Eulerin ensimmäiset tehtävät Pietarissa olivat vaihte-
|
|
- Tapio Salo
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Solmu 1/ Kaksi syntymäpäiväsankaria Matti Lehtinen Maanpuolustuskorkeakoulu Sata ei ole matemaattisesti kovin kiinnostava luku, mutta ihmisellä sattuu olemaan kymmenen sormea ja kymmeneen perustuva tapa nimetä ja merkitä lukuja. Tapahtumat, joista on kulunut tasamäärä satoja vuosia, tulevat usein huomion kohteiksi. Tämän vuoden huhtikuussa tulee kuluneeksi täysiä satoja vuosia kahden merkittävän matemaatikon syntymästä. Heillä on muitakin yhteisiä piirteitä: Kumpikin teki suuren osan merkittävimmästä työstään muualla kuin kotimaassaan ja kummankin elämä koskettaa Suomea, toisen tosin aika ohuesti. Kummankin uraa auttoi alkuun merkittävän avoimen ongelman ratkaisussa onnistuminen, ja molempien matematiikassa yksi merkittävä osa liittyi aikaisemman hämärästi itseään ilmaissen matemaatikon ajatusten ymmärrettäväksi tekemiseen. Henkilöt ovat Leonhard Euler ja Lars Valerian Ahlfors. Eulerin elämä Leonhard Euler syntyi Baselissa Sveitsissä 15. huhtikuuta Baselin porvarit olivat noina aikoina päättäneet, että matematiikka on koulussa turha aine, ja poistaneet sen kokonaan. Nuoren Eulerin koulutoveri sattui kuitenkin olemaan aikansa merkittävimpiin kuuluneen matemaatikon Johann Bernoullin poika, ja isä-bernoulli johdatti Eulerin matematiikan piiriin. Opetusmenetelmä oli tehokas: Bernoulli antoi Eulerille luku- ja perehtymistehtäviä viikoksi ja salli oppilaan tulla sunnuntaina kyselemään, jos jotain oli jäänyt epäselväksi. Kunnianhimoinen Euler pyrki ymmärtämään itse ja kysymään niin vähän kuin mahdollista. Menetelmä toimi. Euler valmistui maisteriksi Baselin yliopistosta 16-vuotiaana. Hiukan vaikea yhdistelmä työnsaannin kannalta luvun alussa Itämeren rannoilla tapahtui. Tsaari Pietari Suuri ryhtyi tosissaan johtamaan maataan Eurooppaan. Nevan suun soille perustettiin Pietarin kaupunki ja maata vallattiin Ruotsilta; Suomikin oli pitkään miehitettynä Ison Vihan aikaan. Pietarin pyrkimykset eivät olleet pelkästään sotaisia. Eräiden muiden aikansa hallitsijoiden tavoin hänkin halusi rakentaa ympärilleen oppineiden piirin, tiedeakatemian. Pietari ehti kuolla, mutta vuonna 1725 Akatemia aloitti toimintansa. Sen jäseniksi oli värvätty kaksi Johann Bernoullin poikaa, Daniel ja Nicolaus, ja myös tuolloinkin vielä varsin nuorelle Eulerille tarjottiin paikkaa Pietarissa. Euler oli saavuttanut ensimmäisen tieteellisen menestyksensä osallistumalla Pariisin tiedeakatemian kilpailuun, jossa aiheena oli purjelaivan mastojen konstruktio. Ei ihan sveitsiläisen aihe. Eulerin ensimmäiset tehtävät Pietarissa olivat vaihte-
2 2 Solmu 1/2007 levia. Hän opetti Tiedeakatemiassa ja Merisotakoulussa vaihtelevia aineita, fysiologiasta alkaen. Pian tehtävä vaihtui ensin fysiikan ja sitten matematiikan professoriksi. Missään vaiheessa Euler ei ollut fakki-idiootti. Hän antoi neuvoja hallitukselle eri asioissa, osallistui Venäjän kartoitukseen, auttoi laivanrakennuksessa ja suunnitteli paloruiskuja. Kruununperijän horoskoopin laadinnasta hän kuitenkin kieltäytyi. Euler oli Pietarissa kahteen otteeseen, ensin vuoteen 1741 ja sitten vuodesta 1766 elämänsä loppuun. Väliajan Euler toimi Berliinissä. Preussin kuningas Fredrik II eli Fredrik Suuri halusi oman statussymbolinsa, Berliinin Akatemian, olevan numero yksi tiedeakatemioiden joukossa ja houkutteli Eulerin sen jäseneksi ja johtoon. Eulerin ja Fredrikin välit eivät olleet parhaat mahdolliset: ahkera, asiallinen ja mutta väritön matemaatikko ei viehättänyt monarkkia samalla tavoin kuin esimerkiksi kirjailija-filosofi Voltaire, Fredrikin suosikki. Lopulta Euler kyllästyi ja hakeutui takaisin Pietariin, jossa valtaa nyt piti saksalaissyntyinen keisarinna Katariina, myös II, myös Suuri. Euler avioitui Pietarissa saksalaissyntyisen Katharina Gsellin kanssa. Eulereilla oli 13 lasta. Eulerin tasaisen ja työteliään elämän yksi tragedia oli näön menetys. Eulerin oikean silmän näkö meni jo vuonna Perimätieto sanoo syyn olleen auringon katsomisen kaukoputken läpi, mutta luultavampi syy on infektiosairaus. Melkein kaikki Eulerin muotokuvat on maalattu niin, että malli on kääntänyt maalariin päin kasvojensa vasemman puolen. Fredrik Suuri nimitteli Euleria ilkeyksissään kykloopikseen. Pian Eulerin palattua toisen kerran Pietariin hän menetti kaihin takia näkönsä toisestakin silmästä. Vuonna 1771 Eulerin kaihi leikattiin ja hän näki muutaman päivän ajan, mutta sitten silmiin iski infektio, joka sokeutti Eulerin täydellisesti ja lopullisesti. Näön menetyksellä ei näytä olleen mitään vaikutusta Eulerin työtahtiin. Hän pystyi käsittelemään matematiikkaa päässään ja ajattelemaan valmiiksi tuloksensa, jotka hän sitten saneli assistenteilleen. Tässä tulemme Eulerin ja Suomen yhteyteen. Yksi Eulerin tärkeimpiä assistentteja oli Anders Lexell, Turussa jouluaattona 1740 syntynyt raatimies Jonas Lexellin poika. Lexell oli 1763 tullut Turun Akatemian dosentiksi, mutta hänelle kutsu Pietariin vuonna 1768, siis kaksi vuotta Eulerin toisen Pietarin-kauden alun jälkeen, oli merkittävä askel tieteen suureen maailmaan. Kutsun takana oli Euler. Lexell nimitettiin jo 1775 professoriksi Turkuun, mutta hän otti jatkuvasti virkavapautta voidakseen toimia Eulerin luona Pietarissa. Kun Euler kuoli 1783, Lexell peri hänen virkansa. Hän kuoli kuitenkin jo seuraavana vuonna. Lexell on ensimmäinen kansainvälisesti merkittävä suomalainen matemaatikko. Hänen saavutuksiinsa kuuluu Uranusplaneetan tunnistaminen planeetaksi. (Uranuksen löytäjä, englantilainen William Herschel oli tulkinnut löytönsä komeetaksi.) Uranuksen ratalaskelmista on kunnian saanut kuuluisa ranskalaismatemaatikko Pierre Simon Laplace, mutta Lexell oli tehnyt omat laskunsa Laplacesta riippumatta ja tietämättä. Euler kuoli Pietarissa 18. syyskuuta Hänet haudattiin Vasilinsaarelle, mutta vuonna 1956 hänen maalliset jäämistönsä siirrettiin Aleksanteri Nevskin luostarin liepeillä olevalle hautausmaalle. Eulerin kookas mutta mahtailematon hautakivi löytyy vastapäätä usein turistikohteena olevaa Kuuluisuuksien hautausmaata, sitä, johon mm. Tšaikovskin ja Dostojevskin maalliset jäännökset on sijoitettu. Pietarissa käydessä kannattaa poiketa. Eulerin matematiikkaa Eulerin matemaattisten pääsaavutusten pintapuolinenkaan luettelo ei ole näissä puitteissa mahdollista. Euler oli luultavasti kaikkien aikojen tuotteliain matemaatikko. On laskettu, että hän kirjoitti 866 tieteellistä artikkelia. Pietarin tiedeakatemian julkaisut täyttyivät Eulerin kirjoituksista kymmeniksi vuosiksi hänen kuolemansa jälkeen. Eulerin koottuja teoksia on Sveitsissä julkaistu yli 70 vankkaa osaa. Euler käsitteli tutkimuksissaan kaikkia tuohon aikaan tunnettuja matematiikan aloja ja pani alulle uusia. Google-haku sanalla Euler tuottaa iskemää (helmikuun alussa 2007), kun Gauss, matemaatikkojen kuningas, saa vain (ja Ahlfors ). Paitsi tutkimuksia, Euler kirjoitti loisteliaita oppikirjoja, jotka pitkälle ovat määrittäneet matemaattisen oppikirjan olemuksen. Vähäinen ei ole hänen merkityksensä myöskään matematiikan merkintöjen ja nimitysten keksijänä ja vakiinnuttajana. Meille kaikille tuttu π on tullut matematiikkaan varsinaisesti Eulerin oppikirjassa Introductio in Analysin Infinitorum. Euler kirjoitti myös kansantajuisesti: kuuluisa on hänen 1768 julkaisemansa ranskankielinen teos Kirjeitä eräälle saksalaiselle prinsessalle erinäisistä fysiikan ja filosofian aiheista. Se on erittäin selkeää ja yksinkertaista, mutta asiallista tieteen popularisointia. Matemaatikoilla on kaunis tapa ikuistaa kollegojaan nimeämällä käsitteitä tai matemaattisia tuloksia heidän mukaansa. Otetaan tähän muutama näyte asioista joihin lähes jokainen matematiikan kanssa toimiva väistämättä törmää: Eulerin kaava e ix = cos x + i sin x on keskeisin väline kompleksilukujen käytössä ja ymmärtämisessä.
3 Solmu 1/ Eulerin monitahokaskaava V E + S = 2 sitoo yhdesti yhtenäisen monitahokkaan kärkien lukumäärän V, särmien lukumäärän E ja sivujen lukumäärän S yhteen. Laskepa suure kuutiolle, tetraedrille ja Kheopsin pyramidille! Eulerin suora yhdistää missä tahansa kolmiossa keskijanojen leikkauspisteen M, sivujen keskinormaalien leikkauspisteen eli kolmion ympäri piirretyn ympyrän keskipisteen O ja kolmion korkeusjanojen leikkauspisteen H. Tämän asian todistus ei ole kovin hankala. Joskus ihmetellään, miksei Eukleides tiennyt tätä. Eulerin funktio φ(n) kertoo niiden positiivisten kokonaislukujen k < n lukumäärän, joilla ei ole luvun n kanssa muita tekijöitä kuin 1. Eulerin Fermat n lause kertoo, että jos a:lla ja n:llä ei ole yhteisiä tekijöitä, a φ(n) antaa aina jakojäännöksen 1, kun jakaja on n. Kokeile, kun n = 100. Numeerista matematiikkaan harrastava törmää Eulerin yksinkertaiseen likiarvomenetelmään differentiaaliyhtälön y = f(x, y) alkuarvotehtävän y(x 0 ) = y 0 ratkaisemiseksi on seuraava: valitaan askelpituus h; määritellään y 1 = y 0 +hf(x 0, y 0 ), y 2 = y 1 +hf(x 1, y 1 ) jne. Silloin y k on likimain yhtälön ratkaisun arvo pisteessä x k. Eulerin vakio γ on yksi matematiikan tärkeitä, monessa yhteydessä esiin tulevia erityisiä lukuja. Se on rajaarvo lim n ( n k=1 ) 1 k ln n 0, Hämmästyttävää on, että vieläkään emme tiedä, onko γ rationaali- vai irrationaaliluku. Verkkoteorian peruskäsitteitä on Eulerin ketju. Sitä voisi havainnollistaa kävelynä kaikkia kaupungin katuja pitkin niin, mitään katuosuutta ei kävellä kahdesti. Euler ratkaisi vuonna 1735 ajanvietematematiikan ongelman, joka koski mahdollisuutta tehdä Königsbergin kaupungissa Itä-Preussissa kävely, joka olisi ylittänyt kaupungissa olleet seitsemän siltaa kunkin vain kerran. Monesti lasketaan, että nykyään suuret ja tärkeät matematiikan alat topologia ja verkkoteoria ovat saaneet alkusysäyksensä juuri tästä Eulerin ratkaisusta. Euler käsitteli kirjoituksissaan myös muita ajanvietematematiikan aiheita, mm. latinalaisia neliöitä, sudokujen esimuotoa. Yksi nuoren Eulerin suuria ja matematiikan kannalta kauaskantoisimpia saavutuksia ja hänen maineensa perusta oli niin sanotun Baselin ongelman ratkaisu. Kysymys oli sarjan summasta. Kysymystä oli pohtinut mm. Johann Bernoulli, tulokseen kuitenkaan pääsemättä. Euler onnistui vuonna 1735 osoittamaan, että summa on π 2 6. (Tuolloin Euler ei vielä käyttänyt kirjainta π vaan kirjainta p osoittamaan ympyrän kehän ja halkaisijan suhdetta.) Pari vuotta myöhemmin Euler johti yleisemmän kaavan 1 k s = 1 1 p s, k=1 missä oikean puolen tulo ottaa huomioon kaikki alkuluvut. Eulerin havainto on lähtökohta tarkasteluihin, jotka johtavat matematiikan luultavasti kuuluisimpaan avoimeen ongelmaan, Riemannin hypoteesiin. Eulerin kaavan vasemman puolen summa on s:n funktio, ja se on mielekäs myös, kun s on kompleksiluku. On tullut tavaksi merkitä tätä funktiota symbolilla ζ. Monien lukuteorian ongelmien kannalta olisi tärkeää tietää, milloin ζ(s) = 0. Saksalainen Bernhard Riemann esitti vuonna 1859, että jos ζ(s) = 0, niin joko s on parillinen negatiivinen kokonaisluku tai s on kompleksiluku, jonka reaaliosa on 1 2. Onko todella näin, on yhä ratkaisematta. Ratkaisijalle olisi tarjolla miljoonan dollarin palkkiokin. Myös se vielä kuuluisampi ongelma, kymmenisen vuotta sitten ratkaisunsa saanut Fermat n suuren lauseen todistus, saa kiittää kuuluisuudestaan Euleria: Euler oli ensimmäinen, joka tarttui Fermat n heittämään syöttiin ja todisti Fermat n lauseen ensimmäisen vaikeamman tapauksen: sen, että yhtälöllä x 3 +y 3 = z 3 ei ole nollasta eroavia kokonaislukuratkaisuja. Eulerin uskomatonta tuotteliaisuutta ja hänen tulostensa moninaisuutta esitellessä on tapana aina huomauttaa, että Eulerin matematiikka ei ollut kaikin puolin korrektia. Hän operoi paljon päättymättömillä sarjoilla. Nykymatemaatikko ja opiskelija tietää, että sarjoihin liittyy aina kysymys suppenemisesta ja siitä, voidaanko sarjan yksittäisiin termeihin kohdistuvat toimet kuten derivointi tai integrointi periyttää sarjan summalle. Euler ei näistä kysymyksistä samalla tavalla huolehtinut. Tämä oli kuitenkin hänen ajalleen tyypillistä. Suppenemiseen ja yleisemmin raja-arvoihin liittyvät ongelmat tiedostettiin ja ratkaistiinkin vasta Euleria seuraavan vuosisadan aikana. Eulerin matemaattinen intuitio johti kuitenkin siihen, että hänen epäilyttävätkin päättelynsä yleensä johtivat oikeaan lopputulokseen. Eulerin tuotantoa on paljon esillä netissäkin: Euler Archive osoitteessa pyrkii saamaan Eulerin koko tuotannon kaikkien näkyviin.
4 4 Solmu 1/2007 Lars Valerian Ahlfors Lars Ahlfors syntyi Helsingissä 18. huhtikuuta 1907, siis lähes päivälleen 200 vuotta myöhemmin kuin Euler. Kun Ahlfors alkoi matematiikan opintonsa Helsingin yliopistossa 1924, matematiikan ainoana professorina oli Ernst Lindelöf, mies, jota enemmän kuin ketään muuta voi kiittää matematiikan korkeatasoisen tutkimuksen alkuun panemisesta Suomessa. Lindelöf oli monipuolinen matemaatikko, mutta hänen pääkiinnostuksensa kohde oli 1800-luvun lopulla voimakkaasti kehittyä alkanut kompleksilukumuuttujan kompleksilukuarvoisten funktioiden, erityisesti niin sanottujen analyyttisten funktioiden tutkimus. Lindelöfin toinen lahjakas oppilas, Rolf Nevanlinna, joka oli juuri julkaissut sittemmin meromorfifunktioiden arvojenjakautumisteorian tai Nevanlinnan teorian nimellä tunnetut tuloksensa, tuli Ahlforsin opiskeluvuosina toiseksi matematiikan professoriksi. Lindelöfin ansiota lienee pitkälti se, että kun Nevanlinna vuonna 1928 matkusti joksikin aikaa Zürichiin vierailevaksi tutkijaksi, juuri maisteriksi valmistunut 21-vuotias Ahlfors sai seurata häntä. Funktioteoria, ainakin siltä osin kuin se Suomessa tuli merkittäväksi tutkimuskohteeksi, oli lähtöisin Ranskasta. Ja Ranskassa oli vuonna 1909 väitellyt tohtoriksi Arnaud Denjoy tutkimuksella, joka koski erästä kompleksifunktioiden erityisluokkaa, ns. kokonaisia funktioita. Denjoy oli väitöskirjassaan esittänyt otaksuman tällaisten funktioiden asymptoottisten arvojen lukumäärää. Otaksuma oli jäänyt todistamatta, mutta ongelma oli kiinnostava, ja sen ratkaisua olivat miettineet monet alan arvostetut tutkijat, Nevanlinnakin. Väitöskirjaansa aihetta kaipaavalle nuorelle Ahlforsille Nevanlinna ehdotti tutustumista Denjoyn ongelmaan. Nevanlinna oli varsin hämmästynyt, kun Ahlfors parin viikon kuluttua palasi ongelman ratkaisun kera. Denjoyn ongelman ratkaisu sisältyy Ahlforsin vuonna 1930 (jolloin Ahlfors oli 23-vuotias) valmistuneeseen väitöskirjaan. Hänen tutkijanuransa eteni nyt nopeasti. Hänet nimitettiin Helsingin yliopiston apulaiseksi eli apulaisprofessoriksi vuonna 1932 ja professoriksi Lukuvuoden hän oli Harvardin yliopistossa. Tutkijana hän aluksi seurasi opettajaansa Nevanlinnaa, mutta varsin omintakeisesti. Merkittäväksi muodostui Ahlforsin 1935 julkaisema tutkimus Zur Theorie der Überlagerungsflächen. Matemaatikot ovat jo yli sadan vuoden ajan kokoontuneet joka neljäs vuosi yleiseen kansainväliseen matemaatikkokongressiin, jossa esitellään laajasti tieteen uusimpia saavutuksia yli matematiikan monien erikoisalojen rajojen. Vuonna 1924 kokous pidettiin Torontossa Kanadassa. Kokouksen pääorganisoija oli John Fields. Hän oli niin taitava sponsoroinnin järjestäjä, että kokous tuotti pienen ylijäämän. Fields ehdotti, että ylijäämä käytettäisiin tulevissa Kansainvälisissä matemaatikkokongresseissa erittäin ansioituneiden matemaatikkojen palkitsemiseen. Fields kuoli vuonna 1932, eikä ehtinyt nähdä ehdotuksensa toteutuvan. Se kuitenkin toteutui vuonna 1936 Oslossa pidetyssä kongressissa. Palkittuja matemaatikkoja oli kaksi: amerikkalainen minimipintojen tutkija Jesse Douglas ja suomalainen Lars Ahlfors. Ahlforsin erityiseksi ansioksi katsottiin juuri edellisessä kappaleessa mainittu tutkimus. Kun matematiikka ei kuulu niihin tiedonaloihin, joita Alfred Nobel halusi palkittavan, niin Fieldsin mitali on muodostunut matematiikan Nobeliksi, korkeimmaksi kunnianosoitukseksi, jonka matemaatikko voi saada. (Mitaliin liittyvä rahapalkinto, Kanadan dollaria, on kuitenkin pieni murto-osa Nobelin palkinnosta.) Ahlforsin Fieldsin mitali on nykyään Suomessa. Sen voi nähdä Helsingin yliopiston matematiikan laitosrakennuksen Exactumin ala-aulan vitriinissä Kumpulan kampusalueella. Ahlfors jätti Suomen vuoden 1944 kesän sekavissa oloissa. Yksi syy pois siirtymiseen saattoi olla se, että Ahlforsin vaimo Erna oli itävaltalainen. Ahlfors siirtyi ensin Zürichiin ja sitten Harvardiin, jossa hän vuodesta 1946 oli matematiikan professorina vuoteen 1977, ja senkin jälkeen aktiivisena tutkijana. Ahlforsilla ohjasi noin 25 väitöskirjaa. (Pieni detalji, joka tavallaan osoittaa matematiikan paikkaa yleisessä arvostuskentässä: kun entinen pääministeri ja presidenttiehdokas Esko Aho vuonna 2000 lähti muutamaksi kuukaudeksi Harvardiin, Suomen Kuvalehti julkaisi laajan artikkelin Harvardissa opiskelleista tai vaikuttaneista suomalaisista. Lars Ahlforsia ei artikkelissa ollenkaan mainittu.) Ahlfors oli kuten matemaatikot keskimäärinkin ovat ahkera ja kurinalainen tutkija. Hän oli kuitenkin myös, kuten akateemikko Olli Lehto Arkhimedes-lehdessä julkaistussa muistokirjoituksessaan toteaa värikäs, vieraanvarainen, voimaa uhkuva bon vivant. Ahlforsin alkoholinkäyttöön liittyvät anekdootit ovat matemaatikkokertomusten klassikkoja. Hänet tunteneet antavat ylistäviä lausuntoja hänen ja Ernan vieraanvaraisuudesta ja ystävällisyydestä. Ja mainitsevat, että juhlaillankin jälkeisenä aamuna Ahlfors oli aina valmis jatkamaan työtään. Lars Ahlfors eli korkeaan ikään ja jatkoi työtään lähes viimeisiin vuosiinsa asti. Ahlfors kuoli Pittsfieldsissä Massachusettsissa 11. lokakuuta Ahlforsin matematiikka ei tietenkään ole yhtä laajaalaista kuin Eulerin. Kahdessasadassa vuodessa matemaattisen tiedon määrä oli valtavasti kasvanut ja tietämyksen rajat edenneet niin, että näitä rajoja ei enää kukaan yksilö voinut työntää edemmäs kovin monessa paikassa. Funktioteorian tai niin kuin sitä nyt tavallisemmin nimitetään kompleksianalyysin alalla Ahlfors
5 Solmu 1/ oli kuitenkin erittäin monipuolinen. Yksi hänen tutkimusaloistaan tuo uuden analogian Euleriin, joka lukuteoriassa paljon täydensi, selvensi ja korjasi Pierre de Fermat n tuloksia. Funktioteoreettikojen tutkimat analyyttiset funktiot ovat niin sanottuja konformikuvauksia. Se tarkoittaa, että vaikka funktion välittämä tason kuvaus vääntelisi kuvioita isossa mittakaavassa rajustikin, niin mikroskooppisesti kuvaus on yhdenmuotoisuuskuvaus: kahden käyrän välinen kulma säilyy aina samana luvulta alkaen jotkut matemaatikot, Ahlfors heidän joukossaan, alkoivat miettiä, mitä voisi tapahtua, jos kuvaukselle sallittaisiin hiukan enemmän vapautta. Ahlfors antoi nimen tälle konformikuvauksia laajemmalle luokalle: ne ovat kvasikonformikuvauksia. Mutta ilman muuta pisimmälle näiden funktioiden tutkimuksessa pääsi saksalainen Oswald Teichmüller. Teichmüllerin tapa esittää asiansa oli kuitenkin erittäin vaikeaselkoinen, eikä hänen töihinsä tutustumiseen myöskään varsinaisesti kannustanut tieto Teichmüllerin voimakkaista ja vastenmielisistä poliittisista mielipiteistä (jotka eivät kuitenkaan hänen matematiikassaan näy, vaikka 1930-luvun Saksassa sellaistakin ilmeni). Ahlforsin kirjoitukset 1950-luvulla toivat Teichmüllerin ajatukset ymmärrettäviksi. Kvasikonformikuvauksista kasvoi merkittävä kompleksianalyysin osa-alue. Se on ollut yksi tärkeimpiä matematiikan tutkimusaloja Suomessa 1900-luvun loppupuoliskolla. Myös Ahlfors kirjoitti varsinaisten tutkimusten lisäksi oppikirjoja. Erityisesti vuonna 1953 ensi kerran ilmestynyt funktioteorian oppikirja Complex Analysis on säilyttänyt asemansa klassikkona. Ahlfors omistaa sen Ernst Lindelöfin muistolle.
Kompleksiluvut 1/6 Sisältö ESITIEDOT: reaaliluvut
Kompleksiluvut 1/6 Sisältö Kompleksitaso Lukukäsitteen vaiheittainen laajennus johtaa luonnollisista luvuista kokonaislukujen ja rationaalilukujen kautta reaalilukuihin. Jokaisessa vaiheessa ratkeavien
4.1 Urakäsite. Ympyräviiva. Ympyrään liittyvät nimitykset
4.1 Urakäsite. Ympyräviiva. Ympyrään liittyvät nimitykset MÄÄRITELMÄ 6 URA Joukko pisteitä, joista jokainen täyttää määrätyn ehdon, on ura. Urakäsite sisältää siten kaksi asiaa. Pistejoukon jokainen piste
Derivaatta 1/6 Sisältö ESITIEDOT: reaalifunktiot, funktion raja-arvo
Derivaatta 1/6 Sisältö Derivaatan määritelmä funktio Olkoon kiinteä tarkastelupiste. Reaalimuuttujan reaaliarvoisen funktion f deri- (reaali-) vaatta tässä pisteessä merkitään f () voidaan luonnetia kadella
0. 10. 017 a b c d 1. + +. + +. + + 4. + + + 5. + 6. + P1. Lehtipuiden lukumäärä olkoon aluksi n, jolloin havupuiden määrä on 1,4n. Hakkuiden jälkeen lehtipuiden määrä putoaa lukuun n 0,1n = 0,88n ja havupuiden
Platonin kappaleet. Avainsanat: geometria, matematiikan historia. Luokkataso: 6-9, lukio. Välineet: Polydron-rakennussarja, kynä, paperia.
Tero Suokas OuLUMA, sivu 1 Platonin kappaleet Avainsanat: geometria, matematiikan historia Luokkataso: 6-9, lukio Välineet: Polydron-rakennussarja, kynä, paperia Tavoitteet: Tehtävässä tutustutaan matematiikan
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2019 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti
1 Ensimmäisen asteen polynomifunktio
Ensimmäisen asteen polynomifunktio ENNAKKOTEHTÄVÄT. a) f(x) = x 4 b) Nollakohdassa funktio f saa arvon nolla eli kuvaaja kohtaa x-akselin. Kuvaajan perusteella funktion nollakohta on x,. c) Funktion f
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 6.3.08 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
Matematiikan peruskurssi 2
Matematiikan peruskurssi Tentti, 9..06 Tentin kesto: h. Sallitut apuvälineet: kaavakokoelma ja laskin, joka ei kykene graaseen/symboliseen laskentaan Vastaa seuraavista viidestä tehtävästä neljään. Saat
Matematiikkalehti 1/2007. http://solmu.math.helsinki.fi/
Matematiikkalehti 1/2007 http://solmu.math.helsinki.fi/ 2 Solmu 1/2007 Solmu 1/2007 ISSN 1458-8048 (Verkkolehti) ISSN 1459-0395 (Painettu) Matematiikan ja tilastotieteen laitos PL 68 (Gustaf Hällströmin
f(x) f(y) x y f f(x) f(y) (x) = lim
Y1 (Matematiikka I) Haastavampia lisätehtäviä Syksy 1 1. Funktio h määritellään seuraavasti. Kuvan astiaan lasketaan vettä tasaisella nopeudella 1 l/min. Astia on muodoltaan katkaistu suora ympyräkartio,
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 4.9.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti
Kolmannen ja neljännen asteen yhtälöistä
Solmu /019 7 Kolmannen neljännen asteen yhtälöistä Esa V. Vesalainen Matematik och statistik, Åbo Akademi Tämän pienen artikkelin tarkoituksena on satuilla hieman algebrallisista yhtälöistä. Erityisesti
SUOMALAISEN TIEDEAKATEMIAN VÄISÄLÄN RAHASTON PALKINNOT JA APURAHAT JAETTU 14.12.2015
Lehdistötiedote Julkaisuvapaa 14.12.2015 klo 17.00 SUOMALAISEN TIEDEAKATEMIAN VÄISÄLÄN RAHASTON PALKINNOT JA APURAHAT JAETTU 14.12.2015 Suomalainen Tiedeakatemia myönsi 14.12.2015 pidetyssä tilaisuudessaan
RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.
RATKAISUT 198 197 198. Olkoon suorakulmion erisuuntaisten sivujen pituudet a ja b sekä neliön sivun pituus c. Tehtävä on mielekäs vain, jos suorakulmio ei ole neliö, joten oletetaan, että a b. Suorakulmion
Geometriaa GeoGebralla Lisätehtäviä nopeasti eteneville
Geometriaa GeoGebralla Lisätehtäviä nopeasti eteneville Tutki GeoGebralla Näkymät->Geometria a) Kuinka suuria ovat kolmion kulmat, jos sen sivut ovat 5, 7 ja 9. Vihje: Aloita kolmion piirtäminen yhdestä
= = = 1 3.
9. 10. 2008!"$#&%(')'*,#.-/* P1. lkuperäisen punaisen kuution pinta koostuu kuudesta 3 3-neliöstä, joten sen ala on 6 3 2 = 54. Koska 3 3 =, kuutio jakautuu leikatessa yksikkökuutioksi, joiden kokonaispinta-ala
Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: b) 0 e x + 1
Tehtävä : Tehtävänanto oli ratkaista seuraavat määrätyt integraalit: a) a) x b) e x + Integraali voisi ratketa muuttujanvaihdolla. Integroitava on muotoa (a x ) n joten sopiva muuttujanvaihto voisi olla
Kuuluisat matemaatikot tutuiksi
Koostanut: Elina Viro Opettajalle Kuuluisat matemaatikot tutuiksi Kohderyhmä: Projekti voidaan toteuttaa 7., 8., 9. luokalla, mutta 9. luokalla taustalla oleva matematiikka on tutuinta. Esitiedot: - Taustalla
Todistusmenetelmiä Miksi pitää todistaa?
Todistusmenetelmiä Miksi pitää todistaa? LUKUTEORIA JA TO- DISTAMINEN, MAA11 Todistus on looginen päättelyketju, jossa oletuksista, määritelmistä, aksioomeista sekä aiemmin todistetuista tuloksista lähtien
Johdatus graafiteoriaan
Johdatus graafiteoriaan Syksy 2017 Lauri Hella Tampereen yliopisto Luonnontieteiden tiedekunta 166 Luku 4 Erilaisia graafeja 4.1 Eulerin graafi 4.2 Hamiltonin graafi 4.3 Tasograafi 4.4 Graafin värittäminen
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012
KOMPLEKSIANALYYSI I KURSSI SYKSY 2012 RITVA HURRI-SYRJÄNEN 8. Integraalilauseiden sovelluksia 1. Analyyttisen funktion sarjaesitys. (eli jokainen analyyttinen funktio on lokaalisti suppenevan potenssisarjan
Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.
6 Alkeisfunktiot Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua. 6. Funktion määrittely Funktio f : A B on sääntö, joka liittää jokaiseen joukon A alkioon
Cantorin joukon suoristuvuus tasossa
Cantorin joukon suoristuvuus tasossa LuK-tutkielma Miika Savolainen 2380207 Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2016 Sisältö Johdanto 2 1 Cantorin joukon esittely 2 2 Suoristuvuus ja
Maatalous-metsätieteellisen tiedekunnan valintakoe Ympäristö-ja luonnonvaraekonomia Matematiikan kysymysten oikeat vastaukset
Maatalous-metsätieteellisen tiedekunnan valintakoe 18.5.2015 Ympäristö-ja luonnonvaraekonomia Matematiikan kysymysten oikeat vastaukset 7. a) Matti ja Maija lähtevät kävelemään samasta pisteestä vastakkaisiin
Kompleksiluvut., 15. kesäkuuta /57
Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen
c) 22a 21b x + a 2 3a x 1 = a,
Tehtäviä on kahdella sivulla; kuusi ensimmäistä tehtävää on monivalintatehtäviä, joissa on 0 4 oikeata vastausta. 1. Lukion A ja lukion B oppilasmäärien suhde oli a/b vuoden 2017 lopussa. Vuoden 2017 aikana
4.3 Kehäkulma. Keskuskulma
4.3 Kehäkulma. Keskuskulma Sellaista kulmaa, jonka kärki on ympyrän kehällä ja kumpikin kylki leikkaa (rajatapauksessa sivuaa) ympyrän kehää, sanotaan kehäkulmaksi, ja sitä vastaavan keskuskulman kyljet
LUKUTEORIA johdantoa
LUKUTEORIA johdantoa LUKUTEORIA JA TODISTAMINEN, MAA11 Lukuteorian tehtävä: Lukuteoria tutkii kokonaislukuja, niiden ominaisuuksia ja niiden välisiä suhteita. Kokonaislukujen maailma näyttää yksinkertaiselta,
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, 2952018, Ratkaisut (Sarja A) 1 Anna kaikissa kohdissa vastaukset tarkkoina arvoina Kohdassa d), anna kulmat
TYÖPAJA 1: Tasogeometriaa GeoGebran piirtoalue ja työvälineet
TYÖPAJA 1: Tasogeometriaa GeoGebran piirtoalue ja työvälineet Näissä harjoituksissa työskennellään näkymässä Näkymät->Geometria PIIRRÄ a) jana, jonka pituus on 3 b) kulma, jonka suuruus on 45 astetta c)
sin x cos x cos x = sin x arvoilla x ] π
Matematiikan johdantokurssi, syksy 08 Harjoitus 0, ratkaisuista. Todenna, että = + tan x. Mutta selvitäppä millä reaaliarvoilla se oikeasti pitää paikkansa! Ratkaisu. Yhtälön molemmat puolet ovat määriteltyjä
TYÖPAJA 1: Tasogeometriaa GeoGebran piirtoalue ja työvälineet
TYÖPAJA 1: Tasogeometriaa GeoGebran piirtoalue ja työvälineet Valitse Näkymät->Geometria PIIRRETÄÄN KOLMIOITA: suorakulmainen kolmio keksitkö, miten korostat suoraa kulmaa? tasakylkinen kolmio keksitkö,
Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora
Ympyrä 1/6 Sisältö Ympyrä ja sen yhtälö Tason pisteet, jotka ovat vakioetäisyydellä kiinteästä pisteestä, muodostavat ympyrän eli ympyräviivan. Kiinteä piste on ympyrän keskipiste ja vakioetäisyys sen
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ.0.08 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
Matematiikan tukikurssi, kurssikerta 3
Matematiikan tukikurssi, kurssikerta 3 1 Epäyhtälöitä Aivan aluksi lienee syytä esittää luvun itseisarvon määritelmä: { x kun x 0 x = x kun x < 0 Siispä esimerkiksi 10 = 10 ja 10 = 10. Seuraavaksi listaus
5. Numeerisesta derivoinnista
Funktion derivaatta ilmaisee riippumattoman muuttujan muutosnopeuden riippuvan muuttujan suteen. Esimerkiksi paikan derivaatta ajan suteen (paikan ensimmäinen aikaderivaatta) on nopeus, joka ilmaistaan
Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6
Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.
VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4
VEKTORIANALYYSIN HARJOITUKSET: VIIKKO 4 Jokaisen tehtävän jälkeen on pieni kommentti tehtävään liittyen Nämä eivät sisällä mitään kovin kriittistä tietoa tehtävään liittyen, joten niistä ei tarvitse välittää
! 7! = N! x 8. x x 4 x + 1 = 6.
9. 10. 2008 1. Pinnalta punaiseksi maalattu 3 3 3-kuutio jaetaan 27:ksi samankokoiseksi kuutioksi. Mikä osuus 27 pikkukuution kokonaispinta-alasta on punaiseksi maalattu? 2. Positiivisen kokonaisluvun
1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 3 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan muun muassa kahden joukon osoittamista samaksi sekä joukon
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 6.3.09 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
Oppimistavoitematriisi
Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Esitiedot Arvosanaan 1 2 riittävät Arvosanaan 3 4 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä
Aluksi. 1.1. Kahden muuttujan lineaarinen yhtälö
Aluksi Matematiikan käsite suora on tarkalleen sama asia kuin arkikielen suoran käsite. Vai oliko se toisinpäin? Matematiikan luonteesta johtuu, että sen soveltaja ei tyydy pelkkään suoran nimeen eikä
1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7
Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7 1 Kompleksiluvut Lukualueiden laajennuksia voi lähestyä polynomiyhtälöiden ratkaisemisen kautta. Yhtälön x+1 = 0 ratkaisemiseksi tarvitaan negatiivisia lukuja.
ja y = ovat rationaalilukuja.
JYVÄSKYLÄN YLIOPISTO MATEMATIIKAN JA TILASTOTIETEEN LAITOS Matemaatiikan historia Ratkaisut 8 / 0 Esseet. Muistetaan, että Pythagoraan kolmikko on (a, b, c) N 3 siten, että a + b = c. a) Jos kompleksiluvun
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö
MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 10: Ensimmäisen kertaluvun differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos
derivaatta pisteessä (YOS11) a) Näytä, että a n+1 > a n, kun n = 1, 2, 3,.
Matematiikka, MAA9. a) Ratkaise yhtälö tan (YOS) Kulma on välillä [, 6]. Ratkaise asteen tarkkuudella seuraavat yhtälöt: b) sin c) cos (YOs). Kulmalle [9,6 ] on voimassa sin = 8 7. Määritä cos ja tan..
Ratkaisut vuosien tehtäviin
Ratkaisut vuosien 1958 1967 tehtäviin 1958 Pyörähtäessään korkeusjanansa ympäri tasakylkinen kolmio muodostaa kartion, jonka tilavuus on A, ja pyörähtäessään kylkensä ympäri kappaleen, jonka tilavuus on
SUBSTANTIIVIT 1/6. juttu. joukkue. vaali. kaupunki. syy. alku. kokous. asukas. tapaus. kysymys. lapsi. kauppa. pankki. miljoona. keskiviikko.
SUBSTANTIIVIT 1/6 juttu joukkue vaali kaupunki syy alku kokous asukas tapaus kysymys lapsi kauppa pankki miljoona keskiviikko käsi loppu pelaaja voitto pääministeri päivä tutkimus äiti kirja SUBSTANTIIVIT
Anna jokaisen kohdan vastaus kolmen merkitsevän numeron tarkkuudella muodossa
Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä
a) Sievennä lauseke 1+x , kun x 0jax 1. b) Aseta luvut 2, 5 suuruusjärjestykseen ja perustele vastauksesi. 3 3 ja
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 1.10.2018 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
Matematiikan mestariluokka, syksy 2009 7
Matematiikan mestariluokka, syksy 2009 7 2 Alkuluvuista 2.1 Alkuluvut Määritelmä 2.1 Positiivinen luku a 2 on alkuluku, jos sen ainoat positiiviset tekijät ovat 1 ja a. Jos a 2 ei ole alkuluku, se on yhdistetty
Helsingin seitsemäsluokkalaisten matematiikkakilpailu 7.2.2013 Ratkaisuita
Helsingin seitsemäsluokkalaisten matematiikkakilpailu..013 Ratkaisuita 1. Eräs kirjakauppa myy pokkareita yhdeksällä eurolla kappale, ja siellä on meneillään mainoskampanja, jossa seitsemän sellaista ostettuaan
Derivaatan sovellukset (ääriarvotehtävät ym.)
Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion
ClassPad 330 plus ylioppilaskirjoituksissa apuna
ClassPad 330 plus ylioppilaskirjoituksissa apuna Suomessa sallittiin CAS (Computer Algebra System) laskimien käyttö keväästä 2012 alkaen ylioppilaskirjoituksissa. Norjassa ja Ruotsissa vastaava kehitys
Kenguru 2017 Student lukio
sivu 1 / 9 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Oikeasta vastauksesta saa 3, 4 tai 5 pistettä.
Oppimistavoitematriisi
Oppimistavoitematriisi Lineaarialgebra ja matriisilaskenta I Arvosanaan 1 2 riittävät Arvosanaan 5 riittävät Yhtälöryhmät (YR) Osaan ratkaista ensimmäisen asteen yhtälöitä ja yhtälöpareja Osaan muokata
Yleisiä integroimissääntöjä
INTEGRAALILASKENTA, MAA9 Yleisiä integroimissääntöjä Integroiminen eli annetun funktion f integraalifunktion F määrittäminen (löytäminen) on yleisesti haastavaa. Joskus joutuu jopa arvata tai kokeilla.
IV. TASAINEN SUPPENEMINEN. f(x) = lim. jokaista ε > 0 ja x A kohti n ε,x N s.e. n n
IV. TASAINEN SUPPENEMINEN IV.. Funktiojonon tasainen suppeneminen Olkoon A R joukko ja f n : A R funktio, n =, 2, 3,..., jolloin jokaisella x A muodostuu lukujono f x, f 2 x,.... Jos tämä jono suppenee
Matemaattisen analyysin tukikurssi
Matemaattisen analyysin tukikurssi 12. Kurssikerta Petrus Mikkola 5.12.2016 Tämän kerran asiat Sini-ja kosifunktio Yksikköympyrä Tangentti- ja kotangenttifunktio Trigonometristen funktioiden ominaisuuksia
Kenguru 2013 Junior sivu 1 / 9 (lukion 1. vuosikurssi)
Kenguru 2013 Junior sivu 1 / 9 Nimi Ryhmä Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Väärästä vastauksesta
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 26..208 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
Esimerkki kaikkialla jatkuvasta muttei missään derivoituvasta funktiosta
Esimerkki kaikkialla jatkuvasta muttei missään derivoituvasta funktiosta Seminaariaine Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2004 Matemaattista ja historiallista taustaa Tämän kappaleen
Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.
Väitelause Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta. Tässä P:tä kutsutaan oletukseksi ja Q:ta väitteeksi. Jos yllä oleva väitelause on totta, sanotaan, että P:stä
Kenguru 2019 Student lukio
sivu 0 / 7 NIMI LUOKKA Pisteet: Kenguruloikan pituus: Koodi (ope täyttää): Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto. Oikeasta vastauksesta
1 Aritmeettiset ja geometriset jonot
1 Aritmeettiset ja geometriset jonot Johdatus Johdatteleva esimerkki 1 Kasvutulille talletetaan vuoden jokaisen kuukauden alussa tammikuusta alkaen 100 euroa. Tilin nettokorkokanta on 6%. Korko lisätään
MS-C1080 Algebran perusrakenteet (5 op)
MS-C1080 Algebran perusrakenteet (5 op) Luennot: Camilla Hollanti Harjoitukset: Niko Väisänen, Amaro Barreal etunimi.sukunimi@aalto.fi Kevät 2015 1 / 11 Kurssin sisältö Kurssimateriaali: Metsänkylä Näätänen,
4 Matemaattinen induktio
4 Matemaattinen induktio Joidenkin väitteiden todistamiseksi pitää näyttää, että kaikilla luonnollisilla luvuilla on jokin ominaisuus P. Esimerkkejä tällaisista väitteistä ovat vaikkapa seuraavat: kaikilla
Mat Matematiikan peruskurssi K2
Mat-.3 Matematiikan peruskurssi K Heikkinen/Tikanmäki Kolmas välikoe 6.5. Kokeessa saa käyttää ylioppilaskirjoituksiin hyväksyttyä laskinta. Sivun kääntöpuolelta löytyy integrointikaavoja.. Olkoon F(x,
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 4 Jatkuvuus Jatkuvan funktion määritelmä Tarkastellaan funktiota f x) jossakin tietyssä pisteessä x 0. Tämä funktio on tässä pisteessä joko jatkuva tai epäjatkuva. Jatkuvuuden
Johdatus matematiikkaan
Johdatus matematiikkaan Luento 6 Mikko Salo 6.9.2017 Sisältö 1. Kompleksitaso 2. Joukko-oppia Kompleksiluvut Edellisellä luennolla huomattiin, että toisen asteen yhtälö ratkeaa aina, jos ratkaisujen annetaan
Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3
Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä
Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim.
Injektio Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim. Funktio f on siis injektio mikäli ehdosta f (x 1 ) = f (x 2 ) seuraa, että x 1 = x 2.
Pikapaketti logiikkaan
Pikapaketti logiikkaan Tämän oppimateriaalin tarkoituksena on tutustua pikaisesti matemaattiseen logiikkaan. Oppimateriaalin asioita tarvitaan projektin tekemisessä. Kiinnostuneet voivat lukea lisää myös
Lataa Poincaren konjektuuri - Donal O'Shea. Lataa
Lataa Poincaren konjektuuri - Donal O'Shea Lataa Kirjailija: Donal O'Shea ISBN: 9789525697285 Sivumäärä: 320 Formaatti: PDF Tiedoston koko: 24.35 Mb Henri Poincare esitti maailmankaikkeuden rakennetta
Helsingin seitsemäsluokkalaisten matematiikkakilpailu Ratkaisuita
Helsingin seitsemäsluokkalaisten matematiikkakilpailu 22..204 Ratkaisuita. Laske 23 45. a) 4000 b) 4525 c) 4535 d) 5525 e) 5535 Ratkaisu. Lasketaan allekkain: 45 23 35 90 45 5535 2. Yhden maalipurkin sisällöllä
Differentiaali- ja integraalilaskenta 1 Ratkaisut 5. viikolle /
MS-A8 Differentiaali- ja integraalilaskenta, V/7 Differentiaali- ja integraalilaskenta Ratkaisut 5. viikolle / 9..5. Integroimismenetelmät Tehtävä : Laske osittaisintegroinnin avulla a) π x sin(x) dx,
3. Harjoitusjakso I. Vinkkejä ja ohjeita
3. Harjoitusjakso I Tämä ensimmäinen harjoitusjakso sisältää kaksi perustason (a ja b) ja kaksi edistyneen tason (c ja d) harjoitusta. Kaikki neljä harjoitusta liittyvät geometrisiin konstruktioihin. Perustason
Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta
Maksimit ja minimit 1/5 Sisältö Funktion kasvavuus ja vähenevyys; paikalliset ääriarvot Jos derivoituvan reaalifunktion f derivaatta tietyssä pisteessä on positiivinen, f (x 0 ) > 0, niin funktion tangentti
Kevään 2010 fysiikan valtakunnallinen koe
120 Kevään 2010 fysiikan valtakunnallinen koe 107 114 100 87 93 Oppilasmäärä 80 60 40 20 0 3 5 7 14 20 30 20 30 36 33 56 39 67 48 69 77 76 56 65 35 25 10 9,75 9,5 9,25 9 8,75 8,5 8,25 8 7,75 7,5 7,25 7
A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.
PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja
https://www.sokoshotels.fi/en/st-petersburg/sokos-hotel-olympia-garden
03.05.2018 10:00-14:30 Allegro juna lähtee Helsinki-Pietari 3,5 tuntia 14:30-17:00 Saapuminen Pietariin, Pietari kiertoajelu bussilla 17:00-18:30 Pietari-Paavalin linnoitukseen Neva-joen Jänissaarelle
1 Raja-arvo. 1.1 Raja-arvon määritelmä. Raja-arvo 1
Raja-arvo Raja-arvo Raja-arvo kuvaa funktion f arvon f() kättätmistä, kun vaihtelee. Joillakin funktioilla f() muuttuu vain vähän, kun muuttuu vähän. Toisilla funktioilla taas f() hppää tai vaihtelee arvaamattomasti,
Tekijä Pitkä matematiikka
K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π
9 Analyysin nopea kehitys 1700-luvulla
9 ANALYYSIN NOPEA KEHITYS 700-LUVULLA 58 9 Analyysin nopea kehitys 700-luvulla Infinitesimaalilaskennan keksiminen sysäsi matemaattisen analyysin erittäin nopeaan kehitykseen. Uusia menetelmiä käytettiin
1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.
ABIKertaus.. a. Ratkaise yhtälö 8 5 4 + + 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on. 4. Jaa polynomi 8 0 5 ensimmäisen asteen tekijöihin ja ratkaise tämän avulla 4 epäyhtälö 8 0 5 0.
Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:
Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman
Wanted. Kohti hyvää elämää Hyvään. Taiteen taito. Mysteeriloota. Tölön taidetta. Koulun kysytyin kysymys
Koulun kysytyin kysymys "Miksi koulua käydään?". Otimme tehtäväksemme ottaa siitä selvää. Wanted Taiteen taito Tölön taidetta Kohti hyvää elämää Hyvään elämään on monta tietä ja neuvoa. Tässä muutama.
1.4 Funktion jatkuvuus
1.4 Funktion jatkuvuus Kun arkikielessä puhutaan jonkin asian jatkuvuudesta, mielletään asiassa olevan jonkinlaista yhtäjaksoisuutta, katkeamattomuutta. Tässä ei kuitenkaan käsitellä työasioita eikä ihmissuhteita,
Joukot. Georg Cantor ( )
Joukot Matematiikassa on pyrkimys määritellä monimutkaiset asiat täsmällisesti yksinkertaisempien asioiden avulla. Tarvitaan jokin lähtökohta, muutama yleisesti hyväksytty ja ymmärretty käsite, joista
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011
PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan
Lukion matematiikkakilpailun alkukilpailu 2015
Lukion matematiikkakilpailun alkukilpailu 015 Avoimen sarjan tehtävät ja niiden ratkaisuja 1. Olkoot a ja b peräkkäisiä kokonaislukuja, c = ab ja d = a + b + c. a) Osoita, että d on kokonaisluku. b) Mitä
Ympyrän yhtälö
Ympyrän yhtälö ANALYYTTINEN GEOMETRIA MAA4 On melko selvää, että origokeskisen ja r-säteisen ympyrän yhtälö voidaan esittää muodossa x 2 + y 2 = r 2. Vastaavalla tavalla muodostetaan ympyrän yhtälö, jonka
y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2
Matematiikan ja tilastotieteen osasto/hy Differentiaaliyhtälöt I Laskuharjoitus 2 mallit Kevät 219 Tehtävä 1. Laske osittaisderivaatat f x = f/x ja f y = f/, kun f = f(x, y) on funktio a) x 2 y 3 + y sin(2x),
Sarja. Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,...,
Sarja Lukujonosta (a k ) k N voi muodostaa sen osasummien jonon (s n ): Määritelmä 1 s 1 = a 1, s 2 = a 1 + a 2, s 3 = a 1 + a 2 + a 3,..., n s n = a k. Jos osasummien jonolla (s n ) on raja-arvo s R,
5. OSITTAISINTEGROINTI
5 OSITTAISINTEGROINTI Kahden funktion f ja g tulo derivoidaan kuten muistetaan seuraavasti: D (fg) f g + f Kun tämä yhtälö integroidaan puolittain, niin saadaan fg f ()g()d + f ()()d Yhtälö saattaa erota
Matematiikan tukikurssi
Matematiikan tukikurssi Kurssikerta 1 1 Matemaattisesta päättelystä Matemaattisen analyysin kurssin (kuten minkä tahansa matematiikan kurssin) seuraamista helpottaa huomattavasti, jos opiskelija ymmärtää
(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon.
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 015 Harjoitus 4 Ratkaisuehdotuksia Tehtäväsarja I Seuraavat tehtävät liittyvät kuvauksiin. 1. Merkitään X = {1,,, 4}. Ovatko seuraavat säännöt