Geomagnetismin historiasta

Koko: px
Aloita esitys sivulta:

Download "Geomagnetismin historiasta"

Transkriptio

1 Kompassi Kiinassa 1. vuosisadalla Euroopassa 1100-luvulla Kaivoskompassi Ruotsissa > Geomagnetismin historiasta Maan kentästä 720 Yi-Xing deklinaatio 1266 Roger Bacon N-S universaalisuus, 1269 Petrus Peregrinus "Epistola de Magnete" meridiaani, polariteetti 1510 Georg Hartmann deklinaatio " - inklinaatio 1600 William Gilbert "de Magnete" maapallo on magneetti 1692 Edmund Halley geomagn.kentän aiheuttaja maapallon sisäosissa tapahtuva aineen liike 1702 Edmund Halley 1. deklinaatiokartat 1768 Johan Carl Wilcke 1. koko maapallon inklin.kartta 1808 de Rossel geomagn. kentän intensit. kasvaa leveysasteen mukaan (d'entrecasteux retki ) von Humboldt geomagn. kentän intensit. kasvaa leveysasteen mukaan 1831 James Clark Ross Mgn. pohjoisnapa ( ) 1830-luku Carl Friedrich Gauss Magneettiset observatoriot "Allgemeine theorie der Erdmagnetismus" Delesse & Meloni Kivien magneettisuus 1909 David & Mawson Mgn etelänapa ( , 130 km) David; Brunhes Maan kentän kääntyminen 1954 Creer 1. napavaelluskäyrä 1955 Hospers Kentän kääntyminen & stratigrafia Khramov JGYG Idean KM-Geomagnetismi toteutus Vine & Matthews Magnetismi S-E ja laattatektoniikka Hjelt Ensimmäiset ihmiset magneettisella etelänavalla: Tohtori Mackay, Professorit David ja Douglas 1 Mawson. Geomagneettinen kenttä [W. Gilbert, de MAGNETE. engl käännös JGYG KM-Geomagnetismi 2

2 maantiet. pohjoinen Geomagneettinen kenttä X D H magn. meridiaani Z I alas Y T itä Kuva 8.1. Geomagneettinen kenttä T ja sen komponentit. a) H = vaakakomponentti, D = deklinaatio ja I = Inklinaatio. b) Z = pysty-, Y = itä- ja X = pohjoiskomponentti JGYG KM-Geomagnetismi 3 Geomagnetismi Peltoniemi (1988)

3 Maan magneettikenttä - Huomaa napaisuusja merkkisäännöt Maan magneettikenttä muistuttaa Maan pinnalla tarkasteltuna ominaisuuksiltaan sauvamagneettia 6 Geomagneettiset dipolit N Kuva 8.5. Maapallon sisäisen magneettikentän kuvaaminen keskeisdipolin ja ytimen pinnalla sijaitsevien lisädipolien avulla. S Maan magneettikentästä n. 80 % selittyy dipolikentällä ja loppu saadaan lisädipolien (4-pole, 8-pole, jne. avulla)

4 Geomagneettinen dynamo Maan magneettikentän synty selitetään yleensä dynamoteorialla *). Sen mukaan Maan ytimen lämmöstä ja Maan pyörimisestä johtuva sulan raudan osin säännöllinen virtaus synnyttää magneettikentän. Maapallon pyörimiseen liittyvä mekaaninen energia muuntuu sähköiseksi energiaksi, joka ylläpitää Maan magneettikenttää. Prosessi on käynnistynyt sähkömagneettisen induktion vaikutuksesta Maan ytimen liikkuessa planeettojen välisessä magneettikentässä. Käynnistyttyään dynamoilmiö ei nykymallien mukaan tarvitse ulkoista kenttää toimiakseen. Pyörimisliike ja ytimen sisäinen geometria synnyttävät yhdessä vallitsevaa kenttää vahvistavan lisäkentän. Tätä selitysmallia kutsutaan itseään ruokkivaksi dynamoksi (self-sustained dynamo). Ilman tätä vahvistavaa mekanismia Maan magneettikenttä vaimenisi olemattomiin vuoden kuluessa. *) Dynamoteorian mukaan taivaankappaleiden magneettikenttä syntyy sähköä johtavan aineen virtauksessa. Ionisoituneen tai muun sen kaltaisen sähköisen aineen virtaus synnyttää magneettikentän. Kun sähköinen aine toisaalla virtaa magneettikentän läpi, se synnyttää sähkövirtoja, jotka synnyttävät magneettikenttiä. Magneettikentät muuttavat puolestaan virtauksia. Näin syntyy mutkikas systeemi, jota sanotaan dynamoksi. Dynamo ylläpitää itse itseään. Taivaankappaleen pyöriminen järjestää magneettikentän suureksi osaksi kaksinapaiseksi dipoliksi. Eri taivaakappaleiden dynamot ovat hieman erilaisia. Magneettikenttä voi syntyä sulassa metallissa, metallisessa vedyssä, varautuneissa molekyylioneissa tai ionisoituneessa sähköisessä kaasussa syntyy magneettikenttä kaasun virratessa pyörimisestä johtuvan coriolisvoiman takia PALEOMAGNETISMIN TULOS 2: MERENPOHJAN MAGNEETTISUUS Frederick Vine, Drummond Matthews, and Lawrence Morley (1963) Mitattu magneettinen anomaliaprofiili (sininen käyrä) ja Tyynen valtameren selänteelle laskettu malliprofiili (punainen käyrä) muistuttavat toisiaan. Mallissa on otettu huomioon Maan magneettikentän napaisuuskäännökset 4 Ma:n ajalta ja oletettu merenpohjan liikkuvan vakionopeudella kumpaankin suuntaan keskiselänteestä poispäin. JGYG-MR-tektoniikka 11

5 Geomagnettisen kentän napaisuuden käännös: Valtameren pohja (Ahvenisto ja muut, Geofysiikka, tunne maapallosi. WSOY, 191 s.) Paleomagnetismin tulos: Fennoskandian vaellus - keskimääräinen N-S-suuntainen nopeus on 2,4 cm/a - kiertymä n. 0,3 /Ma JGYG KM-Geomagnetismi LÄHDE: LJ Pesonen GTK & HY teoksessa Kakkuri & Hjelt,

6 IGRF Lambert projection JGYG KM-Geomagnetismi 18

7 Geomagnettinen sekulaarivaihtelu: Sodankylän geofysikaalisen observatorion mittaukset F [nt] H [nt] vuosi Kuva 8.11a. Magneettikentän sekulaarivaihtelu Sodankylässä [Kakkuri, 1991 / H. Nevanlinna-Ilmatieteen laitos] JGYG KM-Geomagnetismi 19 Geomagnettinen sekulaarivaihtelu: Sodankylän geofysikaalisen observatorion mittaukset D [astetta] I [astetta] vuosi Kuva 8.11b. Magneettikentän deklinaation ja inklinaation vaihtelut Sodankylässä [Kakkuri, 1991 / H. Nevanlinna-Ilmatieteen laitos] JGYG KM-Geomagnetismi 20

8 Magneettisten napojen liike vuosina H. Nevanlinna, Geomagnetismin ABC-kirja.] NASA Educational Brief Subject:Solar Activity and the Earth Topic:How and Why We Monitor Solar Activity - pintalämpötila 5780 K - massa 1, kg - säteilyn teho 3, W [2] - säde km - keskitiheys noin kg/m 3[7] 23

9 AURINKOTUULI Aurinkotuulella tarkoitetaan Auringon koronasta lähtöisin olevaa hiukkasvirtaa, joka pakenee Auringosta poispäin. Aurinkotuuli koostuu pääasiassa protoneista. Tällaista sähköisesti varautuneista hiukkasista koostuvaa kaasua kutsutaan plasmaksi. Aurinkotuuli kantaa mukanaan myös Auringosta peräisin olevaa magneettikenttää ja muodostaa siten heliosfäärin erilliseksi osaksi aurinkokuntaa ympäröivää avaruutta. Koostumus: noin 95 % ioneista on protoneja 4 % alfahiukkasia eli täysin ionisoitunutta heliumia 0,5 % muita ioneja (joita monesti kutsutaan nimellä "vähäisemmät ionit"). elektroneja yhtä paljon kuin ioneissa on protoneja yhteensä: aurinkotuuli on sähköisesti neutraalia. Maan radan kohdalla hiukkastiheys on 5 protonia ja elektronia kuutiosenttimetrissä Elektronien ja protonien tiheys vaihtelee yleensä välillä 3 20 cm-3 Hiukkasvirta nopeutuu etääntyessään Auringosta ja on keskimäärin 200 km/s 5 Auringon säteen päässä ja 300 km/s 30 auringon säteen päässä. Maan radan kohdalla nopeus on keskimäärin 400 km/s, vaihteluväli km/s. Protonien keskimääräinen lämpötila K (4 ev) Elektronien keskimääräinen lämpötila K (17 ev) Auringon massan menetys eli massakato on kg/s, joka vastaa noin viidennestä Auringon fuusioreaktion aiheuttamasta massakadosta. Massakato on 1*10-13 Auringon massaa vuodessa. Auringon massa on 1,989x1030 kg, eli n kertaa Maan massa. Kaukaisessa menneisyydessä Auringon massakato oli 1000 kertaa suurempi eli Auringon massaa vuodessa. Aurinkotuuli tulee Maahan keskimäärin 4,5 vuorokaudessa. magneettikentän voimakkuus Maan radan kohdalla 6 nt (vaihteluväli 1 10 nt) Alfvénin nopeus (magneettisten häiriöitten etenemisnopeus) 24 aurinkotuulessa on 60 km/s (vaihteluväli km/s Geomagnetismi Taiteilijan näkemys auringon ja Maan magneettikentän vuorovaikutuksesta JGYG KM-Geomagnetismi 25

10 Aurinkotuulen vaikutus maan magneettikenttään Koska aurinkotuulen hiukkaset ovat sähköisesti varautuneita, Maan magneettikenttä ohjaa tavallisesti suurimman osan aurinkotuulesta maapallon ohitse. Samalla aurinkotuuli litistää Maan magneettikenttää päiväpuolella ja venyttää sitä yöpuolella muotoillen sen magnetosfääriksi. Pieni osa aurinkotuulen hiukkasista pääsee vuotamaan magnetosfäärin sisään, jossa ne voivat jäädä loukkuun esimerkiksi Van Allenin vyöhykkeisiin. Erityisesti voimakkaiden Auringon aktiivisuuspiikkien aikana tai Maan magneettikentän ollessa heikko aurinkotuulen hiukkasia pääsee ilmakehään, missä ne reagoidessaan ilman hapen ja typen kanssa synnyttävät revontulia. Educational Brief Subject: Solar Wind Effects on Earth Topic: Earth's Invisible Boundaries, Auroras

11 Nopeat geomagneettiset vaihtelut Kuva Maan magneettikentän nopeiden vaihteluiden rekisteröintejä. a) vuorokausivaihtelu (pieni magneettinen aktiivisuus); b) mikropulsaatioita; c) magneettinen myrsky. [Peltoniemi, 1988/ Breiner 1973] JGYG KM-Geomagnetismi 30 Understanding weather and climate [E Aguado & JE Burt, 1999] Fig 1 / Box 2-2 Maunderin minimi vuosina oli kausi, jolloin auringonpilkut olivat hyvin harvinaisia. Tällöin oli menossa kylmä pieni jääkausi. Uskotaan auringonpilkkujen vähyyden aiheuttaneen ilmaston kylmenemisen, mutta tutkijat kiistelevät siitä millä tavoin tämä tapahtui. Maunderin minimiä edelsi hieman miedompi, mutta yhtä lailla kylmää tuonut Spörerin minimi. Maunderin minimin jälkeen tuli Daltonin minimi Auringonpilkku on Auringon pinnassa eli valokehässä näkyvä tumma alue. Pilkut näyttävät tummilta niitä ympäröivää kuumaa, valtavan kirkasta valokehää vasten, sillä viileämmän kaasun pintakirkkaus on pienempi kuin kuumemman. Auringonpilkun keskiosan lämpötila on noin C, kun muualla fotosfäärissä Auringon pintalämpötila on noin C. [1] Pilkut aiheutuvat voimakkaista paikallisista magneettikentistä, ja niitä voi esiintyä joko yksin tai ryhminä. Ne näyttävät liikkuvan fotosfäärissä, koska Aurinko pyörii akselinsa ympäri. Pilkun ympäristöä alhaisempi lämpötila johtuu magneettikentästä, joka estää konvektion eli lämmön vaikutuksesta sisältä nousevat kaasuvirtaukset.

12 AURINGONPILKUT JA MAGN. AKTIIVISUUS JGYG KM-Geomagnetismi 32 AURINGONPILKKUAKTIIVISUUS vuosina (Nevanlinna, Geomagnetismin ABC-kirja)

13 Suurin tunnettu aurinkomyrsky sattui elo-syyskuussa 1859, jolloin revontulia nähtiin aina tropiikkia myöten, mikä on erittäin harvinaista. Maapallon silloinen lennätinjärjestelmä oli lamaantunut monen päivän ajan. Eniten suuria myrskyjä on esiintynyt tiuhaan tahtiin 1950-luvun lopulla ja 1960-luvun alussa, jolloin auringonpilkkujen määrät olivat suurimmillaan useaan sataan vuoteen. Sen jälkeen supermyrskyjen esiintymistiheys on selvästi laskenut. (Nevanlinna, Ilmatieteen laitos, 2012) Ohessa kuvio, joka näyttää aurinkomyrskyjen voimakkuudet maapallolla niinkin kaukaa kuin vuodesta 1844 nykyhetkeen. Kyseessä on maan magneettikentän vaihtelujen rekisteröintien perusteella laskettu päiväkohtainen myrskyindeksiluku. Mukana indeksin määrityksessä ovat myös Ilmatieteen laitoksen magneettiset havainnot 1800-luvun puolivälistä lähtien Maan magneettikentän muutokset Ahvenisto ja muut (2004)

14 AURINKOTUULEN VAHINGOT Induktiovirrat kaasu- ja öljyjohdoissa korroosion lisääntyminen Voimalinjoihin indusoituneet virtapulssit (GIC) ylijännitesuojien laukeaminen Muuntajat korkeilla leveyksillä ylijännitesuojien laukeaminen Rautateiden turvajärjestelmät Tietoliikenne lisääntynyt absorptio maa-satelliittiyhteyksissä lyhytaaltoliikenne Satelliittien elektroniikka komponenttivauriot Avaruussäämyrskyjen aikana lähiavaruuden sähkövirrat ovat erityisen voimakkaita ja nopeasti vaihtelevia. Voimakkaiden magneettisten vaihteluiden lisäksi ne aiheuttavat sähkökentän, jolloin maanpinnan eri pisteiden välille syntyy jännite. Vaikka nämä jännitteet ovat yleensä hyvin pieniä, alle 1 voltti kilometrillä, ne voivat aiheuttaa satojen kilometrien pituisiin johdinjärjestelmiin usean sadan voltin jännitteitä. Näiden jännitteiden synnyttämiä häiriövirtoja kutsutaan geomagneettisesti indusoituneiksi virroiksi (GI-virrat, tai GIC englanninkielisen termin "geomagnetically induced currents" mukaisesti). Vaikka GIvirralla viitataan yleensä vain ihmisen rakentamiin johdinjärjestelmiin, myös maaperässä kulkee aivan samalla periaatteella syntyviä virtoja. IONOSFÄÄRIVIRRAN INDUKTIOVAIKUTUKSET Ionosfäärin virrat: kuumentavat ionosfääriä revontulet Virran muutokset: induktiovirrat (GIC) maan kuoressa valtamerissä teknisissä järjestelmissä * valtamerikaapelit * kaasu- ja öljyputket * voimalinjaverkot JGYG KM-Geomagnetismi 37

15 KAASUJOHDOISTA Nykyaikaiset kaasujohdot ovat: - saumattomia - yhtenäinen pituus tuhansia km, pisimpiä: USA: km km haaroja Venäjä: km (Siperia - Itä-Eurooppa); km Siperia - Kekski-Eurooppa) - kompressoriasemia km välein Putkivaurioiden syitä: - jäätyminen - kaatosade - maaperän eroosio - korroosio Magneettikentän ajallinen muutos - aiheuttaa kaikkiin johteisiin induktiovirtoja - kaasuputkissa virrat lisäävät korroosiota - suurin korkeilla leveyksillä - riippuu myös putken suunnasta JGYG KM-Geomagnetismi 38 MUUNTAJAN YLIJÄNNITE Muuntajan pääosat ovat käämit; rautasydän; jäähdytysaines (öljy) Muuntajassa tapahtuu jännite- ja virtatason muutos. Tulo (eli ensiö-)- ja lähtö- (eli toisio-)puoli ovat galvaanisesti erillään toisistaan. Muuntosuhde (toisio- ja ensiöjännitteiden suhde) riippuu käämikierrosten suhteesta Kytkentä tapahtuu rautasydämen kautta, johon ensiökäämin virta synnyttää (indusoi) sydämeen magneettivuon, joka puolestaan indusoi toisiokäämiin virran. Teho P = UxI on sama ensiö- ja toisiopuolella (lukuunottamatta rautasydämessä tapahtuvaa häviötä) Jos ensiöpuolen jännite tai ylimääräinen magneettivuo (kuva) kasvaa liian suureksi, muuntajan sydän kyllästyy: -->> muuntajan häviöt kasvavat voimakkaasti -->> toisiojännite vääristyy 39

Aurinko. Tähtitieteen peruskurssi

Aurinko. Tähtitieteen peruskurssi Aurinko K E S K E I S E T K Ä S I T T E E T : A T M O S F Ä Ä R I, F O T O S F Ä Ä R I, K R O M O S F Ä Ä R I J A K O R O N A G R A N U L A A T I O J A A U R I N G O N P I L K U T P R O T U B E R A N S

Lisätiedot

MAAN MAGNEETTIKENTÄN IHMEELLISYYKSIÄ: NAPAISUUSKÄÄNNÖKSET

MAAN MAGNEETTIKENTÄN IHMEELLISYYKSIÄ: NAPAISUUSKÄÄNNÖKSET MAAN MAGNEETTIKENTÄN IHMEELLISYYKSIÄ: NAPAISUUSKÄÄNNÖKSET Heikki Nevanlinna, Geofysiikan dos. (Ilmatieteen laitos, eläk.) URSA 9.4.2013 ESITELMÄKALVOT: Tämän esitelmän PowerPoint-kalvot on saatavilla ja

Lisätiedot

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ

FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ FYSIIKAN LABORATORIOTYÖT 2 MAGNEETTIKENTTÄTYÖ MIKKO LAINE 2. kesäkuuta 2015 1. Johdanto Tässä työssä määritämme Maan magneettikentän komponentit, laskemme totaalikentän voimakkuuden ja monitoroimme magnetometrin

Lisätiedot

Sähköstatiikka ja magnetismi

Sähköstatiikka ja magnetismi Sähköstatiikka ja magnetismi Johdatus magnetismiin Antti Haarto 19.11.2012 Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän

Lisätiedot

Jupiterin magnetosfääri. Pasi Pekonen 26. Tammikuuta 2009

Jupiterin magnetosfääri. Pasi Pekonen 26. Tammikuuta 2009 Jupiterin magnetosfääri Pasi Pekonen 26. Tammikuuta 2009 Johdanto Magnetosfääri on planeetan magneettikentän luoma onkalo aurinkotuuleen. Magnetosfäärissä plasman liikettä hallitsee planeetan magneettikenttä.

Lisätiedot

Revontulet matkailumaisemassa

Revontulet matkailumaisemassa Revontulet matkailumaisemassa Kuva: Vladimir Scheglov Noora Partamies noora.partamies@fmi.fi ILMATIETEEN LAITOS Päivän menu Miten revontulet syntyvät: tapahtumaketju Auringosta Maan ilmakehään Revontulet

Lisätiedot

Magneettikenttä ja sähkökenttä

Magneettikenttä ja sähkökenttä Magneettikenttä ja sähkökenttä Gaussin laki sähkökentälle suljettu pinta Ampèren laki suljettu käyrä Coulombin laki Biot-Savartin laki Biot-Savartin laki: Onko virtajohdin entisensä? on aina kuvan tasoon

Lisätiedot

Aiheena tänään. Virtasilmukka magneettikentässä Sähkömagneettinen induktio. Vaihtovirtageneraattorin toimintaperiaate Itseinduktio

Aiheena tänään. Virtasilmukka magneettikentässä Sähkömagneettinen induktio. Vaihtovirtageneraattorin toimintaperiaate Itseinduktio Sähkömagnetismi 2 Aiheena tänään Virtasilmukka magneettikentässä Sähkömagneettinen induktio Vaihtovirtageneraattorin toimintaperiaate Itseinduktio Käämiin vaikuttava momentti Magneettikentässä olevaan

Lisätiedot

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän

Magneettikenttä. Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän 3. MAGNEETTIKENTTÄ Magneettikenttä Liikkuva sähkövaraus saa aikaan ympärilleen sähkökentän lisäksi myös magneettikentän Havaittuja magneettisia perusilmiöitä: Riippumatta magneetin muodosta, sillä on aina

Lisätiedot

Avaruussää ja Auringon aktiivisuusjakso: Aurinko oikuttelee

Avaruussää ja Auringon aktiivisuusjakso: Aurinko oikuttelee Avaruussää ja Auringon aktiivisuusjakso: Aurinko oikuttelee Reko Hynönen Teoreettisen fysiikan syventävien opintojen seminaari / Kevät 2012 26.4.2012 1 Ekskursio avaruussäähän 1. Auringonpilkkusykli 2.

Lisätiedot

J.J. Nervanderin tieteellisistä saavutuksista

J.J. Nervanderin tieteellisistä saavutuksista Heikki Nevanlinna J.J. Nervanderin tieteellisistä saavutuksista Ilmatieteen laitos on J.J. Nervanderin perustaman magneettinen observatorion jälkeläinen, missä geomagneettinen ja meteorologinen havainto-

Lisätiedot

IONOSPHERIC PHYSICS, S, KEVÄT 2017 REVONTULIALIMYRSKY

IONOSPHERIC PHYSICS, S, KEVÄT 2017 REVONTULIALIMYRSKY IONOSPHERIC PHYSICS, 761658S, KEVÄT 2017 REVONTULIALIMYRSKY Joonas Vatjus & Jakke Niskanen Ionospheric Physics, Projektityö Oulun yliopisto Fysiikan laitos 12.4.2017 SISÄLLYSLUETTELO 1. Johdanto 3 Ionosfääri.

Lisätiedot

Jupiter-järjestelmä ja Galileo-luotain II

Jupiter-järjestelmä ja Galileo-luotain II Jupiter-järjestelmä ja Galileo-luotain II Jupiter ja Galilein kuut Galileo-luotain luotain Jupiterissa NASA, laukaisu 18. 10. 1989 Gaspra 29. 10. 1991 Ida ja ja sen kuu Dactyl 8. 12. 1992 Jupiter 7. 12.

Lisätiedot

Magnetismi Mitä tiedämme magnetismista?

Magnetismi Mitä tiedämme magnetismista? Magnetismi Mitä tiedämme magnetismista? 1. Magneettista monopolia ei ole. 2. Sähkövirta aiheuttaa magneettikentän. 3. Magneettikenttä kohdistaa voiman johtimeen, jossa kulkee sähkövirta. Magnetismi Miten

Lisätiedot

Sähkömagneettinen induktio

Sähkömagneettinen induktio Sähkömagneettinen induktio Vuonna 1831 Michael Faraday huomasi jotakin, joka muuttaisi maailmaa: sähkömagneettisen induktion. ( Magneto-electricity ) M. Faraday (1791-1867) M.Faraday: Experimental researches

Lisätiedot

SMG-1100: PIIRIANALYYSI I

SMG-1100: PIIRIANALYYSI I SMG-1100: PIIRIANALYYSI I Keskinäisinduktanssi induktiivisesti kytkeytyneet komponentit muuntajan toimintaperiaate T-sijaiskytkentä kytketyn piirin energia KESKINÄISINDUKTANSSI M Faraday: magneettikentän

Lisätiedot

1.1 Magneettinen vuorovaikutus

1.1 Magneettinen vuorovaikutus 1.1 Magneettinen vuorovaikutus Magneettien välillä on niiden asennosta riippuen veto-, hylkimis- ja vääntövaikutuksia. Magneettinen vuorovaikutus on etävuorovaikutus Magneeti pohjoiseen kääntyvää päätä

Lisätiedot

Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009

Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009 Suojeleva Aurinko: Aurinko ja kosmiset säteet IHY 2007-2009 Eino Valtonen Avaruustutkimuslaboratorio, Fysiikan ja tähtitieteen laitos, Turun yliopisto Eino.Valtonen@utu.fi 2 Kosminen säde? 3 4 5 Historia

Lisätiedot

Magnetismi Mitä tiedämme magnetismista?

Magnetismi Mitä tiedämme magnetismista? Magnetismi Mitä tiedämme magnetismista? 1. Magneettista monopolia ei ole. 2. Sähkövirta aiheuttaa magneettikentän. 3. Magneettikenttä kohdistaa voiman johtimeen, jossa kulkee sähkövirta. Magnetismi Miten

Lisätiedot

Maapallon magneettisen peruskentän aikavaihtelujen ääriarvoja

Maapallon magneettisen peruskentän aikavaihtelujen ääriarvoja Maapallon magneettisen peruskentän aikavaihtelujen ääriarvoja Heikki Nevanlinna Ilmatieteen laitos, Avaruus ja yläilmakehä heikki.nevanlinna@fmi.fi Abstract. A brief review is given about the geomagnetic

Lisätiedot

RATKAISUT: 19. Magneettikenttä

RATKAISUT: 19. Magneettikenttä Physica 9 1. painos 1(6) : 19.1 a) Magneettivuo määritellään kaavalla Φ =, jossa on magneettikenttää vastaan kohtisuorassa olevan pinnan pinta-ala ja on magneettikentän magneettivuon tiheys, joka läpäisee

Lisätiedot

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi

Magneettikentät. Haarto & Karhunen. www.turkuamk.fi Magneettikentät Haarto & Karhunen Magneettikenttä Sähkövaraus aiheuttaa ympärilleen sähkökentän Liikkuva sähkövaraus saa aikaan ympärilleen myös magneettikentän Magneettikenttä aiheuttaa voiman liikkuvaan

Lisätiedot

Monimuotoinen Aurinko: Aurinkotutkimuksen juhlavuosi 2008-2009

Monimuotoinen Aurinko: Aurinkotutkimuksen juhlavuosi 2008-2009 Monimuotoinen Aurinko: Aurinkotutkimuksen juhlavuosi 2008-2009 Aurinko on tärkein elämään vaikuttava tekijä maapallolla, joka tuottaa eliö- ja kasvikunnalle sopivan ilmaston ja elinympäristön. Auringon

Lisätiedot

Avaruussää. Tekijä: Kai Kaltiola

Avaruussää. Tekijä: Kai Kaltiola Avaruussää Kohderyhmä: yläasteen suorittaneet / 9-luokkalaiset Työskentelymenetelmä: ryhmätyöt Kuvaa yleistajuisesti avaruussään syntymisen ja siihen liittyvät ilmiöt Tekijä: Kai Kaltiola kai.kaltiola@gmail.com

Lisätiedot

Potentiaali ja sähkökenttä: pistevaraus. kun asetetaan V( ) = 0

Potentiaali ja sähkökenttä: pistevaraus. kun asetetaan V( ) = 0 Potentiaali ja sähkökenttä: pistevaraus kun asetetaan V( ) = 0 Potentiaali ja sähkökenttä: tasaisesti varautut levyt Tiedämme edeltä: sähkökenttä E on vakio A B Huomaa yksiköt: Potentiaalin muutos pituusyksikköä

Lisätiedot

Avaruussääriskit Brent Walker yhteenveto. Prof. Eija Tanskanen Ilmatieteen laitos, Avaruussääryhmä

Avaruussääriskit Brent Walker yhteenveto. Prof. Eija Tanskanen Ilmatieteen laitos, Avaruussääryhmä Avaruussääriskit Brent Walker yhteenveto Prof. Eija Tanskanen Ilmatieteen laitos, Avaruussääryhmä Sisältö Mitä on avaruussää? Entä avaruusilmasto? Muuttuuko avaruussää ja -ilmasto? Mitä riskejä siihen

Lisätiedot

Tähtitieteen peruskurssi Lounais-Hämeen Uranus ry 2013 Aurinkokunta. Kuva NASA

Tähtitieteen peruskurssi Lounais-Hämeen Uranus ry 2013 Aurinkokunta. Kuva NASA Tähtitieteen peruskurssi Lounais-Hämeen Uranus ry 2013 Aurinkokunta Kuva NASA Aurinkokunnan rakenne Keskustähti, Aurinko Aurinkoa kiertävät planeetat Planeettoja kiertävät kuut Planeettoja pienemmät kääpiöplaneetat,

Lisätiedot

Luku 27. Tavoiteet Määrittää magneettikentän aiheuttama voima o varattuun hiukkaseen o virtajohtimeen o virtasilmukkaan

Luku 27. Tavoiteet Määrittää magneettikentän aiheuttama voima o varattuun hiukkaseen o virtajohtimeen o virtasilmukkaan Luku 27 Magnetismi Mikä aiheuttaa magneettikentän? Magneettivuon tiheys Virtajohtimeen ja varattuun hiukkaseen vaikuttava voima magneettikentässä Magneettinen dipoli Hallin ilmiö Luku 27 Tavoiteet Määrittää

Lisätiedot

Kyösti Ryynänen Luento

Kyösti Ryynänen Luento 1. Aurinkokunta 2. Aurinko Kyösti Ryynänen Luento 15.2.2012 3. Maa-planeetan riippuvuus Auringosta 4. Auringon säteilytehon ja aktiivisuuden muutokset 5. Auringon tuleva kehitys 1 Kaasupalloja Tähdet pyrkivät

Lisätiedot

8a. Kestomagneetti, magneettikenttä

8a. Kestomagneetti, magneettikenttä Nimi: LK: SÄHKÖ-OPPI 8. Kestomagneetti, magneettikenttä (molemmat mopit) Tarmo Partanen 8a. Kestomagneetti, magneettikenttä Tee aluksi testi eli ympyröi alla olevista kysymyksistä 1-8 oikeaksi arvaamasi

Lisätiedot

Muuntajat ja sähköturvallisuus

Muuntajat ja sähköturvallisuus OAMK Tekniikan yksikkö LABORATORIOTYÖ 1 Muuntajat ja sähköturvallisuus 1.1 Teoriaa Muuntaja on vaihtosähkömuunnin, jossa energia siirtyy ensiokaamista toisiokäämiin magneettikentän välityksellä. Tavanomaisen

Lisätiedot

PHYS-C6360 Johdatus ydinenergiatekniikkaan (5op), kevät 2016

PHYS-C6360 Johdatus ydinenergiatekniikkaan (5op), kevät 2016 PHYS-C6360 Johdatus ydinenergiatekniikkaan (5op), kevät 2016 Prof. Filip Tuomisto Fuusion perusteet, torstai 10.3.2016 Päivän aiheet Fuusioreaktio(t) Fuusion vaatimat olosuhteet Miten fuusiota voidaan

Lisätiedot

Muuntajan toiminnasta löytyy tietoja tämän työohjeen teoriaselostuksen lisäksi esimerkiksi viitteistä [1] - [4].

Muuntajan toiminnasta löytyy tietoja tämän työohjeen teoriaselostuksen lisäksi esimerkiksi viitteistä [1] - [4]. FYS 102 / K6. MUUNTAJA 1. Johdanto Muuntajassa on kaksi eristetystä sähköjohdosta kierrettyä kelaa yhdistetty rautasydämellä ensiöpiiriksi ja toisiopiiriksi. Muuntajan toiminta perustuu sähkömagneettiseen

Lisätiedot

Globaali virtapiiri. Reko Hynönen

Globaali virtapiiri. Reko Hynönen Globaali virtapiiri Reko Hynönen 23.2.2009 Globaali virtapiiri Globaali virtapiiri Galaktiset kosmiset säteet (GCR, Galactical Cosmic Rays) vuorovaikuttavat ilmakehän hiukkasten kanssa ionisoimalla niitä

Lisätiedot

Ihan oikea esimerkki. Luku 17

Ihan oikea esimerkki. Luku 17 Luku 17 Ihan oikea esimerkki 17.1 Avaruussäästä Esitellään lopuksi yleissivistävästi geomagnetismiin liittyvä sovellutus. Kyseessä ovat geomagneettisesti indusoituvat virrat (GI-virta, geomagnetically

Lisätiedot

Maan ja avaruuden välillä ei ole selkeää rajaa

Maan ja avaruuden välillä ei ole selkeää rajaa Avaruus Mikä avaruus on? Pääosin tyhjiön muodostama osa maailmankaikkeutta Maan ilmakehän ulkopuolella. Avaruuden massa on pääosin pimeässä aineessa, tähdissä ja planeetoissa. Avaruus alkaa Kármánin rajasta

Lisätiedot

Ihan oikea esimerkki. Luku 16

Ihan oikea esimerkki. Luku 16 Luku 16 Ihan oikea esimerkki 16.1 Avaruussäästä Esitellään lopuksi yleissivistävästi geomagnetismiin liittyvä sovellutus: geomagneettisesti indusoituvat virrat (GI-virta, geomagnetically induced current,

Lisätiedot

Ulottuva Aurinko Auringon hallitsema avaruus

Ulottuva Aurinko Auringon hallitsema avaruus Ulottuva Aurinko Auringon hallitsema avaruus Akatemiatutkija Rami Vainio 9.10.2008 Fysiikan laitos, Helsingin yliopisto Sisältö Aurinko ja sen havainnointi Maan pinnalta Auringon korona, sen muoto ja magneettikenttä

Lisätiedot

Fysiikka 7. Sähkömagnetismi

Fysiikka 7. Sähkömagnetismi Fysiikka 7 Sähkömagnetismi Magneetti Aineen magneettiset ominaisuudet ovat seurausta atomiydintä kiertävistä elektroneista (ytimen kiertäminen ja spin). Magneettinen vuorovaikutus Etävuorovaikutus Magneetilla

Lisätiedot

Harjoitustehtäviä kokeeseen: Sähköoppi ja magnetismi

Harjoitustehtäviä kokeeseen: Sähköoppi ja magnetismi Harjoitustehtäviä kokeeseen: Sähköoppi ja magnetismi 3. Selitä: a. Suljettu virtapiiri Suljettu virtapiiri on sähkövirran reitti, jonka muodostavat johdot, paristot ja komponentit. Suljetussa virtapiirissä

Lisätiedot

SÄHKÖMAGNEETTISTEN KENTTIEN BIOLOGISET VAIKUTUKSET JA TERVEYSRISKIT

SÄHKÖMAGNEETTISTEN KENTTIEN BIOLOGISET VAIKUTUKSET JA TERVEYSRISKIT Sähkö- ja magneettikentät työpaikoilla 11.10. 2006, Teknologiakeskus Pripoli SÄHKÖMAGNEETTISTEN KENTTIEN BIOLOGISET VAIKUTUKSET JA TERVEYSRISKIT Kari Jokela Ionisoimattoman säteilyn valvonta Säteilyturvakeskus

Lisätiedot

Tähtien magneettinen aktiivisuus; 1. luento

Tähtien magneettinen aktiivisuus; 1. luento Tähtien magneettinen aktiivisuus; 1. luento Periodi III: teoriaa; luentoja, demonstraatiota ja harjoituksia luentoaikaan ke 10 12 Harjoitukset: laskarityyppisiä kotitehtäviä, jotka palautetaan luennon

Lisätiedot

Kokeellisen tiedonhankinnan menetelmät

Kokeellisen tiedonhankinnan menetelmät Kokeellisen tiedonhankinnan menetelmät Ongelma: Tähdet ovat kaukana... Objektiivi Esine Objektiivi muodostaa pienennetyn ja ylösalaisen kuvan Tarvitaan useita linssejä tai peilejä! syys 23 11:04 Galilein

Lisätiedot

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN

Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Tarinaa tähtitieteen tiimoilta FYSIIKAN JA KEMIAN PERUSTEET JA PEDAGOGIIKKA 2014 KARI SORMUNEN Oppilaiden ennakkokäsityksiä avaruuteen liittyen Aurinko kiertää Maata Vuodenaikojen vaihtelu johtuu siitä,

Lisätiedot

Sisällys. Esipuhe... 7 Johdanto... 8

Sisällys. Esipuhe... 7 Johdanto... 8 Sisällys Esipuhe... 7 Johdanto... 8 1 Aurinko avaruussääilmiöiden käynnistäjä... 11 1.1 Aurinko energialähteenä...11 1.2 Auringonpilkut...15 1.3 Auringonpilkkujen esiintymisten jaksollisuudet... 20 1.4

Lisätiedot

Virrankuljettajat liikkuvat magneettikentässä ja sähkökentässä suoraan, kun F = F eli qv B = qe. Nyt levyn reunojen välinen jännite

Virrankuljettajat liikkuvat magneettikentässä ja sähkökentässä suoraan, kun F = F eli qv B = qe. Nyt levyn reunojen välinen jännite TYÖ 4. Magneettikenttämittauksia Johdanto: Hallin ilmiö Ilmiön havaitseminen Yhdysvaltalainen Edwin H. Hall (1855-1938) tutki mm. aineiden sähköjohtavuutta ja löysi menetelmän, jolla hän pystyi mittaamaan

Lisätiedot

Havaitsevan tähtitieteen peruskurssi I

Havaitsevan tähtitieteen peruskurssi I 2. Ilmakehän vaikutus havaintoihin Lauri Jetsu Fysiikan laitos Helsingin yliopisto Ilmakehän vaikutus havaintoihin Ilmakehän häiriöt (kuva: @www.en.wikipedia.org) Sää: pilvet, sumu, sade, turbulenssi,

Lisätiedot

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA

TÄSSÄ ON ESIMERKKEJÄ SÄHKÖ- JA MAGNETISMIOPIN KEVÄÄN 2017 MATERIAALISTA TÄSSÄ ON ESMERKKEJÄ SÄHKÖ- JA MAGNETSMOPN KEVÄÄN 2017 MATERAALSTA a) Määritetään magneettikentän voimakkuus ja suunta q P = +e = 1,6022 10 19 C, v P = (1500 m s ) i, F P = (2,25 10 16 N)j q E = e = 1,6022

Lisätiedot

Sähköoppi. Sähköiset ja magneettiset vuorovaikutukset sekä sähkö energiansiirtokeinona.

Sähköoppi. Sähköiset ja magneettiset vuorovaikutukset sekä sähkö energiansiirtokeinona. Sähköoppi Sähköiset ja magneettiset vuorovaikutukset sekä sähkö energiansiirtokeinona. Sähkövaraus Pienintä sähkövarausta kutsutaan alkeisvaraukseksi. Elektronin varaus negatiivinen ja yhden alkeisvarauksen

Lisätiedot

Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1

Ydin- ja hiukkasfysiikka: Harjoitus 1 Ratkaisut 1 Ydin- ja hiukkasfysiikka: Harjoitus Ratkaisut Tehtävä i) Isotoopeilla on sama määrä protoneja, eli sama järjestysluku Z, mutta eri massaluku A. Tässä isotooppeja keskenään ovat 9 30 3 0 4Be ja 4 Be, 4Si,

Lisätiedot

UUDEN AURINGONPILKKUJAKSON ALKU TONI VEIKKOLAINEN AURINKOKUNTATAPAAMINEN,

UUDEN AURINGONPILKKUJAKSON ALKU TONI VEIKKOLAINEN AURINKOKUNTATAPAAMINEN, UUDEN AURINGONPILKKUJAKSON ALKU TONI VEIKKOLAINEN AURINKOKUNTATAPAAMINEN, 9.2.2019 AURINGONPILKKUJEN JAKSOLLISUUS Auringon aktiivisuus vaihtelee karkeasti ottaen 11 vuoden jaksoissa magneettikentän aktiivisuuden

Lisätiedot

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa.

Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Valintakoe 2016/FYSIIKKA Vastaa kaikkiin kysymyksiin. Oheisista kaavoista ja lukuarvoista saattaa olla apua laskutehtäviin vastatessa. Boltzmannin vakio 1.3805 x 10-23 J/K Yleinen kaasuvakio 8.315 JK/mol

Lisätiedot

1. YLEISTÄ MAGNETISMISTA

1. YLEISTÄ MAGNETISMISTA 1 1. YLEISTÄ MAGNETISMISTA Magneetin aiheuttama vetovoima on ollut tunnettu jo vuosituhansia. Jo kreikkalainen filosofi Thales (n. 600 ekr) tiesi, että tietyillä rautamalmeilla on kyky vetää puoleensa

Lisätiedot

Coulombin laki. Sähkökentän E voimakkuus E = F q

Coulombin laki. Sähkökentän E voimakkuus E = F q Coulombin laki Kahden pistemäisen varatun hiukkasen välinen sähköinen voima F on suoraan verrannollinen varausten Q 1 ja Q 2 tuloon ja kääntäen verrannollinen etäisyyden r neliöön F = k Q 1Q 2 r 2, k =

Lisätiedot

Kuva 8.1 Suoran virrallisen johtimen magneettikenttä (A on tarkastelupiste). /1/

Kuva 8.1 Suoran virrallisen johtimen magneettikenttä (A on tarkastelupiste). /1/ 8 SÄHKÖMAGNETISMI 8.1 Yleistä Magneettisuus on eräs luonnon ilmiö, joka on tunnettu jo kauan, ja varmasti jokaisella on omia kokemuksia magneeteista ja magneettisuudesta. Uudempi havainto (1820, Christian

Lisätiedot

4. SÄHKÖMAGNEETTINEN INDUKTIO

4. SÄHKÖMAGNEETTINEN INDUKTIO 4. SÄHKÖMAGNEETTINEN INDUKTIO Magneettivuo Magneettivuo Φ määritellään vastaavalla tavalla kuin sähkövuo Ψ Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alan A pistetulo Φ= B A= BAcosθ

Lisätiedot

MAGNEETTINEN MAAPALLOMME OPETUSMATERIAALI

MAGNEETTINEN MAAPALLOMME OPETUSMATERIAALI MAGNEETTINEN MAAPALLOMME OPETUSMATERIAALI 1 Tämä opetusmateriaalipaketti (opetusmateriaali & teoriapaketti) on tarkoitettu yläkoulun ja lukion opetussisältöihin. Materiaalit sopivat hyödynnettäväksi esimerkiksi

Lisätiedot

Perusvuorovaikutukset. Tapio Hansson

Perusvuorovaikutukset. Tapio Hansson Perusvuorovaikutukset Tapio Hansson Perusvuorovaikutukset Vuorovaikutukset on perinteisesti jaettu neljään: Gravitaatio Sähkömagneettinen vuorovaikutus Heikko vuorovaikutus Vahva vuorovaikutus Sähköheikkoteoria

Lisätiedot

SATURNUS. Jättiläismäinen kaasuplaneetta Saturnus on aurinkokuntamme toiseksi suurin planeetta heti Jupiterin jälkeen

SATURNUS. Jättiläismäinen kaasuplaneetta Saturnus on aurinkokuntamme toiseksi suurin planeetta heti Jupiterin jälkeen SATURNUKSEN RENKAAT http://cacarlsagan.blogspot.fi/2009/04/compare-otamanho-dos-planetas-nesta.html SATURNUS Jättiläismäinen kaasuplaneetta Saturnus on aurinkokuntamme toiseksi suurin planeetta heti Jupiterin

Lisätiedot

Kosmos = maailmankaikkeus

Kosmos = maailmankaikkeus Kosmos = maailmankaikkeus Synty: Big Bang, alkuräjähdys 13 820 000 000 v sitten Koostumus: - Pimeä energia 3/4 - Pimeä aine ¼ - Näkyvä aine 1/20: - vetyä ¾, heliumia ¼, pari prosenttia muita alkuaineita

Lisätiedot

AURINKOKUNNAN RAKENNE

AURINKOKUNNAN RAKENNE AURINKOKUNNAN RAKENNE 1) Aurinko (99,9% massasta) 2) Planeetat (8 kpl): Merkurius, Venus, Maa, Mars, Jupiter, Saturnus, Uranus, Neptunus - Maankaltaiset planeetat eli kiviplaneetat: Merkurius, Venus, Maa

Lisätiedot

AURINGONPILKKUJAKSO 25? TONI VEIKKOLAINEN

AURINGONPILKKUJAKSO 25? TONI VEIKKOLAINEN AURINGONPILKKUJAKSO 25? TONI VEIKKOLAINEN 25.7.2019 AURINGONPILKKUJEN JAKSOLLISUUS Auringon aktiivisuus vaihtelee karkeasti ottaen 11 vuoden jaksoissa magneettikentän aktiivisuuden mukaisesti Auringonpilkkujaksojen

Lisätiedot

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio

Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Sähköstatiikka ja magnetismi Sähkömagneetinen induktio Antti Haarto.05.013 Magneettivuo Magneettivuo Φ on magneettivuon tiheyden B ja sen läpäisemän pinta-alavektorin A pistetulo Φ B A BAcosθ missä θ on

Lisätiedot

Sähkö ja magnetismi 2

Sähkö ja magnetismi 2 Kokeellista fysiikkaa luokanopettajille Ari Hämäläinen kevät 2005 Sähkö ja magnetismi 2 Sähkövirran magneettinen vaikutus, sähkövirran suunta Tanskalainen H.C. Ørsted teki v. 1820 fysiikan luennolla seuraavanlaisen

Lisätiedot

Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson

Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson Kosmologia: Miten maailmankaikkeudesta tuli tällainen? Tapio Hansson Kosmologia Kosmologiaa tutkii maailmankaikkeuden rakennetta ja historiaa Yhdistää havaitsevaa tähtitiedettä ja fysiikkaa Tämän hetken

Lisätiedot

Magneettikenttä. Magneettikenttä on magneettisen vuorovaikutuksen vaikutusalue. Kenttäviivat: Kenttäviivojen tiheys kuvaa magneettikentän voimakkuutta

Magneettikenttä. Magneettikenttä on magneettisen vuorovaikutuksen vaikutusalue. Kenttäviivat: Kenttäviivojen tiheys kuvaa magneettikentän voimakkuutta Magneettikenttä Magneettikenttä on magneettisen uooaikutuksen aikutusalue Magneetti on aina dipoli. Yksinapaista magneettia ei ole haaittu (nomaaleissa aineissa). Kenttäiiat: Suunta pohjoisnaasta (N) etelänapaan

Lisätiedot

Atomimallit. Tapio Hansson

Atomimallit. Tapio Hansson Atomimallit Tapio Hansson Atomin käsite Atomin käsite on peräisin antiikin Kreikasta. Filosofi Demokritos päätteli (n. 400 eaa.), että äärellisen maailman tulee koostua äärellisistä, jakamattomista hiukkasista

Lisätiedot

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET

DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET DEE-11110: SÄHKÖTEKNIIKAN PERUSTEET Kurssin esittely Sähkömagneettiset ilmiöt varaus sähkökenttä magneettikenttä sähkömagneettinen induktio virta potentiaali ja jännite sähkömagneettinen energia teho Määritellään

Lisätiedot

AURINKOENERGIAA AVARUUDESTA

AURINKOENERGIAA AVARUUDESTA RISS 16. 9. 2009 AURINKOENERGIAA AVARUUDESTA Pentti O A Haikonen Adjunct Professor University of Illinois at Springfield Aurinkoenergiasatelliitin tekninen perusta Auringon säteilyn tehotiheys maapallon

Lisätiedot

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 10: Stokesin lause Antti Rasila Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Syksy 2016 Antti Rasila (Aalto-yliopisto) MS-A0305 Syksy

Lisätiedot

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö.

Yleistä sähkömagnetismista SÄHKÖMAGNETISMI KÄSITEKARTTANA: Varaus. Coulombin voima Gaussin laki. Dipoli. Sähkökenttä. Poissonin yhtälö. Yleistä sähkömagnetismista IÄLTÖ: ähkömagnetismi käsitekarttana ähkömagnetismin kaavakokoelma ähkö- ja magneettikentistä Maxwellin yhtälöistä ÄHKÖMAGNETIMI KÄITEKARTTANA: Kapasitanssi Kondensaattori Varaus

Lisätiedot

Koronan massapurkaukset ja niiden synty. Sanni Hoilijoki Teoreettisen fysiikan syventävien opintojen seminaari 24.11.2011

Koronan massapurkaukset ja niiden synty. Sanni Hoilijoki Teoreettisen fysiikan syventävien opintojen seminaari 24.11.2011 Koronan massapurkaukset ja niiden synty Sanni Hoilijoki Teoreettisen fysiikan syventävien opintojen seminaari 24.11.2011 1 Sisältö Auringon magnetismi Korona Koronan massapurkaukset (CME) CME:n synty ja

Lisätiedot

Muista, että ongelma kuin ongelma ratkeaa yleensä vastaamalla seuraaviin kolmeen kysymykseen: Mitä osaan itse? Mitä voin lukea? Keneltä voin kysyä?

Muista, että ongelma kuin ongelma ratkeaa yleensä vastaamalla seuraaviin kolmeen kysymykseen: Mitä osaan itse? Mitä voin lukea? Keneltä voin kysyä? Suomi-Viro maaotteluun valmentava kirje Tämän kirjeen tarkoitus on valmentaa tulevaa Suomi-Viro fysiikkamaaottelua varten. Tehtävät on valittu myös sen mukaisesti. Muista, että ongelma kuin ongelma ratkeaa

Lisätiedot

SATE2180 Kenttäteorian perusteet Induktanssi ja magneettipiirit Sähkötekniikka/MV

SATE2180 Kenttäteorian perusteet Induktanssi ja magneettipiirit Sähkötekniikka/MV SATE2180 Kenttäteorian perusteet nduktanssi ja magneettipiirit Sähkötekniikka/MV nduktanssin määrittäminen Virta kulkee johtimessa, jonka poikkipinta on S a J S a d S A H F S b Virta aiheuttaa magneettikentän

Lisätiedot

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä

Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Sähköstatiikka ja magnetismi Coulombin laki ja sähkökenttä Antti Haarto.5.13 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä

Lisätiedot

5. GEOMAGNEETTISET AIKAVAIHTELUT OBSERVATORIO- REKISTERÖINTIEN MUKAAN

5. GEOMAGNEETTISET AIKAVAIHTELUT OBSERVATORIO- REKISTERÖINTIEN MUKAAN 136 5. GEOMAGNEETTISET AIKAVAIHTELUT OBSERVATORIO- REKISTERÖINTIEN MUKAAN 5.1 Magneettisista observatorioista Geomagneettisten observatorioiden tehtävänä on tallentaa maapallon magneettikentän aikavaihtelut

Lisätiedot

Menetelmäohjeet. Muuttuvan magneettikentän tutkiminen

Menetelmäohjeet. Muuttuvan magneettikentän tutkiminen Kannuksen lukio Maastossa ja mediahuoneessa hanke Fysiikan tutkimus Muuttuvan magneettikentän tutkiminen Menetelmäohjeet Muuttuvan magneettikentän tutkiminen Työn tarkoitus Opiskelijoille magneettikenttä

Lisätiedot

Planeetan määritelmä

Planeetan määritelmä Planeetta on suurimassainen tähteä kiertävä kappale, joka on painovoimansa vaikutuksen vuoksi lähes pallon muotoinen ja on tyhjentänyt ympäristönsä planetesimaalista. Sana planeetta tulee muinaiskreikan

Lisätiedot

SÄHKÖMAGNEETTISTEN KENTTIEN BIOLOGISET VAIKUTUKSET, TERVEYSRISKIT JA LÄHTEET

SÄHKÖMAGNEETTISTEN KENTTIEN BIOLOGISET VAIKUTUKSET, TERVEYSRISKIT JA LÄHTEET Atomiteknillinen seura 28.11.2007, Tieteiden talo SÄHKÖMAGNEETTISTEN KENTTIEN BIOLOGISET VAIKUTUKSET, TERVEYSRISKIT JA LÄHTEET Kari Jokela Ionisoimattoman säteilyn valvonta Säteilyturvakeskus Ionisoimaton

Lisätiedot

Theory Finnish (Finland) Suuri hadronitörmäytin (Large Hadron Collider, LHC) (10 pistettä)

Theory Finnish (Finland) Suuri hadronitörmäytin (Large Hadron Collider, LHC) (10 pistettä) Q3-1 Suuri hadronitörmäytin (Large Hadron Collider, LHC) (10 pistettä) Lue erillisessä kuoressa olevat yleisohjeet ennen tämän tehtävän aloittamista. Tässä tehtävässä tarkastellaan maailman suurimman hiukkasfysiikan

Lisätiedot

RAPORTTEJA RAPPORTER REPORTS 2009:1 GEOMAGNETISMIN ABC-KIRJA

RAPORTTEJA RAPPORTER REPORTS 2009:1 GEOMAGNETISMIN ABC-KIRJA RAPORTTEJA RAPPORTER REPORTS 2009:1 GEOMAGNETISMIN ABC-KIRJA Heikki Nevanlinna RAPORTTEJA RAPPORTER REPORTS 2009:1 GEOMAGNETISMIN ABC-KIRJA Heikki Nevanlinna Ilmatieteen laitos Meteorologiska Institutet

Lisätiedot

KOMPASSI. * Magneettisen pohjoissuunan ja maantieteellisen pohjoissuunnan

KOMPASSI. * Magneettisen pohjoissuunan ja maantieteellisen pohjoissuunnan 31 KOMPASSI * Magneettikompassi on laite, jossa vaakatasoon tasapainoitettu magneettineula asettuu likimain pohjois-eteläsuuntaan. Kompassineulan pohjoiskohtion suunta on sama kuin magneettinen pohjoissuunta,

Lisätiedot

Luku 3. Ilmakehä suojaa ja suodattaa. Manner 2

Luku 3. Ilmakehä suojaa ja suodattaa. Manner 2 Luku 3 Ilmakehä suojaa ja suodattaa Sisällys Ilmakehä eli atmosfääri Ilmakehän kerrokset Ilmakehä kaasukoostumuksen mukaan Ilmakehä lämpötilan mukaan Säteilytase ja säteilyn absorboituminen Kasvihuoneilmiö

Lisätiedot

kipinäpurkauksena, josta salama on esimerkki.

kipinäpurkauksena, josta salama on esimerkki. Sähkö 25 Esineet saavat sähkövarauksen hankauksessa kipinäpurkauksena, josta salama on esimerkki. Hankauksessa esineet voivat varautua sähköisesti. Varaukset syntyvät, koska hankauksessa kappaleesta siirtyy

Lisätiedot

1. Mitä tarkoittaa resistanssi? Miten resistanssi lasketaan ja mikä on sen yksikkö?

1. Mitä tarkoittaa resistanssi? Miten resistanssi lasketaan ja mikä on sen yksikkö? 6 Resistanssi ja Ohmin laki 1. Mitä tarkoittaa resistanssi? Miten resistanssi lasketaan ja mikä on sen yksikkö? Se kuvaa sähkövirtaa vastustavaa ominaisuutta. R = U / I, yksikkö ohmi, 1 Ω 2. Mitkä asiat

Lisätiedot

Kapasitiivinen ja induktiivinen kytkeytyminen

Kapasitiivinen ja induktiivinen kytkeytyminen Kapasitiivinen ja induktiivinen kytkeytyminen EMC - Kaapelointi ja kytkeytyminen Kaapelointi merkittävä EMC-ominaisuuksien kannalta yleensä pituudeltaan suurin elektroniikan osa > toimii helposti antennina

Lisätiedot

Heijastuminen ionosfääristä

Heijastuminen ionosfääristä Aaltojen eteneminen Etenemistavat Pinta-aalto troposfäärissä Aallon heijastuminen ionosfääristä Lisäksi joitakin erikoisempia heijastumistapoja Eteneminen riippuu väliaineen ominaisuuksista, eri ilmiöt

Lisätiedot

Luku 8. Ilmastonmuutos ja ENSO. Manner 2

Luku 8. Ilmastonmuutos ja ENSO. Manner 2 Luku 8 Ilmastonmuutos ja ENSO Manner 2 Sisällys ENSO NAO Manner 2 ENSO El Niño ja La Niña (ENSO) ovat normaalista säätilanteesta poikkeavia ilmastohäiriöitä. Ilmiöt aiheutuvat syvänveden hitaista virtauksista

Lisätiedot

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä:

SÄHKÖ KÄSITTEENÄ. Yleisnimitys suurelle joukolle ilmiöitä ja käsitteitä: FY6 SÄHKÖ Tavoitteet Kurssin tavoitteena on, että opiskelija ymmärtää sähköön liittyviä peruskäsitteitä, tutustuu mittaustekniikkaan osaa tehdä sähköopin perusmittauksia sekä rakentaa ja tutkia yksinkertaisia

Lisätiedot

1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa.

1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa. 1. Kuinka paljon Maan kiertoaika Auringon ympäri muuttuu vuodessa, jos massa kasvaa meteoroidien vaikutuksesta 10 5 kg vuorokaudessa. Vuodessa Maahan satava massa on 3.7 10 7 kg. Maan massoina tämä on

Lisätiedot

12. Aurinko. Ainoa tähti, jota voidaan tutkia yksityiskohtaisesti esim. pyöriminen, tähdenpilkut pinnalla, ytimestä tulevat neutrinot

12. Aurinko. Ainoa tähti, jota voidaan tutkia yksityiskohtaisesti esim. pyöriminen, tähdenpilkut pinnalla, ytimestä tulevat neutrinot 12. Aurinko Ainoa tähti, jota voidaan tutkia yksityiskohtaisesti esim. pyöriminen, tähdenpilkut pinnalla, ytimestä tulevat neutrinot Tyypillinen pääsarjan tähti: Tähtitieteen perusteet, Luento 14, 26.04.2013

Lisätiedot

Maxwell ja hänen yhtälönsä mitä seurasi?

Maxwell ja hänen yhtälönsä mitä seurasi? Maxwell ja hänen yhtälönsä mitä seurasi? Oleteaan tyhjiö: ei virtoja ei varauksia Muutos magneettikentässä saisi aikaan sähkökentän. Muutos vuorostaan sähkökentässä saisi aikaan magneettikentän....ja niinhän

Lisätiedot

Tfy Fysiikka IIB Mallivastaukset

Tfy Fysiikka IIB Mallivastaukset Tfy-.14 Fysiikka B Mallivastaukset 14.5.8 Tehtävä 1 a) Lenin laki: Muuttuvassa magneettikentässä olevaan virtasilmukkaan inusoitunut sähkömotorinen voima on sellainen, että siihen liittyvän virran aiheuttama

Lisätiedot

Fysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto

Fysiikka 1. Coulombin laki ja sähkökenttä. Antti Haarto ysiikka 1 Coulombin laki ja sähkökenttä Antti Haarto 7.1.1 Sähkövaraus Aine koostuu Varauksettomista neutroneista Positiivisista protoneista Negatiivisista elektroneista Elektronien siirtyessä voi syntyä

Lisätiedot

FYSA2010 / K1 MUUNTAJA

FYSA2010 / K1 MUUNTAJA FYSA2010 / K1 MUUNTAJA 1 Johdanto Muuntajassa on kaksi eristetystä sähköjohdosta kierrettyä kelaa yhdistetty rautasydämellä ensiöpiiriksi ja toisiopiiriksi. Muuntajan toiminta perustuu sähkömagneettiseen

Lisätiedot

766334A Ydin- ja hiukkasfysiikka

766334A Ydin- ja hiukkasfysiikka 1 76633A Ydin- ja hiukkasfysiikka Luentomonistetta täydentävää materiaalia: 3 5-3 Kuorimalli Juhani Lounila Oulun yliopisto, Fysiikan laitos, 011 Kuva 7-13 esittää, miten parillis-parillisten ydinten ensimmäisen

Lisätiedot

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3.

a) Piirrä hahmotelma varjostimelle muodostuvan diffraktiokuvion maksimeista 1, 2 ja 3. Ohjeita: Tee jokainen tehtävä siististi omalle sivulleen/sivuilleen. Merkitse jos tehtävä jatkuu seuraavalle konseptille. Kirjoita ratkaisuihin näkyviin tarvittavat välivaiheet ja perustele lyhyesti käyttämästi

Lisätiedot

Fotometria 17.1.2011. Eskelinen Atte. Korpiluoma Outi. Liukkonen Jussi. Pöyry Rami

Fotometria 17.1.2011. Eskelinen Atte. Korpiluoma Outi. Liukkonen Jussi. Pöyry Rami 1 Fotometria 17.1.2011 Eskelinen Atte Korpiluoma Outi Liukkonen Jussi Pöyry Rami 2 Sisällysluettelo Havaintokohteet 3-5 Apertuurifotometria ja PSF-fotometria 5 CCD-kamera 5-6 Havaintojen tekeminen 6 Kuvien

Lisätiedot

Mustien aukkojen astrofysiikka

Mustien aukkojen astrofysiikka Mustien aukkojen astrofysiikka Peter Johansson Fysiikan laitos, Helsingin yliopisto Kumpula nyt Helsinki 19.2.2016 1. Tähtienmassaiset mustat aukot: Kuinka isoja?: noin 3-100 kertaa Auringon massa, tapahtumahorisontin

Lisätiedot

SMG-4500 Tuulivoima. Toisen luennon aihepiirit VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT TUULET

SMG-4500 Tuulivoima. Toisen luennon aihepiirit VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT TUULET SMG-4500 Tuulivoima Toisen luennon aihepiirit Tuuli luonnonilmiönä: Ilmavirtoihin vaikuttavien voimien yhteisvaikutuksista syntyvät tuulet Globaalit ilmavirtaukset 1 VOIMIEN YHTEISVAIKUTUKSISTA SYNTYVÄT

Lisätiedot