( )
|
|
- Aku Karvonen
- 6 vuotta sitten
- Katselukertoja:
Transkriptio
1 ( ) TET TET TET ReExam Paper I Paper II sivatvmalai@yahoo.co.in Questions TRB - Page 1
2 II ( 7, 21 ) ( 3, 15 ) ( 3, 5) ( 6,2) (3,5) 1 ( 3, 5 ) (2 + ) ( - 2 ) (2 + ) ( - 2 ) = ( + 2 ) ( - 2 ) = ( ) 2 - (2 ) 2 = 5-12 = -7 (a + b )( a - b) = a 2 b 2 a = b =2 n (n > 1 ) 1 - n = = = = = 1-2 2x 1 = 8 3 x? 2 2x 1 = 3 x 2x 1 = 3 ( 3 x) 2x -1 = 9 3x 2x + 3x = x = 10 x = 2. =. x =.. =.. = x = ( x 1 ) x 3 + 5x 2 x x 2 + 6x + 5 = ( x + 5 ) ( x + 1 ) x 2 = x , A ) 51 B ) 24 C )33 D)42 Questions TRB - Page 2
3 = 6 42 Ð 18 = A ) 555 B) 500 C) 5055 D ) = 5 50 = = 5000 = = = = =225 11, % 15 % = 11, % = = = = 6250 = 10 % 20 % Ð 800 = 7200 ( 10 % ) 7200 Ð 1440 = 5760 ( 20 % ) % = 8000 = % = 7200 = = 2πr = 2 35 = = 220 = 4 = 220 = = 55 Questions TRB - Page 3
4 6,6,9,14,8,9,9,8 9 ( ) = Ð = 14 Ð 6 = 8 6,6,8,8,9,9,9,14 = 8. 5,, =. =. = = = = ( 20 3 ) = = 62 ( = 62 ) = = Ð 4 2 = Ð 1 = = Ð 2 3 = 21, ( ), Ð 4 2 = Ð 4 2 = Ð 2 = 15 Ð 2 = Ð 1 = Ð 1 = 8 Ð 1 = = = Ð 2 3 = 9 Ð 6 = = Questions TRB - Page 4
5 A B C D A ABCD = d ( h 1 + h 2 ) = 10 ( 8+ 5) = 5 13 = 65. A B C D E F 3080 D % = 3080 = 616 = 360 = x 10 = 10 x 11 = 11 x = 11x 10 x = x Questions TRB - Page 5
6 11 = 10 = 10 = 100 = 100= 10% TET Paper II 10 Ð7. 5 = + 5 = = - 2 a = 3, b= 7 a b b a a b b a = = 2187 Ð 343 = 1844,,,, 12 = =, = =, = =, = =, =,,,, % 3 3 p p ( 1 - ) n = p ( 1 ) 3 = p ( ) 3 = p = = x 2 - px + q = 0, + Questions TRB - Page 6
7 + = = ax 2 + bx + c = 0 = p = = q Ð = = 250 = 250 Ð + = 280 = = 250 Ð ( - 15) + 15 = = 14 x = x + = = = = x+ = + = 10 ( a + b) ( a- b) = a 2 b = ( ) + x x / = ( + x ) + 11 x = 2522 x 2 = = 2500 x = 50 x = 50 x / 2 = 25 Questions TRB - Page 7
8 ax 4 + b x 3 + cx 2 + dx + e x + 1 a +c+e = b+d a+b = c- d a+b+c+d+e = 0 a+c+b = d+e a +c+e ( ( ) = b+d ( ) x + 1 x ( ) x ( px + q ) 3 - ( px q ) 3 = ( px + q ) 3 - ( px q ) 3 = p 3 x 3 + q p 2 x 2 q + 3pxq 2 - (p 3 x 3-3 p 2 x 2 q + 3pxq 2 - q 3 ) = p 3 x 3 + q p 2 x 2 q + 3pxq 2 - p 3 x p 2 x 2 q - 3pxq 2 + q 3 = 6 p 2 x 2 q + 2q 3 = 2q (3 p 2 x q 2 ) ( a + b ) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 ( a b ) 3 = a 3-3a 2 b + 3ab 2 - b (25) 2 Ð 20 2 = x 2 x 2 = (25) 2 Ð 20 2 x 2 = = 225 x = x = 2 x ( 2 ) 4x = 2 64 = x = 1 64 = 2 4 = 2 ) 4 x = 20 m x m 25 m : 2 Questions TRB - Page 8
9 ( ) 2 : 2 2 = 3 : 4 a : b a 2 : b 2 TET Re exam Paper II a + b + c = 13, a 2 + b 2 + c 2 = 69 ab+bc+ca (a +b +c ) 2 = a 2 + b 2 + c ( ab+bc+ca ) 13 2 = ( ab+bc+ca ) 2 (ab+bc+ca ) = = 100 ( ab+bc+ca ) = x y + = 100 x + y = 100..( 1) x y = ( 2) (1)X x y = (2) X x y = y = 4800 y = 4800 / 120 y= % 44 % l b lb 20 % = l + = ( l + = b + ) ) ( b + Questions TRB - Page 9
10 = lb + = lb = ( 100 lb + 40 lb + 4 lb ) / 100 = 144 lb / 100 = - lb = = = =44 % 5 % 2 % 400 x % % ( ) - ( - = 200 = 200 = x = ) =400 3 : 4 : x, 4x, 5x ( 3x ) 2 + ( 4x ) 2 + ( 5x ) 2 = x x x 2 = x 2 = 1250 x 2 = = 25 x = 5 15, 20, 25 3x + 4x + 5x = 12 x = 12 ( 5) = 60 Questions TRB - Page 10
11 , = 2 π r = 4 a = = = π ( ) 2 = π ( )2 = = x, y x y = 45 x 2 + y 2 = 106 ( x + y ) 2 = x 2 + y x y = ( 45 ) = = 196 x + y = 14 xy = x = x +, x - = = = = x + = = 10 Questions TRB - Page 11
12 x - = = 4 = 20 x = 20 = = x 20 x = x = 1820 x = = = = = 100. a 2 - b 2 = ( a + b ) ( a b) ( 264 ) 102 ( 264 ) ( 264 ) 102 ( 264 ) 103 = ( 264 ) 102 ( ) = ( 264 ) x x > 2 < 2 > 2 x x = 2 x + = 2+ = 2.5 > 2 x = 3 x + = 3+ = > 2 Questions TRB - Page 12
13 6 + 3 x, x x 2 + x 2 = 2 = x = x + x + x = x + x = x (2 + ) = 3 ( 2 + ) x = 3 = 3. = 3. = bh = 3 3= 4.5 m2 2x 2 = 2 x x x 6 % 7 %. 354.? n = 2 p = x r = 6 % = = n = 2 p = y r = 7 % = y = = = = = 354 Questions TRB - Page 13
14 + = 354 = x = = x = 1200 y = = = 1500 x + y = = x 5 2x y 8x 5 5: y = 2x: 8x 2xy = 40 x y = TET PAPER I = πr + 2r = (π+2 ) r 1 8 =( = ) 14 =( ) 14 = 14 = 36 2 = 72 Questions TRB - Page 14
15 5000 8% ) 3 ) 2 ) 4 ) 5 = 5800 Ð 5000 = 800 = 800 = 800 = = 400 n 400 n = 800 n = = = 4000 = 4000 Ð + = 4000 Ð = 4000 Ð 30 = 3970 = = = ) 84 ) 42 ) 48 ) 24 5 = 5 32 = = 32 Ð 4 = 28 4 = 28 4 = 112 = 160 Ð 112 = o ) 495 ) 754 ) 854 ) = = 33 = = 23 Questions TRB - Page 15
16 = = = 759 = = = 600 = - = 759 Ð 600 = = = = % 1170 ) ) ) ) % = % = = = x 15 = 3 x 15 = 3( - 15) x -15 = 3 ( ) 2x -30 = 3x 90 3x 2x = x =60 = 30 x = 60 = = 2 = 2 2 = = = Questions TRB - Page 16
17 ,865 6 = = = Ð = 7665 = 7665 = r = = 10 % 5 : x 7x = 5x 7x 4400 = 4400 = 22 5x x 4400 = 550 x 3 x 3 = = 8 x= 2 5x = 5 (2) = 10. 7x = 7(2) = 14. x = 2 + x 2 - = = = = x 2 - = (2 + ) 2 - ( ) 2 = ( ) = = = 61 = = Questions TRB - Page 17
18 , 2 = = = = = = 5 5 = ( - ) + ( - ) = + ( ) = + = + = + 2 BODMAS Bracket division Multiplication Addition = + = = = = 2 r 1, r 2 r 1 r 2 r 1, r 2 r1 + r = h ( a + b ) = 5.6 ( 8 + b) = 5.6 ( 8 + b ) = b = 5.6 b Questions TRB - Page 18
19 5.6 b = b =.. = , 15, 9, 13, 24, 7,12,21,10,24, 7, 9,10,12, 13, 15, 17, 21, 24, 24 =14 24 ( ), = = : 4 : 6 = 2x + 4x+6x = x= 180 x= = 15 2x = 2 (15 ) = x=4 (15 ) = x = 6 (15 ) = = Ð 2.46 = = 3.83 Ð 2.46 = 1.38 x - y = 6, xy = 4 x 3 y 3 ( a b ) 3 = a a 2 b + 3ab 2 b 3 (a b) a 2 b 3 ab 2 = a 3 - b 3 a 3 - b 3 =(a b) a 2 b 3 ab 2 x 3 y 3 = ( x- y ) x 2 y 3xy 2 = xy ( x y ) = (4) (6) = = 288 x 3-3x 2 - x + 3 ( x + 1 ) Questions TRB - Page 19
20 Ð 4. Ð 1, x 2 4 x + 3 = ( x 1 ) ( x 3 ) 5 : x 3x = 18 2x = 18 X = 9 3x = 3 (9 ) = 27 5x = 5 (9 ) = ,27 3 a 2 bc, 5a b 2 c, 7a bc a 2 bc = 3 a 2 b c 5ab 2 c = 5 a b 2 c 7abc 2 = 7 a b c 2 = a 2 b 2 c 2 = 105a 2 b 2 c y x 11 x = 10 y (1) ( 11 = 10 ) = 11 y 11 x ( Ð ) = 1 1y 10 y ( 1) = y = = = 10 % ( 11x = 10 y ) Questions TRB - Page 20
21 x x 8 : 12 = x : 28.(1) x 7 : 9 = 28 : x..(2) 8 : 12 : : x : 28 9: = 12 7 x x = = 24 = A,B, C 12,1 1 5, 20.. B A, C A B C = + + = 1 - = A, C + = = = = = = = 6 = (4/5 ) (2/15 15) Questions TRB - Page 21
22 = = = = = 3696 cm 2 A DE. AB. BAC = 65 0 BAE = 58 0 C ABC BAE = ACB = 58 0 ( Tangent Chord Theore m ) BAC = 65 0 C B D A E ABC. = 180 ACB + BAC + ABC = ABC = 180 ABC = = ABCD ABCD = = = I, III = ÐP ÐQ = - = 441 Ð ( II, IV I, II, III, IV = = 189 ) = 441 Ð = = = - I, II, III, IV Questions TRB - Page 22
23 = 441 Ð 189 = Pape r I Re exam = = = = = % 25 % % = 25 % = x = 2 = 6-2 = 4 =,, x,, 5 x 4, 2, 5, 3 60 = =, = = x =, = =, = =,, = 5,,,, x x = 15,, Questions TRB - Page 23
24 37. Ð = r = 37 r (2-1 ) = 37 r ( 2-1 )= 37 r ( ) = 37 r ( ) = 37 r = 7 = 2 = 7 7 = 154 ( + ) = + a ( b + c) = ab + ac 2,3,4, ,3,4,5, = = 7 x 0 a + b = 7, a - b = 3 ab a + b = 7 a b = 3 2a = 10 a =5 a + b = 7 5 +b = 7 b = 2 ab = 5 ( 2) = %. 20 %. 20 %. = 100 =100 Ð 20 = 80 ( 20 % ) Questions TRB - Page 24
25 = = 96 ( % = 80 = 16 ) 8 % % 100 = 90 = + 8 % = = 108 = Ð = 108 Ð 90 = 18 = 100 = 100 = 20 % a, b, c ) a b > c )b a > c ) c> a+b ) b< c+a b < c +a c+a > b 1. 1 ) ) = = = = 3 : 4., x 4x =.. ( 3x ) (4x ) = x 2 = x 2 = 900 x = 30 Questions TRB - Page 25
26 90, 120 3x = 3 (30 ) = 90 4x = 4 (30 ) = = 210 ABC, PQ R B, Q. AB = PQ, BC = Q R A P ) SSS RHS SAS AS A S AS B C Q R 8, 10 x y y x = 10 x - 10 y 8, 10 8x = 10 y = 10 x - 10 y = 10 x -8x = 2 x = = = BODMAS 1. 2, = = Questions TRB - Page 26
27 = = = Ð 0.2 = ) = = = = = = = = a a ) 1 ) 3 ) 2 ) Questions TRB - Page 27
28 = 23 a = a ( a + 9 ) = a 9 = 0 14 a = a = 0.. a = 3 a R.A Ð = = = Ð + = 375 Ð ( - 15 ) + 15 = = = 405 / 25 = ABC m A m B BC 116 m A A B = x, A = x + 18 x + ( x +18 ) = 116 2x + 18 = 116 2x = =98 x=49 x + 18 = = 67 B C Ð 3 = 6800 Ð = = = = 1800 = 5 Ð 5 = 6800 Ð 1800 = 5000 x + 18 Questions TRB - Page 28 x 116
29 , 40., 26.. = = = ( www. padasalai.net ). M.Sc.,B.Ed.,. sivatvmalai@yahoo.co.in cell TET. Questions TRB - Page 29
Hilbertin aksioomat ja tarvittavat määritelmät Tiivistelmä Geometria-luentomonisteesta Heikki Pitkänen
Hilbertin aksioomat ja tarvittavat määritelmät Tiivistelmä Geometria-luentomonisteesta Heikki Pitkänen 1. Hilbertin aksioomat 1-3 Oletetaan tunnetuiksi peruskäsitteet: piste, suora ja suora kulkee pisteen
a b c d
2.. ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒ Ö Ø ÙØ 203 È ÖÙ Ö Ò ÑÓÒ Ú Ð ÒØ Ø ØĐ ÚĐ Ø a b c d. + 2. 3. 4. 5. 6. + + + + + + + + P. Tiedetään, että neliöjuuret 2 ja 7 ovat irrationaalilukuja (tämä seuraa aritmetiikan
Matemaattisten menetelmien hallinnan tason testi.
Matemaattisten menetelmien hallinnan tason testi. Jokaisessa tehtävässä on vain yksi vaihtoehto oikein.. Laskutoimitusten a) yhteen- ja vähennyslaskun b) kerto- ja jakolaskun c) potenssiin korotuksen järjestys
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10 13
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 2 x 2 3 2 3 x 1 4, (b) (x + 1)(x 2)
11 MATEMAATTINEN ANALYYSI
Huippu Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 0.7.08 MATEMAATTINEN ANALYYSI ALOITA PERUSTEISTA 444A. a) Funktion arvot ovat positiivisia silloin, kun kuvaaja on x-akselin yläpuolella.
Ratkaisut vuosien tehtäviin
Ratkaisut vuosien 1958 1967 tehtäviin 1958 Pyörähtäessään korkeusjanansa ympäri tasakylkinen kolmio muodostaa kartion, jonka tilavuus on A, ja pyörähtäessään kylkensä ympäri kappaleen, jonka tilavuus on
1. a) b) Nollakohdat: 20 = c) a b a b = + ( a b)( a + b) Derivaatan kuvaajan numero. 1 f x x x g x x x x. 3. a)
Pitkä matematiikka YO-koe 9..04. a) b) 7( x ) + = x ( x ) x(5 8 x) > 0 7x + = x x + 8x + 5x > 0 7x = 0 Nollakohdat: 0 8x + 5x = 0 x = 7 x(8x 5) = 0 5 5 x = 0 tai x = Vastaus: 0 < x < 8 8 c) a+ b) a b)
811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 4. Joukot, relaatiot ja funktiot Osa 2: Relaatiot 4.2 Relaatiot Relaatioilla mallinnetaan joukkojen alkioiden välisiä suhteita Joukkojen S ja T välinen binaarirelaatio
Tekijä Pitkä matematiikka
K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π
Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. A III, B II, C ei mikään, D I. a) Kolmion kulmien summa on 80. Kolmannen kulman suuruus on 80 85 0 85. Kolmiossa on kaksi 85 :n kulmaa, joten se on tasakylkinen.
Pythagoraan polku 16.4.2011
Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,
Ota tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta
MAA5.2 Loppukoe 26.9.2012 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Olkoon vektorit
Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 17.10.016 Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ 1. A III, B II, C ei mikään, D I. a) Kolmion kulmien summa on 180. Kolmannen kulman
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet
Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)
MAA15 Vektorilaskennan jatkokurssi, tehtävämoniste
MAA15 Vektorilaskennan jatkokurssi, tehtävämoniste Tason ja avaruuden vektorit 1. Olkoon A(, -, 4) ja B(5, -1, -3). a) Muodosta pisteen A paikkavektori. b) Muodosta vektori AB. c) Laske vektorin AB pituus.
IMO 2004 tehtävät ja ratkaisut
IMO 2004 tehtävät ja ratkaisut 1. Olkoon ABC teräväkulmainen kolmio ja AB AC. Ympyrä, jonka halkaisija on BC, leikkaa sivun AB pisteessä M ja sivun AC pisteessä N. Olkoon O sivun BC keskipiste. Kulmien
joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja.
ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒ Ô ÖÙ Ö Tehtäviä on kahdella sivulla; kuusi ensimmäistä tehtävää on monivalintatehtäviä, joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. 1. Kauppias on ostanut
3 Yhtälöryhmä ja pistetulo
Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5..06 Yhtälöryhmä ja pistetulo Ennakkotehtävät. z = x y, x y + z = 6 ja 4x + y + z = Sijoitetaan z = x y muihin yhtälöihin. x y + x y =
PERUSASIOITA ALGEBRASTA
PERUSASIOITA ALGEBRASTA Matti Lehtinen Tässä luetellut lauseet ja käsitteet kattavat suunnilleen sen mitä algebrallisissa kilpatehtävissä edellytetään. Ns. algebrallisia struktuureja jotka ovat nykyaikaisen
B-OSA. 1. Valitse oikea vaihtoehto. Vaihtoehdoista vain yksi on oikea.
B-OSA 1. Valitse oikea vaihtoehto. Vaihtoehdoista vain yksi on oikea. 1.1 Mitä voidaan sanoa funktion f raja-arvosta, kun x a? I Raja-arvo on f(a), jos f on määritelty kohdassa a. II Raja-arvo on f(a),
1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo
1. Murtoluvut, murtolausekkeet, murtopotenssit ja itseisarvo Olkoot a, b, c mielivaltaisesti valittuja reaalilukuja eli reaaliakselin pisteitä. Ne toteuttavat seuraavat laskulait (ns. kunta-aksioomat):
Laudatur 4 MAA4 ratkaisut kertausharjoituksiin
Laudatur MAA ratkaisut kertausharjoituksiin Yhtälöparit ja yhtälöryhmät 6. a) x y = 7 eli,y+, sijoitetaan alempaan yhtälöön x+ 7y = (, y+, ) + 7y =,y =, y = Sijoitetaan y = yhtälöparin ylempään yhtälöön.,
Ratkaisut vuosien tehtäviin
Ratkaisut vuosien 1978 1987 tehtäviin Kaikki tehtävät ovat pitkän matematiikan kokeista. Eräissä tehtävissä on kaksi alakohtaa; ne olivat kokelaalle vaihtoehtoisia. 1978 Osoita, ettei mikään käyrän y 2
Harjoitustehtävät, syyskuu Helpommat
Harjoitustehtävät, syyskuu 2011. Helpommat Ratkaisuja 1. Ratkaise yhtälö a a + x = x. Ratkaisu. Ratkaistaan yhtälö reaalilukujen joukossa. Jos yhtälöllä onratkaisux, niin x 0. Jos a =0,yhtälöllä onratkaisux
Kansainväliset matematiikkaolympialaiset 2008
Kansainväliset matematiikkaolympialaiset 2008 Tehtävät ja ratkaisuhahmotelmat 1. Teräväkulmaisen kolmion ABC korkeusjanojen leikkauspiste on H. Pisteen H kautta kulkeva ympyrä, jonka keskipiste on sivun
RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.
RATKAISUT 198 197 198. Olkoon suorakulmion erisuuntaisten sivujen pituudet a ja b sekä neliön sivun pituus c. Tehtävä on mielekäs vain, jos suorakulmio ei ole neliö, joten oletetaan, että a b. Suorakulmion
102 Käyrä. Piste ( 3,0 ) on käyrällä, jos ja vain jos sen koordinaatit. Siis piste ( 1, 2) Siis piste ( 3,0 ) ei ole käyrällä.
Pramidi 4 Analttinen geometria tehtävien ratkaisut sivu 1 Päivitett 19..6 11 Todistus 1 Kärä x + = x + 4 5 3 31 = x x+ 4, jos ja vain jos pisteen 3,7 koordinaatit toteuttavat kärän htälön. Kun x = 3 ja
Tehtävä 2. Osoita, että seuraavat luvut ovat algebrallisia etsimällä jokin kokonaislukukertoiminen yhtälö jonka ne toteuttavat.
JOHDATUS LUKUTEORIAAN syksy 017) HARJOITUS 6, MALLIRATKAISUT Tehtävä 1. Etsi Pellin yhtälön x Dy = 1 pienin positiivinen ratkaisu kun D {,, 5, 6, 7, 8, 10}. Ratkaisu 1. Tehtävässä annetuilla D:n arvoilla
MATP153 Approbatur 1B Harjoitus 5 Maanantai
MATP153 Approbatur 1B Harjoitus 5 Maanantai 30.11.015 1. (Opiskelutet. 0 s. 81.) Selvitä, miten lauseke sin(4x 3 + cos x ) muodostuu perusfunktioista (polynomeista, trigonometrisistä funktioista jne).
Geometriaa kuvauksin. Siirto eli translaatio
Geometriaa kuvauksin Siirto eli translaatio Janan AB kuva on jana A B ja ABB A on suunnikas. Suora kuvautuu itsensä kanssa yhdensuuntaiseksi suoraksi. Kulmat säilyvät. Kuva ja alkukuva ovat yhtenevät.
Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.
Tekijä Pitkä matematiikka 5 7..017 31 Kirjoitetaan yhtälö keskipistemuotoon ( x x ) + ( y y ) = r. 0 0 a) ( x 4) + ( y 1) = 49 Yhtälön vasemmalta puolelta nähdään, että x 0 = 4 ja y 0 = 1, joten ympyrän
Harjoituksia MAA5 - HARJOITUKSIA. 1. Olkoon ABCD mielivaltainen nelikulmio. Merkitse siihen vektorit. mutta molemmat puolet itseisarvojen sisällä????
MAA5 - HARJOITUKSIA 1. Olkn ABCD mielivaltainen nelikulmi. Merkitse siihen vektrit a) AB b) CA ja DB. 2. Neljäkäs eli vinneliö n suunnikkaan erikistapaus. Mitkä seuraavista väitteistä vat tsia neljäkkäässä
Luentojen yhteydessä esitettyjen harjoitustehtävien ratkaisuhahmotelmia
Geometrian perusteet Luentojen yhteydessä esitettyjen harjoitustehtävien ratkaisuhahmotelmia 1.1.1. Todista, että tason kahdella eri suoralla on joko yksi yhteinen piste tai ei yhtään yhteistä pistettä.
Sivu 1 / 8. A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste. Olli Kauppi
Sivu 1 / 8 A31C00100 Mikrotaloustieteen perusteet: matematiikan tukimoniste Olli Kauppi Monisteen ensimmäinen luku käsittelee derivointia hieman yleisemmästä näkökulmasta. Monisteen lopussa on kurssilla
Tekijä Pitkä matematiikka Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r.
Tekijä Pitkä matematiikka 4 16.12.2016 K1 Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r. 3 r s = 0 4 r+ 4s = 2 12r 4s = 0 + r+ 4s = 2 13 r = 2 r = 2 13 2 Sijoitetaan r = esimerkiksi yhtälöparin
Tekijä Pitkä matematiikka On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 4 5
Tekijä Pitkä matematiikka 6..06 8 On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 5 sivun AB pituudesta. Pitää siis osoittaa, että DE = AB. 5 Muodostetaan vektori DE. DE =
Pythagoraan polku 2004 Malliratkaisuja
Pythagoraan polku 4 Malliratkaisuja Tehtävä 1. Ratkaise reaalilukujen joukossa yhtälö x + x x x = 3 x x + x. Ratkaisu. Oletetaan, että x on yhtälön ratkaisu. Jotta yhtälö olisi mielekäs, on oltava x >.
Tekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta.
Tekijä Pitkä matematiikka 4 9.1.016 79 a) Kuvasta nähdään, että a = 3i + j. b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta. 5a b = 5(3i + j) ( i 4 j)
Harjoitustehtävät, joulukuu 2013, (ehkä vähän) vaativammat
Harjoitustehtävät, joulukuu 013, (ehkä vähän) vaativammat Ratkaisuja 1. Viisinumeroinen luku a679b on jaollinen 7:lla. Määritä a ja b. Ratkaisu. Luvun on oltava jaollinen 8:lla ja 9:llä. Koska luku on
Preliminäärikoe Pitkä Matematiikka 3.2.2009
Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.
Geometrian perusteet. Luvun 1 harjoitustehtävien ratkaisuhahmotelmia
Geometrian perusteet Luvun 1 harjoitustehtävien ratkaisuhahmotelmia 1.1.1. Todista, että tason kahdella eri suoralla on joko yksi yhteinen piste tai ei yhtään yhteistä pistettä. Ratkaisu. Olkoon eri suorilla
KORJAUSMATIIKKA 3, TEHTÄVÄT
1 SISÄLTÖ KORJAUSMATIIKKA, TEHTÄVÄT 1) Potenssi 2) Juuri ) Polynomit ) Ensimmäisen asteen yleinen yhtälön ratkaisu 5) Yhtälöt ongelmaratkaisuissa ja toisen asteen yhtälön ratkaisukaava TEHTÄVÄT: Käythän
Tehtävien ratkaisut. 77 cm Ratkaisu. Toisen kierron jälkeen syntyvä neliö on
Solmu /00 Tehtävien ratkaisut Ratkaisu Toisen kierron jälkeen syntyvä neliö on peilikuva alkuperäisestä neliöstä pisteen P suhteen Jos P ei ole alkuperäisen neliön sisällä, niin peilikuvalla alkuperäisellä
0. 10. 017 a b c d 1. + +. + +. + + 4. + + + 5. + 6. + P1. Lehtipuiden lukumäärä olkoon aluksi n, jolloin havupuiden määrä on 1,4n. Hakkuiden jälkeen lehtipuiden määrä putoaa lukuun n 0,1n = 0,88n ja havupuiden
Trigonometriaa: kolmioita ja kaavoja
Trigonometriaa: kolmioita ja kaavoja Trigonometriset funktiot voidaan määritellä eri tavoin Yksikköympyrään x + y 1 perustuva määritelmä on yleensä selkeä Jos A 1, 0) ja t 0 on reaaliluku, on olemassa
Kenguru 2019 Student lukio
sivu 0 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Koodi (ope täyttää): Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Oikeasta vastauksesta
LAUSEKKEET JA NIIDEN MUUNTAMINEN
LAUSEKKEET JA NIIDEN MUUNTAMINEN 1 LUKULAUSEKKEITA Ratkaise seuraava tehtävä: Retkeilijät ajoivat kahden tunnin ajan polkupyörällä maantietä pitkin 16 km/h nopeudella, ja sitten vielä kävelivät metsäpolkua
Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot
3. Funktion raja-arvo ja jatkuvuus 3.1. Reaali- ja kompleksifunktiot 43. Olkoon f monotoninen ja rajoitettu välillä ]a,b[. Todista, että raja-arvot lim + f (x) ja lim x b f (x) ovat olemassa. Todista myös,
Projektiivisen geometrian alkeita
Projektiivisen geometrian alkeita Jotkin kilpailutehtävät saattavat ratketa helpoimmin menetelmillä, jotka kuuluvat ns. projektiivisen geometrian alaan. Projektiivinen geometria on eräänlaista pelkän viivoittimen
BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018
BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 7, Kevät 2018 Tehtävä 8 on tällä kertaa pakollinen. Aloittakaapa siitä. 1. Kun tässä tehtävässä sanotaan sopii mahdollisimman hyvin, sillä tarkoitetaan
ARKISTOLUETTELO A MERKINTÄKIRJAT. Aa Luokkien päiväkirjat. sis. 5 sidosta. 1 kansio. Aa:1 1924-1926. Päiväkirjoja. Päiväkirja. 4 sidosta.
ARKISTOLUETTELO Kunta/Kuntainliitto Pääsarjan nimike Valkeakosken kaupunki A-E, G-J Arkistonmuodostaja/viranomainen Valkeakosken yhteiskoulu Hyllyn numero 146-153 Lukumäärä ja laatu Arkistotunnus Asiakirjakokonaisuuden
c) Vektorit ovat samat, jos ne ovat samansuuntaiset ja yhtä pitkät. Vektorin a kanssa sama vektori on vektori d.
Tekijä Pitkä matematiikka 4 9.12.2016 20 a) Vektorin a kanssa samansuuntaisia ovat vektorit b ja d. b) Vektorit ovat erisuuntaiset, jos ne eivät ole yhdensuuntaiset (samansuuntaiset tai vastakkaissuuntaiset).
a b c d
.. ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒ Ö Ø ÙØ 202 È ÖÙ Ö Ò ÑÓÒ Ú Ð ÒØ Ø ØĐ ÚĐ Ø a b c d. + + 2.. 4. 5. 6. + + + + + + + + + + P. Koska massojen suhteet (alkuperäinen timantti mukaan lukien) ovat : 4 : 7, niin
Tehtävien ratkaisut
Tehtävien 1948 1957 ratkaisut 1948 Kun juna matkaa AB kulkiessaan pysähtyy väliasemilla, kuluu matkaan 10 % enemmän aikaa kuin jos se kulkisi pysähtymättä. Kuinka monta % olisi nopeutta lisättävä, jotta
MATEMATIIKAN HARJOITTELUMATERIAALI
SAVONIA-AMMATTIKORKEAKOULU Tekniikk Infrrkentmisen j kivnnisln työnjohdon koulutus (ESR) MATEMATIIKAN HARJOITTELUMATERIAALI Hrjoitustehtävien rtkisut Ari Tuomenlehto - 0 - Hrjoitustehtävien rtkisut 1.
MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen
MAT-41150 Algebra I (s) periodilla IV 2012 Esko Turunen Tehtävä 1. Onko joukon X potenssijoukon P(X) laskutoimitus distributiivinen laskutoimituksen suhteen? Onko laskutoimitus distributiivinen laskutoimituksen
EUVOSTOASETUS(EY):o /2008, annettu, Iraniinkohdistuvistarajoittavistatoimenpiteistäannetun asetuksen(ey):o423/2007muuttamisesta
ConseilUE PUBLIC EUVOSTOASETUS(EY):o /2008, annettu, Iraniinkohdistuvistarajoittavistatoimenpiteistäannetun asetuksen(ey):o423/2007muuttamisesta EUROOPANUNIONINNEUVOSTO,joka ottaahuomiooneuroopanyhteisönperustamissopimuksenjaerityisestisen60ja301artiklan,
A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:
MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko
( 3) ( 5) ( 7) ( 2) ( 6) ( 4) Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 105 Päivitetty
Pyramidi 3 Analyyttinen geometria tehtävien ratkaisut sivu 15 Päivitetty 19..6 31 Tapa 1 Ratkaistaan yhtälöryhmä käyttämällä sijoituskeinoa. x y+ z = x y + 3z = 3x 4y+ z = Ratkaistaan yhtälöstä (1) muuttuja
Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta:
MATP00 Johdatus matematiikkaan Ylimääräisten tehtävien ratkaisuehdotuksia. Osoita, että 00 002 < 000 000. Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa. Lähdetään sieventämään epäyhtälön
A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:
MAB4 Koe Jussi Tyni 1..015 A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: 1. a. Piirrä seuraava suora mahdollisimman tarkasti ruutupaperille:
Funktioista. Esimerkki 1
Funktio eli kuvaus on matematiikan keskeisimpiä käsitteitä. Seuraavaksi tarkastellaan funktioita ja todistetaan niiden ominaisuuksia. Määritelmä 1 Olkoot A ja B. Kuvaus eli funktio f : A B on sääntö, joka
Geometrian perusteet. Luvun 4 harjoitustehtävien ratkaisuhahmotelmia
Geometrian perusteet Luvun 4 harjoitustehtävien ratkaisuhahmotelmia Harjoitus 4.1.1. Osoita, että yhtenevyyskuvauksen käänteiskuvaus on yhtenevyyskuvaus. Ratkaisu. Olkoon f : τ τ yhtenevyyskuvaus. Tiedämme,
Pyramidi 3 Geometria tehtävien ratkaisut sivu 168. h = 16,5 cm = 1,65 dm 1 = = :100. 2,5dm 1, dm. Vastaus 30 cm. = 2,
Pyramidi Geomeria eävien rakaisu sivu 68 00,5 l,5 dm 6,5 cm,65 dm Apoja π r π r r π,5dm,08... dm r ( ± ) π π, 65 dm 00 l dm 000 cm Ap 000 0 000 00 :00 000 0 ( cm) 00 asaus 0 cm d r,057... dm cm asaus cm
Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1)
Kertaus K1. a) OA i k b) B = (, 0, 5) K. K. a) AB (6 ( )) i () ( ( 7)) k 8i 4k AB 8 ( 1) 4 64116 819 b) 1 1 AB( ( 1)) i 1 i 4 AB ( ) ( 4) 416 0 45 5 K4. a) AB AO OB OA OB ( i ) i i i 5i b) Pisteen A paikkavektori
Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4
Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / 4 Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa
Kvanttifysiikan perusteet, harjoitus 5
Kvanttifysiikan perusteet, harjoitus 5 February 4, 07 Tehtävä Oletetaan energian ominaisfunktiot φ n ortonormitetuiksi, dxφ nφ m = δ nm, jossa δ nm on Kroneckerin delta. Määritetään ensin superpositiotilan
Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 180 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio
Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 8 Päivitetty 7.5.6 Pyramidi 4 Luku 5..6 Ensimmäinen julkaistu versio 7.5.6 Korjattu tehtävän 56 vastaus Pyramidi 4 Analyyttinen geometria tehtävien
6 Geometria koordinaatistossa
64 6 Geometria koordinaatistossa Rakentamamme euklidisen tasogeometrian järjestelmä, vaikka se pyrkiikin mallintamaan havaintomaailmaa, on sinänsä abstrakti ja muusta matematiikasta irrallaan. Perusjoukko
3 Ympyrä ja kolmion merkilliset pisteet
3 Ympyrä ja kolmion merkilliset pisteet Ennakkotehtävät. a) Matkapuhelimen etäisyys tukiasemasta A on 5 km. Piirretään ympyrä, jonka keskipiste on tukiasema A ja säde 5 km (5 ruudun sivua). Matkapuhelin
Kompleksiluvut Kompleksitaso
. Kompleksiluvut.. Kompleksitaso 8. Todista kompleksilukujen yhteen- ja kertolaskun (lukuparien avulla annettuihin) määritelmiin perustuen osittelulaki: z (z + z ) = z z + z z. 8. Todista kompleksilukujen
Tiesitkö tätä? Lääkiskurssi. DI-pääsykoekurssi.
Tiesitkö tätä? MAFY:n lääkiskurssi,6-kertaistaa mahdollisuutesi päästä sisään yhdellä yrityksellä. Poikkeuksellisen kovista tuloksista johtuen lääkikset alkavatkin täyttyä MAFY:n kurssilaisista. Lääkiskurssi
3 TOISEN ASTEEN POLYNOMIFUNKTIO
3 TOISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Kuvasta voidaan arvioida, että frisbeegolfkiekko käy noin 9 metrin korkeudella ja se lentää noin 40 metrin päähän. Vastaus: Frisbeegolfkiekko käy n. 9 m:n
Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n
Ylioilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 904 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten iiteiden, sisältöjen ja isteitysten luonnehdinta
Koodausteoria, Kesä 2014
Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 4.7 Syklisen koodin jälkiesitys Olkoon F = F q ja K = F q m kunnan F laajennuskunta. Määritelmä 4.7.1. Kuntalaajennuksen K/F jälkifunktioksi
Tilastomatematiikka Kevät 2008
Tilastomatematiikka Kevät 2008 Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastomatematiikka p.1/19 4.3 Varianssi Satunnaismuuttuja on neliöintegroituva, jos odotusarvo
2x1 + x 2 = 1 x 1 + x 2 = 3. x1 = 2 x 2 = 5. 2 ( 2)+5 = = 3. 5x1 x 2 = 1 10x 1 2x 2 = 2. ax1 +bx 2 = e cx 1 +dx 2 = f
Ä Ò Ö Ð Ö Á ÇÙÐÙÒ ÝÐ ÓÔ ØÓ Å Ø Ñ ØØ Ø Ò Ø Ø Ò Ð ØÓ ¾¼½½ ÂÖÚ ÒÔ Ã Ö Ó ØØ ÒÙØ ÌÙÙÐ Ê Ô ØØ ¾ ½ Ä Ò Ö Ò Ò Ý ØÐ ÖÝ Ñ ½½ Ñ Ö µ Ê Ø Ý ØÐ 5x = 7 Ã ÖÖÓØ Ò Ý ØÐ ÔÙÓÐ ØØ Ò ÐÙÚÙÐÐ 5 1 ÓÐÐÓ Ò Ò 5 1 5x = 5 1 7 Ð x =
Lukumäärän laskeminen 1/7 Sisältö ESITIEDOT:
Lukumäärän laskeminen 1/7 Sisältö Samapituisten merkkijonojen lukumäärä I Olkoon tehtävänä muodostaa annetuista merkeistä (olioista, alkioista) a 1,a 2,a 3,..., a n jonoja, joissa on p kappaletta merkkejä.
Pisteessä (1,2,0) osittaisderivaatoilla on arvot 4,1 ja 1. Täten f(1, 2, 0) = 4i + j + k. b) Mihin suuntaan pallo lähtee vierimään kohdasta
Laskukarnevaali Matematiikka B. fx, y, z) = x sin z + x y, etsi f,, ) Osittaisderivaatat ovat f f x = sin z + xy, y = x, f z = x cos z Pisteessä,,) osittaisderivaatoilla on arvot 4, ja. Täten f,, ) = 4i
Geometrian perusteita
Geometrian perusteita Matti Lehtinen Oulun yliopisto Kevätlukukausi 2013 2 Johdanto Geometrian 1 asema ja merkitys matematiikan kentässä on vuosien kuluessa muuttunut. Se ei sellaisenaan enää pitkään ole
Hyvä uusi opiskelija!
Hyvä uusi opiskelija! Tässä tulee tärkeää tietoa heti syksyn alussa pidettävästä laskutaitotestistä. Matematiikka kuuluu tekniikan alan opiskelijan tärkeimpiin oppiaineisiin. Matematiikan opiskelu kehittää
A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota.
MAA5.2 Loppukoe 24.9.2013 Jussi Tyni Valitse 6 tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! A1. A-osio. Tehdään
{ 2v + 2h + m = 8 v + 3h + m = 7,5 2v + 3m = 7, mistä laskemmalla yhtälöt puolittain yhteen saadaan 5v + 5h + 5m = 22,5 v +
9. 0. ÄÙ ÓÒ Ñ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒ Ö Ø ÙØ 009 È ÖÙ Ö P. Olkoon vadelmien hinta v e, herukoiden h e ja mustikoiden m e rasialta. Oletukset voidaan tällöin kirjoittaa yhtälöryhmäksi v + h + m = 8 v +
Geometrian perusteet. Luvun 2 harjoitustehtävien ratkaisuhahmotelmia
Geometrian perusteet Luvun 2 harjoitustehtävien ratkaisuhahmotelmia Harjoitus 2.1.1. Osoita, että janojen tulo, joka määriteltiin käyttämällä kahta ekvivalenssiluokkien edustajaa, ei riipu näiden edustajien
Nopea kertolasku, Karatsuban algoritmi
Nopea kertolasku, Karatsuban algoritmi Mikko Männikkö 16.8.2004 Lähde: ((Gathen and Gerhard 1999) luku II.8) Esityksen kulku Algoritmien analysointia (1), (2), (3), (4) Klassinen kertolasku Parempi tapa
Matriisipotenssi. Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: ja A 0 = I n.
Matriisipotenssi Koska matriisikertolasku on liitännäinen (sulkuja ei tarvita; ks. lause 2), voidaan asettaa seuraava määritelmä: Määritelmä Oletetaan, että A on n n -matriisi (siis neliömatriisi) ja k
Harjoitustehtävät, syys lokakuu 2010. Helpommat
Harjoitustehtävät, syys lokakuu 010. Helpommat Ratkaisuja 1. Kellon minuutti- ja tuntiosoittimet ovat tasan suorassa kulmassa kello 9.00. Milloin ne ovat seuraavan kerran tasan suorassa kulmassa? Ratkaisu.
Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti!
MAA3 Koe 1.4.2014 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! A-Osio: Ei saa käyttää laskinta. MAOL saa olla alusta asti käytössä. Maksimissaan
Aa lähtevien kirjeiden diaari. Saapuvien ja lähtevien kirjeiden diaari. Ab Saapuneiden kirjeiden diaari. Saapuneiden kirjeiden diaari
ARKISTOLUETTELO Kunta/Kuntainliitto Pääsarjan nimike Sääksmäen kunta A-D Arkistonmuodostaja/viranomainen v.1973 lähtien Valkeakosken Terveysltk. - Terveydenhoitolautakunta asiakirjat Hyllyn numero 921-925
Ratkaisuja, Tehtävät
ja, Tehtävät 988-97 988 a) Osoita, että lausekkeiden x 2 + + x 4 + 2x 2 ja x 2 + - x 4 + 2x 2 arvot ovat toistensa käänteislukuja kaikilla x:n arvoilla. b) Auton jarrutusmatka on verrannollinen nopeuden
2000 + 2 a 1+a 2 + +a 2001
Tehtäviä Tehtävät kiertelevät. Nämätehtävät on kaikki jostain lainattu. Jos lähde on vielä tiedossa, se on merkitty sulkeisiin tehtävän jälkeen. Pelkät vuosiluvut kertovat, milloin tehtävää on käytetty
M Pv + q = 0, M = EIκ = EIv, (EIv ) + Pv = q. v(x) = Asin kx + B cos kx + Cx + D + v p. P kr = π2 EI L n
ÄÙ Ù ½ ËØ Ð Ù Ú Ó Ó ÐÑ ½º½ ÈÙÖ Ø ØØÙ Ø ÚÙØ ØØÙ ÙÚ Ì Ô ÒÓ ÓØ Q v + q =, M = Q, ½º½µ ÑÑÓ ÐÐ ÙÚ ÐÐ M v + q =, M = EIκ = EIv, (EIv ) + v = q. ½º¾µ ½º µ ½º µ EI = Ú Ó ÆÙÖ Ù ÚÓ Ñ v (4) + k v = q EI, k = EI,
Dierentiaaliyhtälöistä
Dierentiaaliyhtälöistä Markus Kettunen 4. maaliskuuta 2009 1 SISÄLTÖ 1 Sisältö 1 Dierentiaaliyhtälöistä 2 1.1 Johdanto................................. 2 1.2 Ratkaisun yksikäsitteisyydestä.....................
Lukuteorian kertausta
Lukuteorian kertausta Jakoalgoritmi Jos a, b Z ja b 0, niin on olemassa sellaiset yksikäsitteiset kokonaisluvut q ja r, että a = qb+r, missä 0 r < b. Esimerkki 1: Jos a = 60 ja b = 11, niin 60 = 5 11 +