ATH-koulutus: R ja survey-kirjasto THL ATH-koulutus / Tommi Härkänen 1

Koko: px
Aloita esitys sivulta:

Download "ATH-koulutus: R ja survey-kirjasto THL 16.2.2011. 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1"

Transkriptio

1 ATH-koulutus: R ja survey-kirjasto THL ATH-koulutus / Tommi Härkänen 1

2 Sisältö Otanta-asetelman kuvaaminen R:llä ja survey-kirjastolla Perustunnusluvut Regressioanalyysit ATH-koulutus / Tommi Härkänen 2

3 Aineiston lataaminen Luetaan aineisto Stat-formaatissa: library(foreign) d <- read.dta("q:/data/2010/demo/ath_demo.dta") Määritellään uusi luokiteltu ikämuuttuja: d <- cbind(d, rg_age10=cut(d$rg_age_2, c(10*2:10), right=false)) ATH-koulutus / Tommi Härkänen 3

4 Otanta-asetelman kuvaaminen Painokerroin w_analysis, ositusmja w_strata, perusjoukon koko ositteessa w_n library(survey) ath.data <- svydesign(id=~1, fpc=~w_n, weights=~w_analysis, strata=~w_strata, data=d) ATH-koulutus / Tommi Härkänen 4

5 Analyysit survey-kirjastossa määritellyt, otanta-asetelman huomioivat funktiot alkavat usein svy-etuliitteellä Esim. BMI:n keskiarvo svymean(~ath_bmi, design=ath.data, na.rm=true) Tulostus: mean SE ath_bmi ATH-koulutus / Tommi Härkänen 5

6 Keskiarvo osajoukoittain Esim: BMI-keskiarvot sukupuolittain ja alueittain: svyby(~ath_bmi, ~rg_gender+rg_geo_area, design=ath.data, svymean, na.rm=true) Tulostus: rg_gender rg_geo_area ath_bmi se.ath_bmi ATH-koulutus / Tommi Härkänen 6

7 Keskiarvo osajoukoittain Osajoukkoanalyysejä voi tehdä myös muodostamalla erillisen osajoukkoaineiston: dsub <- subset(ath.data, rg_gender==1&rg_geo_area==1) svymean(~ath_bmi, design=dsub, na.rm=true) ATH-koulutus / Tommi Härkänen 7

8 Luokitellut muuttujat: frekvenssit Kahden luokkamuuttujan frekvenssitaulukko saadaan svytable-komennolla ja vastaava chi2-testi svychisqkomennolla: svytable(~ath_bmi_3+rg_gender, design=ath.data) rg_gender ath_bmi_ svychisq(~ath_bmi_3+rg_gender, design=ath.data) Pearson's X^2: Rao & Scott adjustment data: svychisq(~ath_bmi_3 + rg_gender, design = ath.data) F = , ndf = 1.986, ddf = , p-value < 2.2e ATH-koulutus / Tommi Härkänen 8

9 Luokitellut muuttujat: jakaumat Luokkaesiintyvyydet saa svymean-komennolla: svymean(~interaction(ath_bmi_3,rg_gender), design=ath.data, na.rm=true) Tulostus: mean SE interaction(ath_bmi_3, rg_gender) interaction(ath_bmi_3, rg_gender) interaction(ath_bmi_3, rg_gender) interaction(ath_bmi_3, rg_gender) interaction(ath_bmi_3, rg_gender) interaction(ath_bmi_3, rg_gender) ATH-koulutus / Tommi Härkänen 9

10 Lineaarinen regressioanalyysi Luokiteltu selittäjä kuvataan käyttämällä factor()-funktiota model1 <- svyglm(ath_bmi~ factor(rg_geo_area)+rg_gender+rg_age_2, design=ath.data) summary(model1) Survey design: svydesign(id = ~1, fpc = ~w_n, weights = ~w_analysis, strata = ~w_strata, data = d) Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) < 2e-16 *** factor(rg_geo_area) * factor(rg_geo_area) *** rg_gender < 2e-16 *** rg_age_ < 2e-16 *** --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' ATH-koulutus / Tommi Härkänen 10

11 Lineaarinen regressioanalyysi: Waldin testi Testataan, onko alueiden välillä eroja: regtermtest(model1, ~factor(rg_geo_area)) Wald test for factor(rg_geo_area) in svyglm(ath_bmi ~ factor(rg_geo_area) + rg_gender + rg_age_2, design = ath.data) F = on 2 and df: p= ATH-koulutus / Tommi Härkänen 11

12 Lineaarinen regressioanalyysi Yhdysvaikutus kuvataan :- tai *-merkinnällä. Jälkimmäinen muodostaa myös päävaikutustermit model2 <- svyglm(ath_bmi~factor(rg_geo_area)* rg_gender+factor(rg_geo_area)*rg_gender*rg_age_2, design=ath.data) summary(model2) Survey design: svydesign(id = ~1, fpc = ~w_n, weights = ~w_analysis, strata = ~w_strata, data = d) Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) < 2e-16 factor(rg_geo_area) factor(rg_geo_area) rg_gender e-05 rg_age_ factor(rg_geo_area)2:rg_gender factor(rg_geo_area)3:rg_gender factor(rg_geo_area)2:rg_age_ factor(rg_geo_area)3:rg_age_ rg_gender:rg_age_ factor(rg_geo_area)2:rg_gender:rg_age_ factor(rg_geo_area)3:rg_gender:rg_age_ ATH-koulutus / Tommi Härkänen 12

13 Useamman parametrin testaaminen Testataan, onko interaktioita: regtermtest(model2,~factor(rg_geo_area):rg_gender:rg_age_2) Wald test for factor(rg_geo_area):rg_gender:rg_age_2 F = on 2 and df: p= regtermtest(model2, ~factor(rg_geo_area):rg_gender:rg_age_2+factor(rg_geo_are a):rg_gender) Wald test for factor(rg_geo_area):rg_gender factor(rg_geo_area):rg_gender:rg_age_2 F = on 4 and df: p= ATH-koulutus / Tommi Härkänen 13

14 Logistinen regressiomalli model3 <- svyglm(ath_bmi_2~factor(rg_geo_area)*rg_gender + factor(rg_geo_area)*rg_gender*rg_age_2, design=ath.data, family="quasibinomial") summary(model3) Survey design: svydesign(id = ~1, fpc = ~w_n, weights = ~w_analysis, strata = ~w_strata, data = d) Coefficients: Estimate Std. Error t value Pr(> t ) (Intercept) factor(rg_geo_area) factor(rg_geo_area) rg_gender e-07 rg_age_ factor(rg_geo_area)2:rg_gender factor(rg_geo_area)3:rg_gender factor(rg_geo_area)2:rg_age_ factor(rg_geo_area)3:rg_age_ rg_gender:rg_age_ factor(rg_geo_area)2:rg_gender:rg_age_ factor(rg_geo_area)3:rg_gender:rg_age_ ATH-koulutus / Tommi Härkänen 14

ATH-koulutus: Stata 11 THL ATH-koulutus / Tommi Härkänen 1

ATH-koulutus: Stata 11 THL ATH-koulutus / Tommi Härkänen 1 ATH-koulutus: Stata 11 THL 16.2.2011 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1 Sisältö Otanta-asetelman kuvaaminen Stata 11:llä Perustunnusluvut Regressioanalyysit Mallivakiointi 16. 2. 2011 ATH-koulutus

Lisätiedot

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot)

Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. eli matriisissa on 200 riviä (havainnot) ja 7 saraketta (mittaus-arvot) R-ohjelman käyttö data-analyysissä Panu Somervuo 2014 Tässä harjoituksessa käydään läpi R-ohjelman käyttöä esimerkkidatan avulla. 0) käynnistetään R-ohjelma Huom.1 allaolevissa ohjeissa '>' merkki on R:n

Lisätiedot

ATH-koulutus THL 16.2.2011. 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1

ATH-koulutus THL 16.2.2011. 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1 ATH-koulutus THL 16.2.2011 16. 2. 2011 ATH-koulutus / Tommi Härkänen 1 Sisältö Otanta-asetelma Ositus ja 75 vuotta täyttäneiden ylipoiminta Painokertoimet Tulosten esittäminen: mallivakiointi Esimerkit

Lisätiedot

ATH-aineiston tilastolliset analyysit SPSS/PASW SPSS analyysit / Risto Sippola 1

ATH-aineiston tilastolliset analyysit SPSS/PASW SPSS analyysit / Risto Sippola 1 ATH-aineiston tilastolliset analyysit SPSS/PASW 16.2.2011 SPSS analyysit / Risto Sippola 1 Aineiston avaaminen Aineisto on saatu SPSS-muotoon ja tallennettu koneelle sijaintiin, josta sitä voidaan käyttää

Lisätiedot

[MTTTA] TILASTOMENETELMIEN PERUSTEET, KEVÄT 209 https://coursepages.uta.fi/mttta/kevat-209/ HARJOITUS 5 viikko 8 RYHMÄT: ke 2.5 3.45 ls. C6 Leppälä to 08.30 0.00 ls. C6 Korhonen to 2.5 3.45 ls. C6 Korhonen

Lisätiedot

SPSS-perusteet. Sisältö

SPSS-perusteet. Sisältö SPSS-perusteet Sisältö Ikkunat 3 Päävalikot 5 Valikot 6 Aineiston käsittely 6 Muuttujamuunnokset 7 Aineistojen kuvailu analyysit 8 Havaintomatriisin luominen ja käsittely 10 Muulla sovelluksella tehdyn

Lisätiedot

Residuaalit. Residuaalit. UK Ger Fra US Austria. Maat

Residuaalit. Residuaalit. UK Ger Fra US Austria. Maat TAMPEREEN YLIOPISTO Tilastollisen mallintamisen harjoitustyö Teemu Kivioja ja Mika Helminen Epätasapainoisen koeasetelman analyysi Worksheet 5 Matematiikan, tilastotieteen ja filosofian laitos Tilastotiede

Lisätiedot

Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 3: Frekvenssiaineistojen asetelmaperusteinen analyysi: Perusteita

Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 3: Frekvenssiaineistojen asetelmaperusteinen analyysi: Perusteita Otanta-aineistojen analyysi (78136, 78405) Kevät 2010 TEEMA 3: Frekvenssiaineistojen asetelmaperusteinen analyysi: Perusteita risto.lehtonen@helsinki.fi OHC Survey Tilastollinen analyysi Kysymys: Millä

Lisätiedot

Esimerkkiaineisto ALKOKULU Olemme käyttäneet 3. harjoituksissa esimerkkinä aineistoa, joka käsittelee yksityisiä kulutusmenoja

Esimerkkiaineisto ALKOKULU Olemme käyttäneet 3. harjoituksissa esimerkkinä aineistoa, joka käsittelee yksityisiä kulutusmenoja MS-C2128 Ennustaminen ja aikasarja-analyysi 6. harjoitukset / Tehtävät Kotitehtävä: 4 Esimerkkiaineisto ALKOKULU Olemme käyttäneet 3. harjoituksissa esimerkkinä aineistoa, joka käsittelee yksityisiä kulutusmenoja

Lisätiedot

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä

Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi. Esimerkit laskettu JMP:llä Tilastollinen vastepintamallinnus: kokeiden suunnittelu, regressiomallin analyysi, ja vasteen optimointi Esimerkit laskettu JMP:llä Antti Hyttinen Tampereen teknillinen yliopisto 29.12.2003 ii Ohjelmien

Lisätiedot

Opiskelija viipymisaika pistemäärä

Opiskelija viipymisaika pistemäärä 806109 TILASTOTIETEEN PERUSMENETELMÄT I Harjoitus 7, viikko 9, kevät 2012 (Muut kuin taloustieteiden tiedekunnan opiskelijat) MUISTA MIKROLUOKKAHARJOITUKSET VIIKOILLA 8 JA 9! 1. Jatkoa harjoituksen 5 tehtävään

Lisätiedot

Suhtautuminen Sukupuoli uudistukseen Mies Nainen Yhteensä Kannattaa Ei kannata Yhteensä

Suhtautuminen Sukupuoli uudistukseen Mies Nainen Yhteensä Kannattaa Ei kannata Yhteensä 806109 TILASTOTIETEEN PERUSMENETELMÄT I Harjoitus 7, viikko 9, kevät 2011 (Muut kuin taloustieteiden tiedekunnan opiskelijat) MUISTA MIKROLUOKKAHARJOITUKSET VIIKOILLA 8 JA 9! 1. Eräässä suuressa yrityksessä

Lisätiedot

Viherseinien efekti Tilastoanalyysi

Viherseinien efekti Tilastoanalyysi Viherseinien efekti Tilastoanalyysi Risto Heikkinen Tutkimuskysymykset Seinän vaikutus koettuun haittoihin työympäristössä? Seinän vaikutus oireiden määrään? Mitkä tekijät selittävät viherseinän jatkokäytön

Lisätiedot

R: mikä, miksi ja miten?

R: mikä, miksi ja miten? R: mikä, miksi ja miten? Ilmari Ahonen Matematiikan ja tilastotieteen laitos, Turun yliopisto SSL R-Webinaari 2015 Vähän minusta Valmistuin maisteriksi Turun yliopistossa 2012 Teen neljättä vuotta väitöskirjaa

Lisätiedot

Health 2000/2011 Surveys. Statistical Analysis using SAS and SAS-Callable SUDAAN Packages 17.6.2013. Esa Virtala. etunimi.sukunimi@thl.

Health 2000/2011 Surveys. Statistical Analysis using SAS and SAS-Callable SUDAAN Packages 17.6.2013. Esa Virtala. etunimi.sukunimi@thl. Health 2000/2011 Surveys Statistical Analysis using SAS and SAS-Callable SUDAAN Packages 17.6.2013 Esa Virtala etunimi.sukunimi@thl.fi Terveyden ja hyvinvoinnin laitos (THL) PL 30 00271 Helsinki Puhelin:

Lisätiedot

Load

Load Tampereen yliopisto Tilastollinen mallintaminen Mikko Alivuotila ja Anne Puustelli Lentokoneiden rakennuksessa käytettävien metallinkiinnittimien puristuskestävyys Matematiikan, tilastotieteen ja filosofian

Lisätiedot

Kvantitatiiviset menetelmät

Kvantitatiiviset menetelmät Kvantitatiiviset menetelmät HUOM! Tentti pidetään tiistaina.. klo 6-8 V ls. Uusintamahdollisuus on rästitentissä.. ke 6 PR sali. Siihen tulee ilmoittautua WebOodissa 9. 8.. välisenä aikana. Soveltuvan

Lisätiedot

RISTIINTAULUKOINTI JA Χ 2 -TESTI

RISTIINTAULUKOINTI JA Χ 2 -TESTI RISTIINTAULUKOINTI JA Χ 2 -TESTI Kvantitatiiviset tutkimusmenetelmät maantieteessä Ti 27.10.2015, To 2.11.2015 Miisa Pietilä & Laura Hokkanen miisa.pietila@oulu.fi laura.hokkanen@outlook.com KURSSIKERRAN

Lisätiedot

(d) Laske selittäjään paino liittyvälle regressiokertoimelle 95 %:n luottamusväli ja tulkitse tulos lyhyesti.

(d) Laske selittäjään paino liittyvälle regressiokertoimelle 95 %:n luottamusväli ja tulkitse tulos lyhyesti. 2. VÄLIKOE vuodelta -14 1. Liitteessä 1 on esitetty R-ohjelmalla saatuja tuloksia aineistosta, johon on talletettu kahdenkymmenen satunnaisesti valitun miehen paino (kg), vyötärön ympärysmitta (cm) ja

Lisätiedot

xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n =

xi = yi = 586 Korrelaatiokerroin r: SS xy = x i y i ( x i ) ( y i )/n = SS xx = x 2 i ( x i ) 2 /n = 1. Tutkitaan paperin ominaispainon X(kg/dm 3 ) ja puhkaisulujuuden Y (m 2 ) välistä korrelaatiota. Tiettyä laatua olevasta paperierästä on otettu satunnaisesti 10 arkkia ja määritetty jokaisesta arkista

Lisätiedot

Yleinen lineaarinen malli eli usean selittäjän lineaarinen regressiomalli

Yleinen lineaarinen malli eli usean selittäjän lineaarinen regressiomalli MS-C2128 Ennustaminen ja aikasarja-analyysi 1. harjoitukset / Tehtävät Kotitehtävät: 2 Aiheet: Aluksi Yleinen lineaarinen malli eli usean selittäjän lineaarinen regressiomalli Tällä kurssilla käytetään

Lisätiedot

b1) harhattomuutta, b2) helppoutta, b3) herkkyyttä, b4) mitta-asteikkoa, b5) standardointia, b6) tarkkuutta.

b1) harhattomuutta, b2) helppoutta, b3) herkkyyttä, b4) mitta-asteikkoa, b5) standardointia, b6) tarkkuutta. 806109P TILASTOTIETEEN PERUSMENETELMÄT I 1. välikoe 9.3.2012 (Jari Päkkilä) VALITSE VIIDESTÄ TEHTÄVÄSTÄ NELJÄ JA VASTAA VAIN NIIHIN! 1. Valitse kohdissa A-F oikea (vain yksi) vaihtoehto. Oikeasta vastauksesta

Lisätiedot

2. Tietokoneharjoitukset

2. Tietokoneharjoitukset 2. Tietokoneharjoitukset Demotehtävät 2.1 Jatkoa kotitehtävälle. a) Piirrä aineistosta pistediagrammi (KULUTUS, SAIRAST) ja siihen estimoitu regressiosuora. KULUTUS on selitettävä muuttuja. b) Määrää estimoidusta

Lisätiedot

MS-C2128 Ennustaminen ja aikasarja-analyysi 2. harjoitukset / Tehtävät Kotitehtävä: 3,4

MS-C2128 Ennustaminen ja aikasarja-analyysi 2. harjoitukset / Tehtävät Kotitehtävä: 3,4 MS-C2128 Ennustaminen ja aikasarja-analyysi 2. harjoitukset / Tehtävät Kotitehtävä: 3,4 Tehtävä 2.1. Jatkoa tietokonetehtävälle 1.2: (a) Piirrä aineistosta pisteparvikuvaaja (KULUTUS, SAIRAST) ja siihen

Lisätiedot

Data-analyysi II. Sisällysluettelo. Simo Kolppo [Type the document subtitle]

Data-analyysi II. Sisällysluettelo. Simo Kolppo [Type the document subtitle] Data-analyysi II [Type the document subtitle] Simo Kolppo 26.3.2014 Sisällysluettelo Johdanto... 1 Tutkimuskysymykset... 1 Aineistojen esikäsittely... 1 Economic Freedom... 1 Nuorisobarometri... 2 Aineistojen

Lisätiedot

Jakaumien merkitys biologisissa havaintoaineistoissa: Löytyykö ratkaisu Yleistetyistä Lineaarisista (Seka)Malleista?

Jakaumien merkitys biologisissa havaintoaineistoissa: Löytyykö ratkaisu Yleistetyistä Lineaarisista (Seka)Malleista? 1 Hydrobiologian tutkijaseminaari 20.3.2000 Jakaumien merkitys biologisissa havaintoaineistoissa: Löytyykö ratkaisu Yleistetyistä Lineaarisista (Seka)Malleista? Jari Hänninen Turun yliopisto Saaristomeren

Lisätiedot

Kvantitatiiviset tutkimusmenetelmät maantieteessä

Kvantitatiiviset tutkimusmenetelmät maantieteessä Kvantitatiiviset tutkimusmenetelmät maantieteessä Harjoitukset: 2 Muuttujan normaaliuden testaaminen, merkitsevyys tasot ja yhden otoksen testit FT Joni Vainikka, Yliopisto-opettaja, GO218, joni.vainikka@oulu.fi

Lisätiedot

proc glm data = ex61; Title2 "Aliasing Structure of the 2_IV^(5-1) design"; model y = A B C D E /Aliasing; run; quit;

proc glm data = ex61; Title2 Aliasing Structure of the 2_IV^(5-1) design; model y = A B C D E /Aliasing; run; quit; Title "Exercises 6"; Data ex61; input A B C D E y @@; Label A = "Furnance Temperature" B = "Heating Time" C = "Transfer Time" D = "Hold Down Time" E = "Quench of Oil Temperature" y = "Free Height of Leaf

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 9. luento. Pertti Palo

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 9. luento. Pertti Palo FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 9. luento Pertti Palo 22.11.2012 Käytännön asioita Eihän kukaan paikallaolijoista tee 3 op kurssia? 2. seminaarin ilmoittautuminen. 2. harjoitustyön

Lisätiedot

Ilmoittaudu Weboodissa klo (sali L4) pidettävään 1. välikokeeseen!

Ilmoittaudu Weboodissa klo (sali L4) pidettävään 1. välikokeeseen! 8069 TILASTOTIETEEN PERUSMENETELMÄT I Harjoitus 7, viikko 9, kevät 2013 (Muut kuin taloustieteiden tiedekunnan opiskelijat) MUISTA MIKROLUOKKAHARJOITUKSET VIIKOLLA 9! Ilmoittaudu Weboodissa 4.3.2013 klo

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin

Lisätiedot

Harjoitus 3: Regressiomallit (Matlab)

Harjoitus 3: Regressiomallit (Matlab) Harjoitus 3: Regressiomallit (Matlab) SCI-C0200 Fysiikan ja matematiikan menetelmien studio SCI-C0200 Fysiikan ja matematiikan menetelmien studio 1 Harjoituksen aiheita Pienimmän neliösumman menetelmä

Lisätiedot

Nuoruusiän vaikutus aikuisen painoindeksiin Data-analyysin perusmenetelmät Harjoitustyö. Lassi Miinalainen

Nuoruusiän vaikutus aikuisen painoindeksiin Data-analyysin perusmenetelmät Harjoitustyö. Lassi Miinalainen Nuoruusiän vaikutus aikuisen painoindeksiin Data-analyysin perusmenetelmät Harjoitustyö Lassi Miinalainen lassimii@paju.oulu. 23.1.2012 Sisältö 1 Aineisto 2 1.1 Muuttujat...............................

Lisätiedot

Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 2003 LKM 14.8% 11.2% 19.7% 4.9% 3.6% 45.

Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 2003 LKM 14.8% 11.2% 19.7% 4.9% 3.6% 45. Pylväsdiagrammi Suomen kunnat lääneittäin vuonna Piirakkadiagrammi Suomen kunnat lääneittäin vuonna 8.8% 8.9%.%.% 9.7%.7% Etelä Länsi Itä Oulu Lappi Ahvenanmaa Länsi Etelä Itä Oulu Lappi Ahvenanmaa Läänien

Lisätiedot

Tommi Härkänen, Teppo Juntunen, Eero Lilja Analyysiohjeita Maahanmuuttajien terveys- ja hyvinvointitutkimusaineiston käsittelemiseksi.

Tommi Härkänen, Teppo Juntunen, Eero Lilja Analyysiohjeita Maahanmuuttajien terveys- ja hyvinvointitutkimusaineiston käsittelemiseksi. Tommi Härkänen, Teppo Juntunen, Eero Lilja Analyysiohjeita Maahanmuuttajien terveys- ja hyvinvointitutkimusaineiston käsittelemiseksi Taustaa Otoksen ositus kunnittain ja maahanmuuttajaryhmittäin Katso

Lisätiedot

A130A0650-K Tilastollisen tutkimuksen perusteet 6 op Tentti / Anssi Tarkiainen & Maija Hujala

A130A0650-K Tilastollisen tutkimuksen perusteet 6 op Tentti / Anssi Tarkiainen & Maija Hujala Kaavakokoelma, testinvalintakaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Tehtävä 1 a) Konepajan on hyväksyttävä alihankkijalta saatu tavaraerä, mikäli viallisten komponenttien

Lisätiedot

1. Tietokoneharjoitukset

1. Tietokoneharjoitukset 1. Tietokoneharjoitukset Aluksi Tällä kurssilla käytetään R-ohjelmistoa, jonka käyttämisestä lienee muutama sana paikallaan. R-ohjelmisto on laajasti käytetty vapaassa levityksessä oleva ammattimaiseen

Lisätiedot

SPSS-pikaohje. Jukka Jauhiainen OAMK / Tekniikan yksikkö

SPSS-pikaohje. Jukka Jauhiainen OAMK / Tekniikan yksikkö SPSS-pikaohje Jukka Jauhiainen OAMK / Tekniikan yksikkö SPSS on ohjelmisto tilastollisten aineistojen analysointiin. Hyvinvointiteknologian ATK-luokassa on asennettuna SPSS versio 13.. Huom! Ainakin joissakin

Lisätiedot

TILASTOLLISTEN MENETELMIEN KIRJO JA KÄYTTÖ LÄÄKETIETEEN TUTKIMUSJULKAISUISSA. Pentti Nieminen 03.11.2014

TILASTOLLISTEN MENETELMIEN KIRJO JA KÄYTTÖ LÄÄKETIETEEN TUTKIMUSJULKAISUISSA. Pentti Nieminen 03.11.2014 TILASTOLLISTEN MENETELMIEN KIRJO JA KÄYTTÖ LÄÄKETIETEEN TUTKIMUSJULKAISUISSA LUKIJAN NÄKÖKULMA 2 TAUSTAKYSYMYKSIÄ 3 Mitä tutkimusmenetelmiä ja taitoja opiskelijoille tulisi opettaa koulutuksen eri vaiheissa?

Lisätiedot

Esim Brand lkm keskiarvo keskihajonta A ,28 5,977 B ,06 3,866 C ,95 4,501

Esim Brand lkm keskiarvo keskihajonta A ,28 5,977 B ,06 3,866 C ,95 4,501 Esim. 2.1.1. Brand lkm keskiarvo keskihajonta A 10 251,28 5,977 B 10 261,06 3,866 C 10 269,95 4,501 y = 260, 76, n = 30 SS 1 = (n 1 1)s 2 1 = (10 1)5, 977 2 321, 52 SS 2 = (n 2 1)s 2 2 = (10 1)3, 8662

Lisätiedot

Harjoitus 9: Excel - Tilastollinen analyysi

Harjoitus 9: Excel - Tilastollinen analyysi Harjoitus 9: Excel - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tutustuminen regressioanalyysiin

Lisätiedot

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös):

54. Tehdään yhden selittäjän lineaarinen regressioanalyysi, kun selittäjänä on määrällinen muuttuja (ja selitettävä myös): Tilastollinen tietojenkäsittely / SPSS Harjoitus 5 Tarkastellaan ensin aineistoa KUNNAT. Kyseessähän on siis kokonaistutkimusaineisto, joten tilastollisia testejä ja niiden merkitsevyystarkasteluja ei

Lisätiedot

1 TILASTOJEN KÄYTTÖ 7. Mitä tilastotiede on 7 Historiaa 8 Tilastotieteen nykyinen asema 9 Tilastollisen tutkimuksen vaiheet 10

1 TILASTOJEN KÄYTTÖ 7. Mitä tilastotiede on 7 Historiaa 8 Tilastotieteen nykyinen asema 9 Tilastollisen tutkimuksen vaiheet 10 SISÄLTÖ 1 TILASTOJEN KÄYTTÖ 7 Mitä tilastotiede on 7 Historiaa 8 Tilastotieteen nykyinen asema 9 Tilastollisen tutkimuksen vaiheet 10 Tilastoaineisto 11 Peruskäsitteitä 11 Tilastoaineiston luonne 13 Mittaaminen

Lisätiedot

Regressioanalyysi. Kuusinen/Heliövaara 1

Regressioanalyysi. Kuusinen/Heliövaara 1 Regressioanalyysi Kuusinen/Heliövaara 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun joidenkin

Lisätiedot

3. Useamman selittäajäan regressiomalli. p-selittäaväaäa muuttujaa. Y i = + 1 X i1 +...+ p X ip + u i

3. Useamman selittäajäan regressiomalli. p-selittäaväaäa muuttujaa. Y i = + 1 X i1 +...+ p X ip + u i 3. Useamman selittäajäan regressiomalli p-selittäaväaäa muuttujaa Y i = + 1 X i1 +...+ p X ip + u i i = 1,...,n (> p), missäa n = havaintojen lukumäaäaräa otoksessa. Oletukset kuten aiemmin: (1) E(u i

Lisätiedot

Perusestimointi 5 Analyysiä survey-datalla Tee Suomen datalla jokin oma kokeilu käyttäen tätä mallia Esimerkki PISA 2006:sta SAS:lla

Perusestimointi 5 Analyysiä survey-datalla Tee Suomen datalla jokin oma kokeilu käyttäen tätä mallia Esimerkki PISA 2006:sta SAS:lla Perusestimointi 5 Analyysiä survey-datalla Tee Suomen datalla jokin oma kokeilu käyttäen tätä mallia Esimerkki PISA 2006:sta SAS:lla proc surveymeans data=pisa.impuoecd; where cnt='fin' or cnt='deu' or

Lisätiedot

Ohjeita kvantitatiiviseen tutkimukseen

Ohjeita kvantitatiiviseen tutkimukseen 1 Metropolia ammattikorkeakoulu Liiketalouden yksikkö Pertti Vilpas Ohjeita kvantitatiiviseen tutkimukseen Osa 2 KVANTITATIIVISEN TUTKIMUSAINEISTON ANALYYSI Sisältö: 1. Frekvenssi- ja prosenttijakaumat.2

Lisätiedot

VARIANSSIANALYYSI ANALYSIS OF VARIANCE

VARIANSSIANALYYSI ANALYSIS OF VARIANCE VARIANSSIANALYYSI ANALYSIS OF VARIANCE 1 Suomalaisten aikuisten pituusjakauma:.8.7.6.5.4.3.2.1 14 15 16 17 18 19 2 21 Jakauma ei ole normaali, sen olettaminen sellaiseksi johtaa virheellisiin päätelmiin.

Lisätiedot

Harjoitus 3: Regressiomallit (Matlab)

Harjoitus 3: Regressiomallit (Matlab) Harjoitus 3: Regressiomallit (Matlab) MS-C2107 Sovelletun matematiikan tietokonetyöt MS-C2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Pienimmän neliösumman menetelmä mallin sovittamisessa

Lisätiedot

Lumipallo regressioanalyysista. Logistinen regressioanalyysi. Soveltuvan menetelmän valinta. Regressioanalyysi. Logistinen regressioanalyysi I

Lumipallo regressioanalyysista. Logistinen regressioanalyysi. Soveltuvan menetelmän valinta. Regressioanalyysi. Logistinen regressioanalyysi I Lumipallo regressioanalyysista jokainen kirjoittaa lapulle yhden lauseen regressioanalyysista ja antaa sen seuraavalle Logistinen regressioanalyysi Y250. Kvantitatiiviset menetelmät (6 op) Hanna Wass tutkijatohtori

Lisätiedot

Tilastollisten menetelmien käyttö Kelan tutkimustoiminnassa

Tilastollisten menetelmien käyttö Kelan tutkimustoiminnassa Tilastollisten menetelmien käyttö Kelan tutkimustoiminnassa Risto Lehtonen Helsingin yliopisto Kela 1 Tilastokeskuksen SAS-seminaari 16.11.2009 Aiheita Kelan tutkimustoiminta SAS-sovellukset vaativien

Lisätiedot

MTTTP5, luento Luottamusväli, määritelmä

MTTTP5, luento Luottamusväli, määritelmä 23.11.2017/1 MTTTP5, luento 23.11.2017 Luottamusväli, määritelmä Olkoot A ja B satunnaisotoksen perusteella määriteltyjä satunnaismuuttujia. Väli (A, B) on parametrin 100(1 - ) %:n luottamusväli, jos P(A

Lisätiedot

Regressioanalyysi. Vilkkumaa / Kuusinen 1

Regressioanalyysi. Vilkkumaa / Kuusinen 1 Regressioanalyysi Vilkkumaa / Kuusinen 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Halutaan selittää selitettävän muuttujan havaittujen arvojen vaihtelua selittävien muuttujien havaittujen

Lisätiedot

Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo?

Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo? MTTTP5, kevät 2016 15.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen 1. Valitaan 25 alkion satunnaisotos jakaumasta N(µ, 25). Olkoon H 0 : µ = 12. Hylätään H 0, jos otoskeskiarvo

Lisätiedot

pisteet Frekvenssi frekvenssi Yhteensä

pisteet Frekvenssi frekvenssi Yhteensä 806118P JOHDATUS TILASTOTIETEESEEN Loppukoe 15.3.2018 (Jari Päkkilä) 1. Kevään -17 Johdaus tilastotieteeseen -kurssin opiskelijoiden harjoitusaktiivisuudesta saatujen pisteiden frekvenssijakauma: Harjoitus-

Lisätiedot

TA4b Taloudellinen kasvu Harjoitus 1

TA4b Taloudellinen kasvu Harjoitus 1 TA4b Taloudellinen kasvu Harjoitus Heikki Korpela 9. huhtikuuta 207 Tehtävä. Maan taloutta kuvataan Solowin mallilla, jossa työntekijää kohden laskettu tuotantofunktio on y k 2. Olkoon nyt k 900, investointiaste

Lisätiedot

Yleistetyistä lineaarisista malleista

Yleistetyistä lineaarisista malleista Yleistetyistä lineaarisista malleista Tilastotiede käytännön tutkimuksessa -kurssi, kesä 2001 Reijo Sund Klassinen lineaarinen malli y = Xb + e eli E(Y) = m, jossa m = Xb Satunnaiskomponentti: Y:n komponentit

Lisätiedot

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit

Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit s t ja t kahden Sisältö t ja t t ja t kahden kahden t ja t kahden t ja t Tällä luennolla käsitellään epäparametrisia eli

Lisätiedot

Vastepintamenetelmä. Kuusinen/Heliövaara 1

Vastepintamenetelmä. Kuusinen/Heliövaara 1 Vastepintamenetelmä Kuusinen/Heliövaara 1 Vastepintamenetelmä Vastepintamenetelmässä pyritään vasteen riippuvuutta siihen vaikuttavista tekijöistä approksimoimaan tekijöiden polynomimuotoisella funktiolla,

Lisätiedot

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi

1. Normaalisuuden tutkiminen, Bowmanin ja Shentonin testi, Rankit Plot, Wilkin ja Shapiron testi Mat-2.2104 Tilastollisen analyysin perusteet / Ratkaisut Aiheet: Avainsanat: Yhteensopivuuden ja homogeenisuden testaaminen Bowmanin ja Shentonin testi, Hypoteesi, 2 -homogeenisuustesti, 2 -yhteensopivuustesti,

Lisätiedot

Kandidaatintutkielman aineistonhankinta ja analyysi

Kandidaatintutkielman aineistonhankinta ja analyysi Kandidaatintutkielman aineistonhankinta ja analyysi Anna-Kaisa Ylitalo M 315, anna-kaisa.ylitalo@jyu.fi Musiikin, taiteen ja kulttuurin tutkimuksen laitos Jyväskylän yliopisto 2018 2 Havaintomatriisi Havaintomatriisi

Lisätiedot

TA4b Taloudellinen kasvu Harjoitus 2

TA4b Taloudellinen kasvu Harjoitus 2 TA4b Taloudellinen kasvu Harjoitus 2 Heikki Korpela 26. huhtikuuta 2017 Tehtävä 1. Tarkastellaan teknologiaa ja talouskasvua yhden maan mallilla (kirja, luku 8.3; luontomuistiinpanot, luku 8). Oletetaan,

Lisätiedot

Tilastotieteen aihehakemisto

Tilastotieteen aihehakemisto Tilastotieteen aihehakemisto hakusana ARIMA ARMA autokorrelaatio autokovarianssi autoregressiivinen malli Bayes-verkot, alkeet TILS350 Bayes-tilastotiede 2 Bayes-verkot, kausaalitulkinta bootstrap, alkeet

Lisätiedot

Näistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina.

Näistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina. [MTTTP1] TILASTOTIETEEN JOHDANTOKURSSI, kevät 2019 https://coursepages.uta.fi/mtttp1/kevat-2019/ HARJOITUS 3 Joitain ratkaisuja 1. x =(8+9+6+7+10)/5 = 8, s 2 = ((8 8) 2 + (9 8) 2 +(6 8) 2 + (7 8) 2 ) +

Lisätiedot

Perusnäkymä yksisuuntaiseen ANOVAaan

Perusnäkymä yksisuuntaiseen ANOVAaan Metsämuuronen 2006. TTP Tutkimuksen tekemisen perusteet ihmistieteissä Taulukko.51.1 Analyysiin mukaan tulevat muuttujat Mja selite Merkitys mallissa F1 Ensimmäinen faktoripistemuuttuja Selitettävä muuttuja

Lisätiedot

A250A0050 Ekonometrian perusteet Tentti

A250A0050 Ekonometrian perusteet Tentti A250A0050 Ekonometrian perusteet Tentti 28.9.2016 Tentissä ei saa käyttää laskinta. Tentistä saa max 80 pistettä. Hyväksytysti suoritetusta harjoitustyöstä saa max 20 pistettä. Huom. Merkitse vastauspaperin

Lisätiedot

Näistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina.

Näistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina. [MTTTP1] TILASTOTIETEEN JOHDANTOKURSSI, Syksy 2017 http://www.uta.fi/sis/mtt/mtttp1/syksy_2017.html HARJOITUS 3 viikko 40 Joitain ratkaisuja 1. Suoritetaan standardointi. Standardoidut arvot ovat z 1 =

Lisätiedot

2. Yhden selittäajäan lineaarinen regressiomalli. 2.1 Malli ja parametrien estimointi. Malli:

2. Yhden selittäajäan lineaarinen regressiomalli. 2.1 Malli ja parametrien estimointi. Malli: 2. Yhden selittäajäan lineaarinen regressiomalli Regressio-termi peräaisin Galtonilta. IsÄan ja pojan pituus: PitkÄa isäa lyhyempi poika, lyhyt isäa pidempi poika. Son height (cm) 21 2 19 18 17 16 15 15

Lisätiedot

Tilastollisten menetelmien perusteet II TILTP3 Luentorunko

Tilastollisten menetelmien perusteet II TILTP3 Luentorunko Tilastollisten menetelmien perusteet II TILTP3 Luentorunko Raija Leppälä 29. helmikuuta 2012 Sisältö 1 Johdanto 2 1.1 Jatkuvista jakaumista 2 1.1.1 Normaalijakauma 2 1.1.2 Studentin t-jakauma 3 1.2 Satunnaisotos,

Lisätiedot

USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI

USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI TEORIA USEAN MUUTTUJAN REGRESSIOMALLIT JA NIIDEN ANA- LYYSI Regressiomalleilla kuvataan tilanteita, jossa suureen y arvot riippuvat joukosta ns selittäviä muuttujia x 1, x 2,..., x p oletetun funktiomuotoisen

Lisätiedot

Liito-oravan elinympäristöjen mallittaminen Tampereen seudulla

Liito-oravan elinympäristöjen mallittaminen Tampereen seudulla Liito-oravan elinympäristöjen mallittaminen Tampereen seudulla Ari Nikula Metsäntutkimuslaitos Rovaniemen toimintayksikkö Ari.Nikula@metla.fi / Metsäntutkimuslaitos Skogsforskningsinstitutet Finnish Forest

Lisätiedot

(b) Vedonlyöntikertoimet syytetyn ihonvärin eri luokissa

(b) Vedonlyöntikertoimet syytetyn ihonvärin eri luokissa Oulun yliopiston matemaattisten tieteiden tutkimusyksikkö/tilastotiede 805306A JOHDATUS MONIMUUTTUJAMENETELMIIN, sl 2017 (Jari Päkkilä) Harjoitus 3, viikko 47 (19.20.11.): kotitehtävät Ratkaisuja 1. Floridan

Lisätiedot

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio

Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla määritelty funktio 17.11.2015/1 MTTTP5, luento 17.11.2015 Luku 5 Parametrien estimointi 5.1 Piste-estimointi Estimointi populaation tuntemattoman parametrin arviointia otossuureen avulla Otossuure satunnaisotoksen avulla

Lisätiedot

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1

2 k -faktorikokeet. Vilkkumaa / Kuusinen 1 2 k -faktorikokeet Vilkkumaa / Kuusinen 1 Motivointi 2 k -faktorikoe on k-suuntaisen varianssianalyysin erikoistapaus, jossa kaikilla tekijöillä on vain kaksi tasoa, matala (-) ja korkea (+). 2 k -faktorikoetta

Lisätiedot

Pasi Väkeväinen. Ohjeita tilastollisen tutkimuksen toteuttamiseksi MATLAB-ohjelmiston avulla

Pasi Väkeväinen. Ohjeita tilastollisen tutkimuksen toteuttamiseksi MATLAB-ohjelmiston avulla Pasi Väkeväinen Ohjeita tilastollisen tutkimuksen toteuttamiseksi MATLAB-ohjelmiston avulla TAMPEREEN YLIOPISTO INFORMAATIOTIETEIDEN YKSIKÖN RAPORTTEJA 63/2018 TAMPERE 2018 TAMPEREEN YLIOPISTO INFORMAATIOTIETEIDEN

Lisätiedot

ABHELSINKI UNIVERSITY OF TECHNOLOGY

ABHELSINKI UNIVERSITY OF TECHNOLOGY Johdatus regressioanalyysiin Regressioanalyysin idea Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun selittävien muuttujien havaittujen arvojen vaihtelun avulla.

Lisätiedot

SPSS ohje. Metropolia Business School/ Pepe Vilpas

SPSS ohje. Metropolia Business School/ Pepe Vilpas 1 SPSS ohje Page 1. Perusteita 2 2. Frekvenssijakaumat 3 3. Muuttujan luokittelu 4 4. Kaaviot 5 5. Tunnusluvut 6 6. Tunnuslukujen vertailu ryhmissä 7 9. Ristiintaulukointi ja Chi-testi 8 10. Hajontakaavio

Lisätiedot

Harjoitus 6 -- Ratkaisut

Harjoitus 6 -- Ratkaisut Harjoitus 6 -- Ratkaisut 1 Ei kommenttia. 2 Haetaan data tiedostosta. SetDirectory"homeofysjmattas" SetDirectory "c:documents and settingsmattasdesktopteachingatk2harjoitukseth06" netnfstuhome4ofysjmattas

Lisätiedot

Sisällysluettelo 6 REGRESSIOANALYYSI. Metsämuuronen: Monimuuttujamenetelmien perusteet SPSS-ympäristössä ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON...

Sisällysluettelo 6 REGRESSIOANALYYSI. Metsämuuronen: Monimuuttujamenetelmien perusteet SPSS-ympäristössä ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON... Sisällysluettelo ALKUSANAT... 4 ALKUSANAT E-KIRJA VERSIOON...5 SISÄLLYSLUETTELO... 6 LYHYT SANASTO VASTA-ALKAJILLE... 7 1. MONIMUUTTUJAMENETELMÄT IHMISTIETEISSÄ... 9 1.1 MONIMUUTTUJA-AINEISTON ERITYISPIIRTEITÄ...

Lisätiedot

7. Lohkominen ja sulautus 2 k kokeissa. Lohkominen (Blocking)

7. Lohkominen ja sulautus 2 k kokeissa. Lohkominen (Blocking) 7. Lohkominen ja sulautus 2 k kokeissa Lohkominen (Blocking) Lohkotekijät muodostuvat faktoreista, joiden suhteen ei voida tehdä (täydellistä) satunnaistamista. Esimerkiksi faktorikokeessa raaka-aine-erät

Lisätiedot

Opetus talteen ja jakoon oppilaille. Kokemuksia Aurajoen lukion tuotantoluokan toiminnasta Anna Saivosalmi 9.9.2011

Opetus talteen ja jakoon oppilaille. Kokemuksia Aurajoen lukion tuotantoluokan toiminnasta Anna Saivosalmi 9.9.2011 Opetus talteen ja jakoon oppilaille Kokemuksia Aurajoen lukion tuotantoluokan toiminnasta Anna Saivosalmi 9.9.2011 Aurajoen lukio ISOverstaan jäsen syksystä 2010 lähtien ISOverstas on maksullinen verkko-oppimisen

Lisätiedot

Kaikissa tämän ryhmän tehtävissä on vastattava seuraavan kysymykseen sen ohjeita noudattaen.

Kaikissa tämän ryhmän tehtävissä on vastattava seuraavan kysymykseen sen ohjeita noudattaen. 1 Kaikki tässä annetut harjoitustehtävät on muokattu vanhoista tenttitehtävistä. Kaikissa niissä tehtävissä, joissa koetulokset on annettu, kannattaa tehdä tilastolliset analyysit myös itse Excelillä tai

Lisätiedot

Teema 9: Tilastollinen merkitsevyystestaus

Teema 9: Tilastollinen merkitsevyystestaus Teema 9: Tilastollinen merkitsevyystestaus Tärkeä päättelyn osa-alue on tilastollinen merkitsevyystestaus, johon päästään luontevasti edellisen teeman aiheista: voidaan kysyä, menevätkö kahden vertailtavan

Lisätiedot

8. Osittaiset 2 k faktorikokeet. Niinpä, jos voidaan olettaa, että korekeamman

8. Osittaiset 2 k faktorikokeet. Niinpä, jos voidaan olettaa, että korekeamman 8. Osittaiset 2 k faktorikokeet Faktoreiden lukumäärän k kasvaessa 2 k koeasetelmassa kasvaa koetoistojen (runs) määrää nopeasti täydessä toteutuksessa (complete replicate). Esimerkiksi 2 6 asetelman täysi

Lisätiedot

1 Aineiston rakenne ja erikoisvaatimukset

1 Aineiston rakenne ja erikoisvaatimukset TH, PK 13.01.2005 Tilastollisten ohjelmistojen käyttö Terveys 2000 tutkimuksen yhteydessä 1 Aineiston rakenne ja erikoisvaatimukset Aineiston keräämiskustannusten pienentämiseksi havaintoyksilöt poimittiin

Lisätiedot

Vastepintamenetelmä. Heliövaara 1

Vastepintamenetelmä. Heliövaara 1 Vastepintamenetelmä Kurssipalautteen antamisesta saa hyvityksenä yhden tenttipisteen. Palautelomakkeeseen tulee lähiaikoina linkki kurssin kotisivuille. Heliövaara 1 Vastepintamenetelmä Vastepintamenetelmässä

Lisätiedot

Tehtävä 1. (a) JYVÄSKYLÄN YLIOPISTO Matematiikan ja tilastotieteen laitos Parametrittomat ja robustit menetelmät Harjoitukset 7, vastaukset

Tehtävä 1. (a) JYVÄSKYLÄN YLIOPISTO Matematiikan ja tilastotieteen laitos Parametrittomat ja robustit menetelmät Harjoitukset 7, vastaukset JYVÄSKYLÄN YLIOPISTO Matematiikan ja tilastotieteen laitos Parametrittomat ja robustit menetelmät Harjoitukset 7, vastaukset 12.05.2009 Tehtävä 1 (a) x

Lisätiedot

voidaan hylätä, pienempi vai suurempi kuin 1 %?

voidaan hylätä, pienempi vai suurempi kuin 1 %? [TILTP1] TILASTOTIETEEN JOHDANTOKURSSI, Syksy 2011 http://www.uta.fi/~strale/tiltp1/index.html 30.9.2011 klo 13:07:54 HARJOITUS 5 viikko 41 Ryhmät ke 08.30 10.00 ls. C8 Leppälä to 12.15 13.45 ls. A2a Laine

Lisätiedot

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1 Tilastotieteen kertaus Vilkkumaa / Kuusinen 1 Motivointi Reaalimaailman ilmiöihin liittyy tyypillisesti satunnaisuutta ja epävarmuutta Ilmiöihin liittyvien havaintojen ajatellaan usein olevan peräisin

Lisätiedot

... Vinkkejä lopputyön raportin laadintaan. Sisältö 1. Johdanto 2. Analyyseissä käytetyt muuttujat 3. Tulososa 4. Reflektio (korvaa Johtopäätökset)

... Vinkkejä lopputyön raportin laadintaan. Sisältö 1. Johdanto 2. Analyyseissä käytetyt muuttujat 3. Tulososa 4. Reflektio (korvaa Johtopäätökset) LIITE Vinkkejä lopputyön raportin laadintaan Sisältö 1. Johdanto 2. Analyyseissä käytetyt muuttujat 3. Tulososa 4. Reflektio (korvaa Johtopäätökset) 1. Johdanto Kerro johdannossa lukijalle, mitä jatkossa

Lisätiedot

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30.

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30. FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa Luentokuulustelujen esimerkkivastauksia Pertti Palo 30. marraskuuta 2012 Saatteeksi Näiden vastausten ei ole tarkoitus olla malleja vaan esimerkkejä.

Lisätiedot

Viikon 5 harjoituksissa käytämme samoja aikasarjoja kuin viikolla 4. Tiedosto Muuttuja Kuvaus Havaintoväli Aikasarjan pituus

Viikon 5 harjoituksissa käytämme samoja aikasarjoja kuin viikolla 4. Tiedosto Muuttuja Kuvaus Havaintoväli Aikasarjan pituus MS-C2128 Ennustaminen ja aikasarja-analyysi 5. harjoitukset / Tehtävät Kotitehtävät: 2 Aihe: ARMA-mallit Viikon 5 harjoituksissa käytämme samoja aikasarjoja kuin viikolla 4. Tehtävä 5.1. Tarkastellaan

Lisätiedot

Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus.

Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhearviointi Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhelajit A. Tilastolliset virheet= satunnaisvirheet, joita voi arvioida tilastollisin menetelmin B. Systemaattiset virheet = virheet, joita

Lisätiedot

805306A Johdatus monimuuttujamenetelmiin, 5 op

805306A Johdatus monimuuttujamenetelmiin, 5 op monimuuttujamenetelmiin, 5 op syksy 2018 Matemaattisten tieteiden laitos Logistinen regressioanalyysi Vastemuuttuja Y on luokiteltu muuttuja Pyritään mallittamaan havaintoyksikön todennäköisyyttä kuulua

Lisätiedot

Hoitotyön henkilöstövoimavarojen hallinnan mallintaminen kansallisesti yhtenäisillä tunnusluvuilla

Hoitotyön henkilöstövoimavarojen hallinnan mallintaminen kansallisesti yhtenäisillä tunnusluvuilla Hoitotyön henkilöstövoimavarojen hallinnan mallintaminen kansallisesti yhtenäisillä tunnusluvuilla Ehdotukset kansallisesti yhtenäisiksi hoitotyön henkilöstövoimavarojen hallinnan tunnusluvuiksi Erikoissairaanhoito

Lisätiedot

Harjoittele tulkintoja

Harjoittele tulkintoja Harjoittele tulkintoja Syksy 9: KT (55 op) Kvantitatiivisen aineiston keruu ja analyysi SPSS tulosteiden tulkintaa/til Analyysit perustuvat aineistoon: Haavio-Mannila, Elina & Kontula, Osmo (1993): Suomalainen

Lisätiedot

Yhden selittäjän lineaarinen regressiomalli (jatkoa) Ensi viikolla ei pidetä luentoa eikä harjoituksia. Heliövaara 1

Yhden selittäjän lineaarinen regressiomalli (jatkoa) Ensi viikolla ei pidetä luentoa eikä harjoituksia. Heliövaara 1 Yhden selittäjän lineaarinen regressiomalli (jatkoa) Ensi viikolla ei pidetä luentoa eikä harjoituksia Heliövaara 1 Regressiokertoimien PNS-estimaattorit Määritellään havaintojen x j ja y j, j = 1, 2,...,n

Lisätiedot