Kuuluisat matemaatikot tutuiksi
|
|
- Helmi Lehtilä
- 6 vuotta sitten
- Katselukertoja:
Transkriptio
1 Koostanut: Elina Viro Opettajalle Kuuluisat matemaatikot tutuiksi Kohderyhmä: Projekti voidaan toteuttaa 7., 8., 9. luokalla, mutta 9. luokalla taustalla oleva matematiikka on tutuinta. Esitiedot: - Taustalla oleva matematiikka: Matematiikan historia Ajankäyttö: Projektitöiden tekeminen min, esittelyt: 45 min Opetustilat: Oma luokka, tietokoneluokka Tavoitteet: Projektin tavoitteena on tutustua historian kuuluisimpiin matemaatikoihin. Tutustumisen avulla oppilaat saavat kuvaa siitä, mitä milloinkin on matematiikan alalla keksitty. Kuvaus projektista: Projekti jakautuu projektitöiden tekemiseen ja niiden esittelyyn. Projektitöiden tekeminen Opettaja jakaa luokan 2-3 hengen ryhmiin tai oppilaat muodostavat ryhmänsä itse. Jokainen ryhmä valitsee yhden kuuluisan matemaatikon, johon he tutustuvat tarkemmin internetin avulla. Matemaatikkoja: Ryhmät valmistavat luokan seinälle matemaatikkoaan käsittelevän posterin, PowerPointin tai näytelmän. Lisäksi ryhmät valmistavat matemaatikostaan pienen esittelypaperin, joka jaetaan
2 esityksen jälkeen jokaiselle luokan oppilaalle. Tässä esittelypaperissa ovat tärkeimmät tiedot kyseisestä matemaatikosta. Esittelyt Ryhmät esittelevät matemaatikkonsa muulle luokalle posterilla, näytelmänä tai PowerPointesityksenä sekä jakavat esittelypaperit muille. Esityksissä on hyvä käsitellä ainakin seuraavia asioita: Arviointi: Milloin ja missä kyseinen matemaatikko eli? Kerro hiukan hänen perheestään. Mistä kyseinen matemaatikko tuli kuuluisaksi? Mitä jo opiskelemaasi matematiikkaan liittyviä matemaattisia keksintöjä kyseinen matemaatikko teki? Kerro keksinnöistä tarkemmin. Onko kyseinen matemaatikko ansioitunut muillakin aloilla kuin matematiikassa? Missä? Projektitöitä voidaan arvioida sekä ryhmätyöskentelyn, postereiden/powerpointin että esityksien kautta. Lisäksi esitysten jälkeen on mahdollista pitää pieni testi. Testissä on hyvä testata myös sitä, kuinka hyvin muiden esityksiä on kuunneltu. Esimerkkitesti on liitteenä. Apua ryhmätyöskentelyn arviointiin voi saada teettämällä vertaisarvioinnin ryhmätyöskentelyn sujumisesta esimerkiksi seuraavasti: Asteikko: K = kiitettävä, H = hyvä, T = tyydyttävä, P = puutteita Oppilaan osuus työskentelyssä Oma arvio Vertaisarvio Vertaisarvio Vertaisarvio Opettajan arvio Vertaisarvioijat kuuluvat samaan ryhmään kuin itse arvioitava oppilas. 2
3 TESTI 1) Yhdistä kuuluisa matemaatikko ja hänen kuvauksensa. Tämä englantilainen matemaatikko oli kiinnostunut matematiikan lisäksi myös painovoimasta. Omenapuu liittyy kiinteästi tähän matemaatikkoon. Englantilainen matemaatikko, joka mursi Enigman koodin. Tavallinen, suorakulmainen koordinaatisto (karteesinen koordinaatisto) on nimetty tämän ranskalaisen matemaatikon mukaan. Tämän matemaatikon mukaan on nimetty lause: Suorakulmaisessa kolmiossa kateettien neliöiden summa on hypotenuusan neliö. Tätä ensimmäistä nimeltä tunnettua kreikkalaista matemaatikkoa pidetään geometrian luojana. Ranskalainen matemaatikko, joka tutki binomien kertoimia. Sveitsiläinen matemaatikko, joka alkoi merkitä funktiota merkinnällä f(x). Lukusarja 1, 1, 2, 3, 5, 8, 13, 21, kantaa tämän italialaisen matemaatikon nimeä. Antiikin ajan lahjakkaimpana pidetty matemaatikko, joka laski ensimmäisenä pallon pinta-alan ja tilavuuden. Kreikkalainen matemaatikko, joka tutki alkulukuja ja geometriaa. Tietty geometrian osa-alue on nimetty hänen mukaansa. Rooman keisari, joka salasi lähettämänsä kirjeet. 2) Kerro lyhyesti yhdestä tunnetusta matemaatikosta. 3
4 Vastaukset: Tämän matemaatikon mukaan on nimetty lause: Suorakulmaisessa kolmiossa kateettien neliöiden summa on hypotenuusan neliö. Kreikkalainen matemaatikko, joka tutki alkulukuja ja geometriaa. Tietty geometrian osa-alue on nimetty hänen mukaansa. Tätä ensimmäistä nimeltä tunnettua kreikkalaista matemaatikkoa pidetään geometrian luojana. Lukusarja 1, 1, 2, 3, 5, 8, 13, 21, kantaa tämän italialaisen matemaatikon nimeä. Ranskalainen matemaatikko, joka tutki binomien kertoimia. Sveitsiläinen matemaatikko, joka alkoi merkitä funktiota merkinnällä f(x). Tämä englantilainen matemaatikko oli kiinnostunut matematiikan lisäksi myös painovoimasta. Omenapuu liittyy kiinteästi tähän matemaatikkoon. Rooman keisari, joka salasi lähettämänsä kirjeet. Englantilainen matemaatikko, joka mursi Enigman koodin. Antiikin ajan lahjakkaimpana pidetty matemaatikko, joka laski ensimmäisenä pallon pinta-alan ja tilavuuden. Tavallinen, suorakulmainen koordinaatisto (karteesinen koodinaatisto) on nimetty tämän ranskalaisen matemaatikon mukaan. 4
5 Kuuluisat matemaatikot tutuiksi Miten liittyy matematiikkaan? Kuka on? Kenen päähän omena putosi? Työohjeet: 1) Valitkaa parinne kanssa yksi seuraavista matemaatikoista: Huom! Kahdella parilla ei voi olla samaa matemaatikkoa. 2) Tutustukaa valitsemaanne matemaatikkoon tarkemmin internetin avulla. 3) Valmistakaa posteri, PowerPoint tai näytelmä kyseisestä matemaatikosta. Apukysymyksiä: Milloin ja missä kyseinen matemaatikko eli? Kerro hiukan hänen perheestään. Mistä kyseinen matemaatikko tuli kuuluisaksi? Mitä jo opiskelemaasi matematiikkaan liittyviä matemaattisia keksintöjä kyseinen matemaatikko teki? Kerro keksinnöistä tarkemmin. Onko kyseinen matemaatikko ansioitunut muillakin aloilla kuin matematiikassa? Missä? 4) Valmistakaa pieni esittelypaperi matemaatikostanne muille luokkalaisille jaettavaksi. Esittelypaperissa on oltava keskeisimmät tiedot matemaatikostanne. 5) Esitelkää matemaatikkonne muulle luokalle PowerPointin, näytelmän tai posterin avulla. 1
Metso Minerals. Lyhyt kuvaus projektista: Oppilaat työskentelevät neljän henkilön ryhmissä, joissa jokaisessa on
Koostanut: Elina Viro, Kaisa Poikela, Metso Minerals Opettajalle Metso Minerals Kohderyhmä: 9. luokka Esitiedot: Prosenttilaskenta, taulukon tulkinta, koordinaatisto, trigonometria, ensimmäisen asteen
Pehmopapereiden matematiikkaa
Koostanut Iida Hirn ja Elina Viro Opettajalle Pehmopapereiden matematiikkaa Kohderyhmä: 9.luokka Esitiedot: Pinta-ala, tilavuus, tilastomatematiikka, Excel, verranto, koordinaatisto Taustalla oleva matematiikka:
Koostanut: Anne Ranta-Nilkku, Elina Viro. Funktiot arjessani
Koostanut: Anne Ranta-Nilkku, Elina Viro Opettajalle Funktiot arjessani Kohderyhmä: 9. luokka Esitiedot: Koordinaatisto Taustalla oleva matematiikka: Riippuvuus, riippuvuuden esittäminen muuttujien avulla,
Tilastoja yleisurheillen
Koostanut Elina Viro Opettajalle Tilastoja yleisurheillen Kohderyhmä: Luokat 7-9 Esitiedot: Prosenttilaskenta Taustalla oleva matematiikka: Frekvenssi, suhteellinen frekvenssi, moodi, mediaani, keskiarvo,
Pientä pintaremonttia
Koostanut Anne Kivistö ja Elina Viro Pientä pintaremonttia Opettajalle Kohderyhmä: 7.-9.luokka Esitiedot: Peruslaskutaidot, käsitys piirin ja pinta-alan laskemisesta Taustalla oleva matematiikka: Piiri,
Trestima Oy Puuston mittauksia
Koostanut Essi Rasimus ja Elina Viro Opettajalle Trestima Oy Puuston mittauksia Kohderyhmä: 9-luokka Esitiedot: ympyrä, ympyrän piiri, halkaisija ja pinta-ala, lieriön tilavuus, yhdenmuotoisuus, yksikkömuunnokset
Juoksun ja pituushypyn matemaattinen mallintaminen
Koostanut: Juho Salminen, Elina Viro, Essi Rasimus Opettajalle Juoksun ja pituushypyn matemaattinen mallintaminen Kohderyhmä: Luokat 8-9 Esitiedot: Vertailuprosentti Taustalla oleva matematiikka: Suoran
Mopoilua. Tavoitteet: TEEMA 1:
Koostanut: Elina Viro Opettajalle Mopoilua Kohderyhmä: 9. luokka Esitiedot: Prosenttilaskenta, ensimmäisen asteen yhtälö, koordinaatisto Taustalla oleva matematiikka: Funktiot, funktion kuvaaja, prosenttilaskenta,
Tarjousten prosenttilaskentaa
Koostanut: Elina Viro Opettajalle Tarjousten prosenttilaskentaa Kohderyhmä: 8. luokka tai 9. luokka (prosenttilaskennan kertauksena) Esitiedot: Prosenttilaskentaa Taustalla oleva matematiikka: Prosenttiluvun
Scanclimber Oy Mastolavojen matematiikkaa
Koostanut Essi Rasimus Opettajalle Scanclimber Oy Mastolavojen matematiikkaa Kohderyhmä: 8. - 9. -luokka Esitiedot: Ympyrän tasogeometria, kulman suuruus, nopeuden yhtälö Taustalla oleva matematiikka:
Graafiteoria matematiikkaako?
Koostanut: Elina Viro, Juho Lauri Opettajalle Graafiteoria matematiikkaako? Kohderyhmä: 7.-9.-luokkalaiset Esitiedot: - Taustalla oleva matematiikka: Graafiteoria, looginen ajattelu Ajankäyttö: Varsinainen
1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot
Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan
Kun pallojen keskipisteet yhdistetään, muodostuu neliöpohjainen, suora pyramidi (kuva 3), jonka sivusärmien pituudet ovat 2 pallon säde eli 2 1 = 2.
Hyvän ratkaisun piirteitä: a) Neliöpohjainen rakennelma Kun pallojen keskipisteet yhdistetään, muodostuu neliöpohjainen, suora pyramidi (kuva ), jonka sivusärmien pituudet ovat 2 pallon säde eli 2 1 =
15. Suorakulmaisen kolmion geometria
15. Suorakulmaisen kolmion geometria 15.1 Yleistä kolmioista - kolmion kulmien summa on 180⁰ α α + β + γ = 180⁰ β γ 5.1.1 Tasasivuinen kolmio - jos kaikki kolmion sivut ovat yhtä pitkät, on kolmio tasasivuinen
Platonin kappaleet. Avainsanat: geometria, matematiikan historia. Luokkataso: 6-9, lukio. Välineet: Polydron-rakennussarja, kynä, paperia.
Tero Suokas OuLUMA, sivu 1 Platonin kappaleet Avainsanat: geometria, matematiikan historia Luokkataso: 6-9, lukio Välineet: Polydron-rakennussarja, kynä, paperia Tavoitteet: Tehtävässä tutustutaan matematiikan
Kauppaleikki, lk.
Projekti-ideoita Kauppaleikki, 1.-2. lk. Perustetaan luokkaan oma leikkikauppa. Luokka jaetaan kaupparyhmiin, joilla jokaisella oma osasto (maitotuotteet, HeVi,..) ja projektipäällikkö. Ryhmät askartelevat
Arki balanssissa. Opettajalle
Koostanut Elina Viro Opettajalle Arki balanssissa Kohderyhmä: 9. luokka Esitiedot: - Taustalla oleva matematiikka: Talousmatematiikka, lainalaskut, Excel, arkielämän matematiikka Ajankäyttö: 4-5 45 min
Prosenttilaskuja osakeseurannan avulla
Koostanut Outi Haapanen, Anni Jyrinsalo, Jaana Korpela, Jaana Mäenpää, Henna Silvennoinen ja Elina Viro Opettajalle Prosenttilaskuja osakeseurannan avulla Kohderyhmä: 8. tai 9. luokka Esitiedot: Muutosprosentti
Scanclimber Oy Mastolavojen matematiikkaa
Koostanut Essi Rasimus Opettajalle Scanclimber Oy Mastolavojen matematiikkaa Kohderyhmä: 8. - 9. -luokka Esitiedot: Ympyrän tasogeometria, kulman suuruus, nopeuden yhtälö Taustalla oleva matematiikka:
Arki balanssissa. Opettajalle
Koostanut Elina Viro Opettajalle Arki balanssissa Kohderyhmä: 9. luokka Esitiedot: - Taustalla oleva matematiikka: Talousmatematiikka, lainalaskut, Excel, arkielämän matematiikka Ajankäyttö: 4-5 45 min
Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse 6 tehtävää!
MAA Koe 4.4.011 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse 6 tehtävää! 1 Selitä ja piirrä seuraavat lyhyesti: a) Vieruskulmat b) Tangentti kulmasta Katsottuna.
Ohjelmoinnillinen ajattelu
Koostanut Jani Ilomäki, Anna-Sofia Kantola, Anne Kivistö, Outi Mielikäinen, Juuso Suominen ja Elina Viro Ohjelmoinnillinen ajattelu Opettajalle Kohderyhmä: 8. - 9. -luokka Esitiedot: - Taustalla oleva
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A)
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, 2952018, Ratkaisut (Sarja A) 1 Anna kaikissa kohdissa vastaukset tarkkoina arvoina Kohdassa d), anna kulmat
Tilastoprojekti O365-ympa risto ssa
Koostanut Elina Viro, Kaisa Poikela Opettajalle Tilastoprojekti O365-ympa risto ssa Kohderyhmä: Luokka 9, kevät Esitiedot: Prosenttilaskenta Taustalla oleva matematiikka: Frekvenssi, summafrekvenssi, moodi,
[MATEMATIIKKA, KURSSI 8]
2015 Puustinen, Sinn PYK [MATEMATIIKKA, KURSSI 8] Trigometrian ja avaruusgeometrian teoriaa, tehtäviä ja linkkejä peruskoululaisille Sisällysluettelo 8.1 PYTHAGORAAN LAUSE... 3 8.1.1 JOHDANTOTEHTÄVÄT 1-6...
Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella.
Tasogeometria Tasogeometrian käsitteitä ja osia Suora on äärettömän pitkä. A ja B ovat suoralla olevia pisteitä. Piste P on suoran ulkopuolella. Jana on geometriassa kahden pisteen välinen suoran osuus.
Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio
Geometrian kertausta MAB2 Juhani Kaukoranta Raahen lukio Ristikulmat Ristikulmat ovat yhtä suuret keskenään Vieruskulmien summa 180 Muodostavat yhdessä oikokulman 180-50 =130 50 Samankohtaiset kulmat Kun
Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6
Kenguru Student (lukion 2. ja 3. vuosi) sivu 1 / 6 NIMI LUOKKA/RYHMÄ Pisteet: Kenguruloikan pituus: Irrota tämä vastauslomake tehtävämonisteesta. Merkitse tehtävän numeron alle valitsemasi vastausvaihtoehto.
a b c d + + + + + + + + +
28. 10. 2010!"$#&%(')'+*(#-,.*/1032/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + + + 2. 3. 4. 5. 6. + + + + + + + + + + P1. Valitaan kannaksi sivu, jonka pituus on 4. Koska toinen jäljelle jäävistä sivuista
A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.
PITKÄ MATEMATIIKKA PRELIMINÄÄRIKOE 7..07 NIMI: A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-. Taulukkokirjaa saa käyttää apuna, laskinta ei.. Valitse oikea vaihtoehto ja
Matematiikka vuosiluokat 7 9
Matematiikka vuosiluokat 7 9 Matematiikan opetuksen ydintehtävänä on tarjota oppilaille mahdollisuus hankkia sellaiset matemaattiset taidot, jotka antavat valmiuksia selviytyä jokapäiväisissä toiminnoissa
MAA2 POLYNOMIFUNKTIOT JA -YHTÄLÖT
MAA POLYNOMIFUNKTIOT JA YHTÄLÖT 17.11.017 Nimi: 1 3 Yhteensä Kokeessa on kolme osaa: A, B1 ja B. Aosa: Tehtävät tehdään ilman laskinta Tee kaikki neljä () tehtävää (jokainen max 6p) Kun palautat tämän
x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua
Mallivastaukset - Harjoituskoe E E a) x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4,35 < 0 x 3 7 4 b) 0 / x + dx = 0 ln x + = ln + ln 0 + = ln 0 Vastaus: ln c) x 4 3x 4 = 0 Sijoitetaan x = u Tulon nollasääntö
Pehmopapereiden matematiikkaa
Pehmopapereiden matematiikkaa Kuinka paljon vessapaperia kuluu keskimäärin vuodessa? Kuinka paljon talouspaperia on yhdessä rullassa? Onko vessapaperien valmistaminen hyvä bisnes? Otetaan selvää! Työohjeet:
a) Mitkä reaaliluvut x toteuttavat yhtälön x 2 = 7? (1 p.) b) Mitkä reaaliluvut x toteuttavat yhtälön 5 4 x
Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 01 Arkkitehtimatematiikan koe, 1..01, Ratkaisut (Sarja A) 1. Anna kohdissa a), b) ja c) vastaukset tarkkoina arvoina. a) Mitkä reaaliluvut x toteuttavat
Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma
OuLUMA - Jussi Tyni OuLUMA, sivu 1 Ihastellaan muotoja Avainsanat: geometria, kolmio, ympyrä, pallo, trigonometria, kulma Luokkataso: lukio Välineet: kynä, paperia, laskin Tavoitteet: Tarkoitus on arkielämään
Opetusmateriaali. Fermat'n periaatteen esittely
Opetusmateriaali Fermat'n periaatteen esittely Hengenpelastajan tehtävässä kuvataan miten hengenpelastaja yrittää hakea nopeinta reittiä vedessä apua tarvitsevan ihmisen luo - olettaen, että hengenpelastaja
MATEMATIIKKA 3 VIIKKOTUNTIA
EB-TUTKINTO 010 MATEMATIIKKA 3 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 4 kesäkuuta 010 KOKEEN KESTO: 3 tuntia (180 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa olla
Läpäisyehto: Kokeesta saatava 5. Uusintakoe: Arvosana määräytyy yksin uusintakokeen perusteella.
MAA7 Trigonometriset funktiot Arvosanan perusteet: koe 70 %, harjoitustehtävä 10 %, tuntitestit 20 %, lisäksi oppimisen ja työskentelyn havainnointi opettajan harkinnan mukaan (ks. OPS 6.2). Muu arviointi:
Hannu Mäkiö. kertolasku * jakolasku / potenssiin korotus ^ Syöte Geogebran vastaus
Perusohjeita, symbolista laskentaa Geogebralla Kielen vaihtaminen. Jos Geogebrasi kieli on vielä englanti, niin muuta se Options välilehdestä kohdasta Language suomeksi (finnish). Esittelen tässä muutaman
Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.
Väitelause Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta. Tässä P:tä kutsutaan oletukseksi ja Q:ta väitteeksi. Jos yllä oleva väitelause on totta, sanotaan, että P:stä
3 Yleinen toisen asteen yhtälö ja epäyhtälö
Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.8.016 3 Yleinen toisen asteen yhtälö ja epäyhtälö ENNAKKOTEHTÄVÄT 1. a) x + x + 1 = 4 (x + 1) = 4 Luvun x + 1 tulee olla tai, jotta sen
C. Montako prosenttia pinta-ala kasvaa, jos mittakaava suurenee 5%? a) 5 % b) 7 % c) 9 % d) 10 % e) 15 %
1. Monivalinta. Ympyrän halkaisija on 6. Ympyrän kehän pituus on a) 6π b) 3π c) 9π B. Pienoismallin pinta-ala on neljäsosa todellisesta pinta-alasta. Mittakaava on a) 1 : 2 b) 1:4 c) 1:8 C. Kolmioiden
27. 10. joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja.
ÄÙ ÓÒÑ Ø Ñ Ø ÐÔ ÐÙÒ Ð Ù ÐÔ ÐÙÒÔ ÖÙ Ö Tehtäviä on kahdella sivulla; kuusi ensimmäistä tehtävää on monivalintatehtäviä, joissa on 0 4 oikeata vastausta. Laskimet eivät ole sallittuja. 1. Hiiri juoksee tasaisella
Reaktor ohjelmoinnillinen ajattelu
Reaktor ohjelmoinnillinen ajattelu Kohderyhmä: 9-luokka Esitiedot: Koordinaatisto, etäisyydet koordinaatistossa, Pythagoraan lause, kulmien suuruus Taustalla oleva matematiikka: Ohjelmoinnin alkeet, koordinaatisto
Metropolia ammattikorkeakoulu 05.02.2015 TI00AA43-3004: Ohjelmointi Kotitehtävät 3
: http://users.metropolia.fi/~pasitr/2014-2015/ti00aa43-3004/kt/03/ratkaisut/ Tehtävä 1. (1 piste) Tee ohjelma K03T01.cpp, jossa ohjelmalle syötetään kokonaisluku. Jos kokonaisluku on positiivinen, niin
1.1. RATIONAALILUVUN NELIÖ
1.1. RATIONAALILUVUN NELIÖ 1. Käyttäen tietoa a = a a laske: a) 8 b) ) c) 0, d) ) 1 e) 1) f) +,) g) 7 h) ) i). Laske näiden lukujen neliöt: 17 9 1,6 1. Laske: ) a) ) b). Laske a, kun 5) 1 ) 11 11 81. j)
LUKUVUODEN E-KURSSI MAB3
1 TYK AIKUISLUKIO LUKUVUODEN 2016 2017 E-KURSSI MAB3 Kurssin tunnus ja nimi Kurssin opettaja MAB3 Matemaattisia malleja I Frans Hartikainen frans.hartikainen@tyk.fi (MAB3-kurssin työtila on nähtävillä
a b c d
1. 11. 011!"$#&%(')'+*(#-,.*/103/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + +. 3. 4. 5. 6. + + + + + + + + + + P1. 5 140 8 47 = 5 140 ( 3 ) 47 = 5 140 3 47 = 5 140 141 = (5 ) 140 = 10 140, jossa on
C. Montako prosenttia pinta-ala kasvaa, jos mittakaava suurenee 5%? a) 5 % b) 7 % c) 9 % d) 10 % e) 15 %
1. 4Monivalinta. Ympyrän halkaisija on 6. Ympyrän kehän pituus on a) 6π b) 3π c) 9π B. Pienoismallin pinta-ala on neljäsosa todellisesta pinta-alasta. Mittakaava on a) 1 : 2 b) 1:4 c) 1:8 C. Kolmioiden
MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Merkitään f(x) =x 3 x. Laske a) f( 2), b) f (3) ja c) YLIOPPILASTUTKINTO- LAUTAKUNTA
1 YLIOPPILASTUTKINTO- LAUTAKUNTA 26.3.2018 MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ A-osa Ratkaise kaikki tämän osan tehtävät 1 4. Tehtävät arvostellaan pistein 0 6. Kunkin tehtävän ratkaisu kirjoitetaan tehtävän
Todistusmenetelmiä Miksi pitää todistaa?
Todistusmenetelmiä Miksi pitää todistaa? LUKUTEORIA JA TO- DISTAMINEN, MAA11 Todistus on looginen päättelyketju, jossa oletuksista, määritelmistä, aksioomeista sekä aiemmin todistetuista tuloksista lähtien
Valitse kuusi tehtävää! Kaikki tehtävät ovat 6 pisteen arvoisia.
MAA11 Koe 8.4.013 5 5 1. Luvut 6 38 ja 43 4 jaetaan luvulla 17. Osoita, että tällöin jakojäännökset ovat yhtäsuuret. Paljonko tämä jakojäännös on?. a) Tutki onko 101 alkuluku. Esitä tutkimuksesi tueksi
Vantaan alakoulujen Oppimisen arvioinnin toteuttaminen Wilmassa
Vantaan alakoulujen Oppimisen arvioinnin toteuttaminen Wilmassa Tässä ohjeistuksessa kuvataan opettajille alakoulun arvioinnin teknistä toteuttamista Wilmassa. Opetussuunnitelman perusteissa ja Vantaan
Turun Yliopisto Turun opettajankoulutuslaitos. MO 9.2.3 Käsityö, muotoilu ja yrittäjyys. Projektityö Maidon tie. Kaija Korhonen & Nina Nylund
Turun Yliopisto Turun opettajankoulutuslaitos MO 9.2.3 Käsityö, muotoilu ja yrittäjyys MO 9.2.3 Käsityö, muotoilu ja yrittäjyys MAIDON TIE -PROJEKTI Valitsimme maidon tie projektin, jossa tutustutaan muun
Helsingin seitsemäsluokkalaisten matematiikkakilpailu Ratkaisuita
Helsingin seitsemäsluokkalaisten matematiikkakilpailu 22..204 Ratkaisuita. Laske 23 45. a) 4000 b) 4525 c) 4535 d) 5525 e) 5535 Ratkaisu. Lasketaan allekkain: 45 23 35 90 45 5535 2. Yhden maalipurkin sisällöllä
AURINKO VALON JA VARJON LÄHDE
AURINKO VALON JA VARJON LÄHDE Tavoite: Tarkkaillaan auringon vaikutusta valon lähteenä ja sen vaihtelua vuorokauden ja vuodenaikojen mukaan. Oppilaat voivat tutustua myös aurinkoenergian käsitteeseen.
Tasapainotehta via vaakamallin avulla
Tasapainotehta via vaakamallin avulla Aihepiiri Luokka-aste Kesto Tarvittavat materiaalit / välineet Asiasanat Lausekkeet ja yhtälöt 7.-8. luokka 20 30 minuuttia Piirtoheitin, 2 kalvoa, erimuotoisia paloja
4.1 Kaksi pistettä määrää suoran
4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,
MAA7 HARJOITUSTEHTÄVIÄ
MAA7 HARJOITUSTEHTÄVIÄ Selvitä, mitä -akselin väliä tarkoittavat merkinnät: a) < b) U(, ) c) 4 < 0 0 Ilmoita väli a) 4 < < b) ] 5, 765[ tavalla 7 tehtävän a)-kohdan mukaisella kana, kana 0 Palautetaan
Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kertaus K1. a) Ratkaistaan suorakulmaisen kolmion kateetin pituus x tangentin avulla. tan9 x,5,5 x,5 tan 9 x 2,8... x» 2,8 (cm) Kateetin pituus x on 2,8 cm. b) Ratkaistaan vinokulmaisen kolmion sivun pituus
Reaktor ohjelmoinnillinen ajattelu
Koostanut Essi Rasimus ja Elina Viro Opettajalle Reaktor ohjelmoinnillinen ajattelu Kohderyhmä: 9-luokka Esitiedot: Koordinaatisto, etäisyydet koordinaatistossa, Pythagoraan lause, kulmien suuruus Taustalla
Luentokurssi Matematiikka ja luonnontieteet yhteiskunnassa (13.3.-8.5.2014)
Luentokurssi Matematiikka ja luonnontieteet yhteiskunnassa (13.3.-8.5.2014) Yhteistyöprojekti yhtiön DS Smith Packaking Oy:n ja Lielahden yläkoulun kanssa Tekijät: Hilla Saarela, Sanna Kellokoski ja Esa
Trigonometriset funktiot 1/7 Sisältö ESITIEDOT: reaalifunktiot
Trigonometriset funktiot 1/7 Sisältö Trigonometriset funktiot suorakulmaisessa kolmiossa a c b Olkoon suorakulmaisen kolmion terävä kulma, a tämän vastainen kateetti, b viereinen kateetti ja c kolmion
Pituus- ja pinta-alayksiköt. m dm cm mm. km hm dam m. a) neljän pienen kohteen pituus millimetreiksi, senttimetreiksi ja desimetreiksi
Pituus- ja pinta-alayksiköt 1 Pituusyksiköt Pituuden perusyksikkö on metri, ja se lyhennetään pienellä m-kirjaimella. Pienempiä ja suurempia pituusyksiköitä saadaan kertomalla tai jakamalla luvulla 10,
Tuntisuunnitelma on sovellettavissa ja tuotekuvia on hyvä muuttaa esimerkiksi oman koulun kioskin tarjontaan sopiviksi.
Sokeripalanäyttelyn voi pitää eri oppiaineissa, esimerkiksi kuvaamataidossa, äidinkielessä, terveystiedossa, kotitaloudessa ja matematiikassa. Suosituksena on yksi luokka kerrallaan. Tuntisuunnitelma on
A = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2.
MATP53 Approbatur B Harjoitus 7 Maanantai..5. (Teht. s. 9.) Neliön muotoisesta pahviarkista, jonka sivun pituus on a, taitellaan kanneton laatikko niin, että pahviarkin nurkista leikataan neliön muotoiset
Projektioppiminen. Tampereen teknillinen yliopisto/lumate Sirkka-Liisa Eriksson ja Elina Viro
LUMATE Projektioppiminen Tampereen teknillinen yliopisto/lumate Sirkka-Liisa Eriksson ja Elina Viro Mitkä ovat hankkeen tavoitteet? Luodaan projektipankki yläkoulun matematiikan opettajien käyttöön. Testataan
Metropolia ammattikorkeakoulu TI00AA : Ohjelmointi Kotitehtävät 3 opettaja: Pasi Ranne
Seuraavista tehtävistä saatu yhteispistemäärä (max 7 pistettä) jaetaan luvulla 3.5 ja näin saadaan varsinainen kurssipisteisiin laskettava pistemäärä. Bonustehtävien pisteet jaetaan luvulla 4 eli niistä
Totta vai tarua matematiikan paradokseja
Totta vai tarua matematiikan paradokseja Onko intuitio aina oikeassa todennäköisyyksiä pohdittaessa? Tilastot eivät valehtele, eiväthän? Työohjeet: 1) Muodostetaan noin 3 henkilön ryhmät. 2) Valitkaa yhden
7. Resistanssi ja Ohmin laki
Nimi: LK: SÄHKÖ-OPPI Tarmo Partanen Teoria (Muista hyödyntää sanastoa) 1. Millä nimellä kuvataan sähköisen komponentin (laitteen, johtimen) sähkön kulkua vastustavaa ominaisuutta? 2. Miten resistanssi
ARVIOI KOULUUN LIITTYVIÄ ASIOITA. OPPILAAT 1/13
ARVIOI KOULUUN LIITTYVIÄ ASIOITA. OPPILAAT 1/13 1. Oppilaalla on mahdollisuus vaikuttaa siihen, miten opiskellaan. N=4 ka=3,8 1 9 8 7 5 3 1 6 9 54 94 41 2. Opettaja päättää opiskelutavat. 9 8 7 5 3 1 9
Esimerkkejä formatiivisesta arvioinnista yläkoulun matematiikan opiskelussa
Esimerkkejä formatiivisesta arvioinnista yläkoulun matematiikan opiskelussa Perusopetuksen opetussuunnitelman perusteet 2014, luku 6, Oppimisen arviointi: Oppilaan oppimista ja työskentelyä on arvioitava
Aloita Ratkaise Pisteytä se itse Merkitse pisteet saanut riittävästi pisteitä voit siirtyä seuraavaan osioon ei ole riittävästi
Aloita A:sta Ratkaise osion (A, B, C, D, jne ) yhtälö vihkoosi. Pisteytä se itse ohjeen mukaan. Merkitse pisteet sinulle jaettavaan tehtävä- ja arviointilappuun. Kun olet saanut riittävästi pisteitä (6)
a b 1 c b n c n
Algebra Syksy 2007 Harjoitukset 1. Olkoon a Z. Totea, että aina a 0, 1 a, a a ja a a. 2. Olkoot a, b, c, d Z. Todista implikaatiot: a) a b ja c d ac bd, b) a b ja b c a c. 3. Olkoon a b i kaikilla i =
Trestima Oy Puuston mittauksia
Trestima Oy Puuston mittauksia Projektissa tutustutaan puuston mittaukseen sekä yritykseen Trestima Oy. Opettaja jakaa luokan 3 hengen ryhmiin. Projektista arvioidaan ryhmätyöskentely, projektiin osallistuminen
Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!
Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa
KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan.
VUOSILUOKAT 6 9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on syventää matemaattisten käsitteiden ymmärtämistä ja tarjota riittävät perusvalmiudet. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten
Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus
Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus 2 7.2.2013 1. Matematiikan lukiokurssissa on esitetty, että ylöspäin aukeavan paraabelin f(x) = ax 2 +bx+c,a > 0,minimikohtasaadaan,kunf
1. ja 2. kurssi (I-osa) Perusasiat kuntoon
1. ja 2. kurssi (I-osa) Perusasiat kuntoon 3., 4. ja 5. kurssit (II-osa) Geometrian osuus Hippokrateen puolikuut syntyvät siten, että puoliympyrän sisään piirretään suorakulmainen kolmio ABC, jonka kateetit
Kolmiot, L1. Radiaani. Kolmiolauseet. Aiheet. Kulmayksiköt, aste. Radiaani. Suorakulmainen kolmio. Kolmiolauseet
Kolmiot, L1 Kulmayksiköt 1 Aste, 1 (engl. degree) Kun kellon viisari kiertyy yhden kierroksen, sanomme, että se kääntyy 360 (360 astetta). Ajatus täyden kierroksen jakamisesta 360 asteeseen, juontaa kaldealaiseen
INFOA: Matematiikan osaaminen lentoon!
1(5) INFOA: Matematiikan osaaminen lentoon! Ilmaisia koulutuksia! Opetushallitus on myöntänyt Lapin yliopistolle määrärahan koulutushankkeelle Matematiikan osaaminen lentoon: pedagogista ymmärrystä ja
Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti!
MAA3 Koe 1.4.2014 Jussi Tyni Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti! A-Osio: Ei saa käyttää laskinta. MAOL saa olla alusta asti käytössä. Maksimissaan
Päättötyö. PÄÄTTÖTYÖ sisältää teoksen tai teossarjan, sekä portfolion, joka kuvaa työskentelyä ja sen eri vaiheita.
Päättötyö PÄÄTTÖTYÖ sisältää teoksen tai teossarjan, sekä portfolion, joka kuvaa työskentelyä ja sen eri vaiheita. Päättötyö tehdään itsenäisesti oman idean pohjalta. Työtä tehdään sekä työpajassa että
Kompleksiluvut., 15. kesäkuuta /57
Kompleksiluvut, 15. kesäkuuta 2017 1/57 Miksi kompleksilukuja? Reaaliluvut lukusuoran pisteet: Tiedetään, että 7 1 0 x 2 = 0 x = 0 1 7 x 2 = 1 x = 1 x = 1 x 2 = 7 x = 7 x = 7 x 2 = 1 ei ratkaisua reaalilukujen
HUOLTOMATEMATIIKKA 2, MATERIAALI
1 SISÄLTÖ HUOLTOMATEMATIIKKA, MATERIAALI 1) Murtoluvut ) Yhtenevyys ja yhdenmuotoisuus 3) Tasokuvioiden pinta-alat ja piirit 4) Kappaleiden tilavuudet 5) Suorakulmainen kolmio ja Pythagoran lause 6) Suorakulmaisen
OPETUSSUUNNITELMATYÖN KÄYNNISTÄMINEN LAPIN YLIOPISTON HARJOITTELUKOULUSSA. Lehtorit Satu Kumpulainen ja Laura Salmela
OPETUSSUUNNITELMATYÖN KÄYNNISTÄMINEN LAPIN YLIOPISTON HARJOITTELUKOULUSSA Lehtorit Satu Kumpulainen ja Laura Salmela Opetussuunnitelman perusteiden uudistamisella halutaan vastata voimakkaasti muuttuvan
2 Pistejoukko koordinaatistossa
Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia
4 TOISEN ASTEEN YHTÄLÖ
Huippu Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.4.016 4 TOISEN ASTEEN YHTÄLÖ POHDITTAVAA 1. Merkitään toisen neliön sivun pituutta kirjaimella x. Tällöin toisen neliön sivun pituus on
Oppilas vahvistaa opittuja taitojaan, kiinnostuu oppimaan uutta ja saa tukea myönteisen minäkuvan kasvuun matematiikan oppijana.
Tavoitteet S L 3. lk 4. lk 5. lk 6. lk Merkitys, arvot ja asenteet T1 pitää yllä oppilaan innostusta ja kiinnostusta matematiikkaa kohtaan sekä tukea myönteistä minäkuvaa ja itseluottamusta L1, L3, L5
Integraalifunktio. Pohdittavaa: Minkä funktion derivaattafunktio on a) 3x 2, b) 2x? MiH (Ivalon lukio) MAA10 25. kesäkuuta 2014 1 / 5
Pohdittavaa: Minkä funktion derivaattafunktio on a) 3x 2, b) 2x? MiH (Ivalon lukio) MAA10 25. kesäkuuta 2014 1 / 5 Pohdittavaa: Minkä funktion derivaattafunktio on a) 3x 2, b) 2x? Derivaatta a) 3x 2 Funktio
Vinokulmainen kolmio. Hannu Lehto. Lahden Lyseon lukio
Vinokulmainen kolmio Hannu Lehto Lahden Lyseon lukio Yksikköympyrä ja suunnattu kulma Yksikköympyrä 1 y 0 x -1-1 0 1 Hannu Lehto 18. maaliskuuta 2008 Lahden Lyseon lukio 2 / 8 Yksikköympyrä ja suunnattu
2.1 Yhdenmuotoiset suorakulmaiset kolmiot
2.1 Yhdenmuotoiset suorakulmaiset kolmiot 2.2 Kulman tangentti 2.3 Sivun pituus tangentin avulla 2.4 Kulman sini ja kosini 2.5 Trigonometristen funktioiden käyttöä 2.7 Avaruuskappaleita 2.8 Lieriö 2.9
Valinnaisopas Lukuvuosi 2015 2016 Veromäen koulu 5.luokka
Valinnaisopas Lukuvuosi 2015 2016 Veromäen koulu 5.luokka Johdanto Valinnaisina aineina voidaan opiskella yhteisten oppiaineiden syventäviä tai soveltavia oppimääriä, useasta oppiaineesta muodostettuja
2.2 Neliöjuuri ja sitä koskevat laskusäännöt
. Neliöjuuri ja sitä koskevat laskusäännöt MÄÄRITELMÄ 3: Lukua b sanotaan luvun a neliöjuureksi, merkitään a b, jos b täyttää kaksi ehtoa: 1o b > 0 o b a Esim.1 Määritä a) 64 b) 0 c) 36 a) Luvun 64 neliöjuuri
MAS- linjan matematiikan kurssit
Muutokset Vantaankosken koulun Matemaattis-luonnontieteellisen linjan (MAS) opetussuunnitelmaan lukuvuonna 2012 2013 aloittavista 7. luokista alkaen Kurssisisällöt ja -ajoitus ovat muuttuneet matematiikan
Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty
Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. A III, B II, C ei mikään, D I. a) Kolmion kulmien summa on 80. Kolmannen kulman suuruus on 80 85 0 85. Kolmiossa on kaksi 85 :n kulmaa, joten se on tasakylkinen.
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ.0.08 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa
OSA 2: TRIGONOMETRIAA, AVARUUSGEOMETRIAA SEKÄ YHTÄLÖPARI
OSA 2: TRIGONOMETRIAA, AVARUUSGEOMETRIAA SEKÄ YHTÄLÖPARI Tekijät: Ari Heimonen, Hellevi Kupila, Katja Leinonen, Tuomo Talala, Hanna Tuhkanen ja Pekka Vaaraniemi Alkupala Mitkä kuutiot on taiteltu kuvassa