian
LisätiedotPuheentutkimuksen tilastoanalyysin perusteet. 8. luento. Pertti Palo 20.1.2012
Puheentutkimuksen tilastoanalyysin perusteet 8. luento Pertti Palo 20.1.2012 Käytännön asioita Viimeisen seminaarin siirto: 2.3. 10-12 -> 2.3. 14-16. Miten seminaarin luentokuulustelun voi korvata? Harjoitustöiden
LisätiedotCLT255: Tulosten esittäminen ja niiden arviointi tilastomenetelmillä
CLT255: Tulosten esittäminen ja niiden arviointi tilastomenetelmillä Anssi Yli-Jyrä Syksy 2012 2. opetuskerta, 14.9.2012, luento ja harjoitukset Tämän opetuskerran ja siihen liittyvien harjoitusten jälkeen:
LisätiedotKeskipisteen lisääminen 2 k -faktorikokeeseen (ks. Montgomery 9-6)
Mat-.3 Koesuunnittelu ja tilastolliset mallit kevät Keskipisteen lisääminen k -faktorikokeeseen (ks. Montgomery 9-6) Esim (Montg. ex. 9-, 6-): Tutkitaan kemiallisen prosessin saannon Y riippuvuutta faktoreista
LisätiedotPasi Väkeväinen. Ohjeita tilastollisen tutkimuksen toteuttamiseksi R-ohjelmiston avulla
Pasi Väkeväinen Ohjeita tilastollisen tutkimuksen toteuttamiseksi R-ohjelmiston avulla TAMPEREEN YLIOPISTO INFORMAATIOTIETEIDEN YKSIKÖN RAPORTTEJA 64/2018 TAMPERE 2018 TAMPEREEN YLIOPISTO INFORMAATIOTIETEIDEN
LisätiedotHarjoitus 6 -- Ratkaisut
Harjoitus 6 -- Ratkaisut 1 Ei kommenttia. 2 Haetaan data tiedostosta. SetDirectory"homeofysjmattas" SetDirectory "c:documents and settingsmattasdesktopteachingatk2harjoitukseth06" netnfstuhome4ofysjmattas
Lisätiedot1. PÄÄTTELY YHDEN SELITTÄJÄN LINEAARISESTA REGRESSIOMALLISTA
Mat-2.104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat Päättely yhden selittäjän lineaarisesta regressiomallista Ennustaminen, Ennuste, Ennusteen luottamusväli, Estimaatti, Estimaattori,
Lisätiedot1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet
VAASAN YLIOPISTO/AVOIN YLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia 1 KURSSIKYSELYAINEISTO: 1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka
LisätiedotTUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas Itse arvioidun terveydentilan ja sukupuolen välinen riippuvuustarkastelu. Jyväskyläläiset 75-vuotiaat miehet ja naiset vuonna 1989.
LisätiedotMediaanikorko on kiinteäkorkoiselle lainalle korkeampi. Tämä hypoteesi vastaa taloustieteen käsitystä korkojen määräytymismekanismista.
Mat-2.04 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Testit järjestysasteikollisille muuttujille Testit laatueroasteikollisille muuttujille Hypoteesi, Mannin ja Whitneyn testi (Wilcoxonin
LisätiedotOpetus talteen ja jakoon oppilaille. Kokemuksia Aurajoen lukion tuotantoluokan toiminnasta Anna Saivosalmi 9.9.2011
Opetus talteen ja jakoon oppilaille Kokemuksia Aurajoen lukion tuotantoluokan toiminnasta Anna Saivosalmi 9.9.2011 Aurajoen lukio ISOverstaan jäsen syksystä 2010 lähtien ISOverstas on maksullinen verkko-oppimisen
LisätiedotYleistetyistä lineaarisista malleista
Yleistetyistä lineaarisista malleista Tilastotiede käytännön tutkimuksessa -kurssi, kesä 2001 Reijo Sund Klassinen lineaarinen malli y = Xb + e eli E(Y) = m, jossa m = Xb Satunnaiskomponentti: Y:n komponentit
LisätiedotTA4b Taloudellinen kasvu Harjoitus 2
TA4b Taloudellinen kasvu Harjoitus 2 Heikki Korpela 26. huhtikuuta 2017 Tehtävä 1. Tarkastellaan teknologiaa ja talouskasvua yhden maan mallilla (kirja, luku 8.3; luontomuistiinpanot, luku 8). Oletetaan,
LisätiedotGrafiikka, satunnaislukuja, jakaumia ja yleistettyjä lineaarisia malleja
Grafiikka, satunnaislukuja, jakaumia ja yleistettyjä lineaarisia malleja Jari Oksanen Tiistai 13. syyskuuta 2005 Tiivistelmä Aluksi laajennettiin ja kerrattiin edellisen päivän grafiikan virittelyä kosekavaa
LisätiedotMS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
Lisätiedot... Vinkkejä lopputyön raportin laadintaan. Sisältö 1. Johdanto 2. Analyyseissä käytetyt muuttujat 3. Tulososa 4. Reflektio (korvaa Johtopäätökset)
LIITE Vinkkejä lopputyön raportin laadintaan Sisältö 1. Johdanto 2. Analyyseissä käytetyt muuttujat 3. Tulososa 4. Reflektio (korvaa Johtopäätökset) 1. Johdanto Kerro johdannossa lukijalle, mitä jatkossa
LisätiedotHarjoitukset 4 : Paneelidata (Palautus )
31C99904, Capstone: Ekonometria ja data-analyysi TA : markku.siikanen(a)aalto.fi & tuuli.vanhapelto(a)aalto.fi Harjoitukset 4 : Paneelidata (Palautus 7.3.2017) Tämän harjoituskerran tarkoitus on perehtyä
LisätiedotSisällysluettelo 6 VARIANSSIANALYYSI. Metsämuuronen: Monimuuttujamenetelmien perusteet SPSS-ympäristössä ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON...
Sisällysluettelo ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON...5 SISÄLLYSLUETTELO... 6 LYHYT SANASTO VASTA-ALKAJILLE... 7 1. MONIMUUTTUJAMENETELMÄT IHMISTIETEISSÄ... 9 1.1 MONIMUUTTUJA-AINEISTON ERITYISPIIRTEITÄ...
Lisätiedot1 Johdatus varianssianalyysiin
Tilastollisia malleja 1 & 2: Varianssianalyysi Jarkko Isotalo Y131A & Y132A 15.1.2013 1 Johdatus varianssianalyysiin 1.1 Milloin varianssianalyysiä käytetään? Varianssianalyysi on tilastotieteellinen menetelmä,
LisätiedotPylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 2003 LKM 14.8% 11.2% 19.7% 4.9% 3.6% 45.
Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 8.8% 8.9%.%.% 9.7%.7% Etelä Länsi Itä Oulu Lappi Ahvenanmaa Länsi Etelä Itä Oulu Lappi Ahvenanmaa Läänien
Lisätiedot1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet
VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: 1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka
LisätiedotHARJOITUSKERTA 1: SPSS-OHJELMAN PERUSKÄYTTÖ JA MUUTTUJAMUUNNOKSET
HARJOITUSKERTA 1: SPSS-OHJELMAN PERUSKÄYTTÖ JA MUUTTUJAMUUNNOKSET OHJELMAN KÄYNNISTÄMINEN Käynnistääksesi ohjelman valitse All Programs > > IBM SPSS Statistics 2x, tai käynnistä ohjelma työpöydän kuvakkeesta.
LisätiedotKaikissa tämän ryhmän tehtävissä on vastattava seuraavan kysymykseen sen ohjeita noudattaen.
1 Kaikki tässä annetut harjoitustehtävät on muokattu vanhoista tenttitehtävistä. Kaikissa niissä tehtävissä, joissa koetulokset on annettu, kannattaa tehdä tilastolliset analyysit myös itse Excelillä tai
LisätiedotNuoruusiän vaikutus aikuisen painoindeksiin Data-analyysin perusmenetelmät Harjoitustyö. Lassi Miinalainen
Nuoruusiän vaikutus aikuisen painoindeksiin Data-analyysin perusmenetelmät Harjoitustyö Lassi Miinalainen lassimii@paju.oulu. 23.1.2012 Sisältö 1 Aineisto 2 1.1 Muuttujat...............................
LisätiedotHAVAITUT JA ODOTETUT FREKVENSSIT
HAVAITUT JA ODOTETUT FREKVENSSIT F: E: Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies (1) 59 28 4 91 Nainen (2) 5 14 174 193 Yhteensä 64 42 178 284 Usein Harvoin Ei tupakoi Yhteensä (1) (2) (3) Mies
LisätiedotKuva 7.2 vastaustaulu harjoitukseen 7.2
Harjoitus 7. Lataa tiedosto http://users.metropolia.fi/~pasitr/opas/ran13b/data/ran13b.zip levylle Z: ja pura se. Kun olet tehnyt kaikki seuraavat 17 tehtävää palauta Tuubiin harjoituksen 7 vastauksena
Lisätiedot805306A Johdatus monimuuttujamenetelmiin, 5 op
monimuuttujamenetelmiin, 5 op syksy 2018 Matemaattisten tieteiden laitos Lineaarinen erotteluanalyysi (LDA, Linear discriminant analysis) Erotteluanalyysin avulla pyritään muodostamaan selittävistä muuttujista
LisätiedotE80. Data Uncertainty, Data Fitting, Error Propagation. Jan. 23, 2014 Jon Roberts. Experimental Engineering
Lecture 2 Data Uncertainty, Data Fitting, Error Propagation Jan. 23, 2014 Jon Roberts Purpose & Outline Data Uncertainty & Confidence in Measurements Data Fitting - Linear Regression Error Propagation
LisätiedotMat Tilastollisen analyysin perusteet, kevät 2007
Mat-.14 Tilastollisen analyysin perusteet, kevät 7 7. luento: Tarina yhden selittään lineaarisesta regressiomallista atkuu Kai Virtanen 1 Luennolla 6 opittua Kuvataan havainnot (y, x ) yhden selittään
Lisätiedotpitkittäisaineistoissa
Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon
LisätiedotHarjoittele tulkintoja
Harjoittele tulkintoja Syksy 9: KT (55 op) Kvantitatiivisen aineiston keruu ja analyysi SPSS tulosteiden tulkintaa/til Analyysit perustuvat aineistoon: Haavio-Mannila, Elina & Kontula, Osmo (1993): Suomalainen
LisätiedotTarkista vielä ennen analysoinnin aloittamista seuraavat seikat:
Yleistä Tilastoapu on Excelin sisällä toimiva apuohjelma, jonka avulla voit analysoida tilastoaineistoja. Tilastoapu toimii Excelin Windows-versioissa Excel 2007, Excel 2010 ja Excel 2013. Kun avaat Tilastoavun,
LisätiedotMS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,
LisätiedotUsean selittävän muuttujan regressioanalyysi
Tarja Heikkilä Usean selittävän muuttujan regressioanalyysi Yhden selittävän muuttujan regressioanalyysia on selvitetty kirjan luvussa 11, jonka esimerkissä18 muodostettiin lapsen syntymäpainolle lineaarinen
LisätiedotHarjoitus 9: Excel - Tilastollinen analyysi
Harjoitus 9: Excel - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen regressioanalyysiin
LisätiedotATH-koulutus: Stata 11 THL ATH-koulutus / Tommi Härkänen 1
ATH-koulutus: Stata 11 THL 16.2.2011 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1 Sisältö Otanta-asetelman kuvaaminen Stata 11:llä Perustunnusluvut Regressioanalyysit Mallivakiointi 16. 2. 2011 ATH-koulutus
LisätiedotValitse ruudun yläosassa oleva painike Download Scilab.
Luku 1 Ohjeita ohjelmiston Scilab käyttöön 1.1 Ohjelmiston lataaminen Ohjeet ohjelmiston lataamiseen Windows-koneelle. Mene verkko-osoitteeseen www.scilab.org. Valitse ruudun yläosassa oleva painike Download
LisätiedotJakaumien merkitys biologisissa havaintoaineistoissa: Löytyykö ratkaisu Yleistetyistä Lineaarisista (Seka)Malleista?
1 Hydrobiologian tutkijaseminaari 20.3.2000 Jakaumien merkitys biologisissa havaintoaineistoissa: Löytyykö ratkaisu Yleistetyistä Lineaarisista (Seka)Malleista? Jari Hänninen Turun yliopisto Saaristomeren
LisätiedotMS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016
LisätiedotOsafaktorikokeet. Heliövaara 1
Osafaktorikokeet Heliövaara 1 Osafaktorikokeet Kun faktorien määrä 2 k -faktorikokeessa kasvaa, tarvittavien havaintojen määrä voi ylittää kokeentekijän resurssit. Myös estimoitavien korkean asteen yhdysvaikutustermien
LisätiedotMS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 3B Tilastolliset datajoukot Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Lukuvuosi 2016
LisätiedotRegressioanalyysi. Vilkkumaa / Kuusinen 1
Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen
LisätiedotTUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas JAKAUMAN MUOTO Vinous, skew (g 1, γ 1 ) Kertoo jakauman symmetrisyydestä Vertailuarvona on nolla, joka vastaa symmetristä jakaumaa (mm. normaalijakauma)
LisätiedotTavanomaisten otostunnuslukujen, odotusarvon luottamusvälin ja Box ja Whisker -kuvion määritelmät: ks. 1. harjoitukset.
Mat-.04 Tilastollisen analyysin perusteet Mat-.04 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Testit suhdeasteikollisille muuttujille Hypoteesi, Kahden riippumattoman otoksen t-testit,
LisätiedotKvantitatiivinen genetiikka moniste s. 56
Kvantitatiivinen genetiikka moniste s. 56 - määrällisten ominaisuuksien periytymisen hallinta - mendelismi oli aluksi vastatuulessa siksi että darwinistit, joilla oli paljon valtaa Britanniassa, olivat
LisätiedotSupplementary Table S1. Material list (a) Parameters Sal to Str
Tooth wear as a means to quantify intra-specific variations in diet and chewing movements - Scientific Reports 2016, 6:3037 Ivan Calandra, Gaëlle Labonne, Ellen Schulz-Kornas, Thomas M. Kaiser & Sophie
LisätiedotVastepintamenetelmä. Kuusinen/Heliövaara 1
Vastepintamenetelmä Kuusinen/Heliövaara 1 Vastepintamenetelmä Vastepintamenetelmässä pyritään vasteen riippuvuutta siihen vaikuttavista tekijöistä approksimoimaan tekijöiden polynomimuotoisella funktiolla,
Lisätiedot