Ravinteita tarvitaan yhteyttämisessä toimivien yhdisteiden ja rakenteiden muodostumiseen.

Koko: px
Aloita esitys sivulta:

Download "Ravinteita tarvitaan yhteyttämisessä toimivien yhdisteiden ja rakenteiden muodostumiseen."

Transkriptio

1 Itä-Suomen yliopisto/metsätieteiden osasto Valintakoe 00/MALLIVASTAUKSET BIOLOGIA. Ympäristötekijöiden vaikutus fotosynteesiin. Ydinasiat: Fotosynteesissä vesi ja hiilidioksidi reagoivat valosta saatavan energian avulla, ja syntyneeseen glukoosiin varastoituu energiaa. Lisäksi vapautuu happea. Valon määrän lisääntyminen lisää fotosynteesiä tiettyyn rajaan asti, mutta voimakkaassa valossa nopeus ei enää lisäänny. Varjokasveilla fotosynteesi on tehokkaampaa alhaisessa valossa kuin valokasveilla, mutta maksimi on pienempi. Valon laatu vaikuttaa siksi, että yhteyttämispigmentit käyttävät niille ominaisia aallonpituuksia. Punainen ja sininen valo käytetään tehokkaimmin hyväksi, vihreä heijastuu. Lämpötilan ollessa nollan lähellä fotosynteesi lakkaa, ja se nopeutuu lämpötilan kasvaessa. Lämpötilaoptimi on erilainen eri kasveilla, kotimaisilla kasveilla se on yleensä välillä 0-0 C, mutta lämpimämpien ilmastojen kasveilla korkeampi. Lämpötilan noustessa optimia korkeammaksi soluhengitys nopeutuu enemmän kuin fotosynteesi, ja korkeissa lämpötiloissa fotosynteesituotteita kuluu enemmän kuin niitä tuotetaan. Lopulta myös entsyymit vaurioituvat. Vettä tarvitaan fotosynteesin reaktioihin pieni määrä. Veden puute vähentää fotosynteesiä välillisesti, koska kuivuudessa ilmaraot sulkeutuvat ja hiilidioksidin saanti heikkenee. Hiilidioksidia tarvitaan fotosynteesin reaktioihin, ja fotosynteesi nopeutuu tiettyyn rajaan asti, kun ilman hiilidioksidipitoisuus nousee. Ihmisen toiminnan vuoksi ilmakehän hiilidioksidipitoisuus nousee. Ravinteita tarvitaan yhteyttämisessä toimivien yhdisteiden ja rakenteiden muodostumiseen. Fotosynteesiin vaikuttavat haitallisesti mm. rikkidioksidi ja otsoni. Selkeys ja johdonmukaisuus Pisteitys Yhteensä

2 BIOLOGIA. Geenitekniikassa käytettävät entsyymit. Ydinasiat: - geenitekniikka on DNA:n ja geenien tutkimista, niiden hyödyntämistä -geenitekniikka perustuu erilaisten entsyymien avulla tapahtuvaan DNA:n muokkaamiseen -entsyymin määritelmä: biologisia katalyytteja, eli ne nopeuttavat kemiallisia reaktioita. Entsyymit ovat tyypillisesti proteiineja -geenitekniikka soveltuu käytettäväksi kaikkiin eliöihin, koska DNA:n koostumus kaikilla eliöillä hyvin samantapainen. Geenejä voidaan siirtää eri eliöryhmistä toisiin juuri DNA:n samankaltaisuuden vuoksi. Kaikilla eliöillä emäsjärjestys kopioituu lähetti RNA:ksi, joka ohjaa proteiinien synteesiä Proteaasi pilkkoo proteiinit puhdistusvaiheessa, jossa muut solunrakenteet ja osaset poistetaan. Puhdistettu DNA katkotaan katkaisuentsyymeillä (restriktioentsyymeillä), sillä kokonaisen DNA-molekyylin käsittely on hankalaa. Jokaisella katkaisuentsyymillä on oma spesifinen katkaisukohtansa emäsjärjestyksen mukaan. Liittäjäentsyymi (ligaasientsyymi) liittää DNA-pätkiä toisiinsa, tuloksena uudenlaiset yhdistelmä-dna-molekyylit Polymeraasientsyymit kahdentavat DNA:ta/RNA:ta soluissa Käänteiskopioijaentsyymit valmistavat DNA-kopion tumallisen solun lähetti-rna:sta. Tuote: komplementaarinen DNA, joka ei sisällä introneita (alueita, jotka eivät koodaa proteiineja). Tällainen introniton DNA voidaan siirtää bakteeriin, sillä bakteerit eivät kykene itse poistamaan introneja. Selkeys ja johdonmukaisuus Pisteitys 4 Yhteensä

3 BIOLOGIA. Ekologinen jalanjälki ja ekologinen selkäreppu kestävän elämäntavan ja ekotehokkuuden mittareina. Ydinasiat: Ekologinen jalanjälki on yhden ihmisen luonnonvarojen kulutuksen ja ympäristön rasituksen mittari, joka voidaan laskea myös kaupungeille ja valtioille. Yksikkönä hehtaari tuottavuudeltaan keskimääräistä maata (tai vettä) Koostuu rakennetusta maa-alasta sekä siitä pinta-alasta tuottavaa maata (ja vettä), joka tarvitaan vuoden aikana tuottamaan tarvittava ravinto, puu, kuidut ja energia (asumisen, liikkumisen, kaikkien hyödykkeiden ja palvelujen tuottamiseen). Mittarina melko yleisluonteinen eikä ota huomioon lähellekään kaikkia ympäristön tilaan vaikuttavia tekijöitä, voidaan laskea eri tavoin Mittarin mukaan globaali luonnonvarojen käyttö ylittää luonnon uudistumiskyvyn ( tarvitaan, maapalloa, keskiarvo,-, ha vs. arvioitu asukaskohtainen maapallon ekologinen kapasiteetti,8-,9ha) Suuret erot eri maiden/alueiden välillä (Suomessa noin 7-9 ha) Tuotteen ekologinen selkäreppu on sen koko elinkaaren aikana aiheuttaman ekologisen kuormituksen yleisluonteinen mitta Kaikkien tuotteen elinkaaren aikana kuluvien elollisten ja elottomien luonnonvarojen paino (massa) Jakamalla selkäreppu käyttökertojen (tai käyttövuosien) määrällä saadaan tuotteen ekotehokkuuden mitta MIPS (materiaalipanos per palveluyksikkö), jonka pienentäminen parantaa yleisluonteista ekotehokkuutta Ekotehokkuus paranee tuottamalla tavarat ja palvelut vähemmällä määrällä energiaa ja raaka-aineita ( vähemmästä enemmän ). Kestävän kehityksen mukaista on tiedostaa kulutustapojen ympäristövaikutukset sekä pienentää keskimääräistä ekologista jalanjälkeä ja keventää ekologista selkäreppua. Omilla kulutus- ja tuotevalinnoilla voi vaikuttaa ekologiseen jalanjälkeen ja selkäreppuun (tuote/vertailuesimerkkejä) Selkeys ja johdonmukaisuus Pisteitys Yhteensä

4 MATEMATIIKKA. Metsikön itseharvenemisraja N tarkoittaa suurinta mahdollista elävien puiden määrää hehtaarilla [runkoa/ha]. Hieman yksinkertaistaen minkä tahansa metsikön itseharvenemisraja riippuu metsikön puiden keskitilavuudesta [dm /runko] yhtälön mukaisesti, jossa a on metsikkökohtainen kerroin. a) Laske itseharvenemisraja lappilaisessa mäntymetsikössä, jossa puiden keskitilavuus on 00 dm /runko ja a=0000. (maksimi p) b) Itseharvenemisrajalla olevasta karjalalaisesta koivumetsiköstä mitattiin neliön muotoinen koeala, jonka sivun pituus on 0 m. Koealalla oli 0 elävää puuta, joiden keskitilavuus oli 400 dm /runko. Laske vakion a arvo metsikölle, kun oletetaan että koealan tunnukset voidaan yleistää koko metsikölle. (maksimi 5p) c) Metsänhoitaja arvelee b-kohdan metsikön puiden keskitilavuuden kasvavan seuraavan kymmenen vuoden aikana 44 dm :iin. Esitä lauseke, jolla voit arvioida seuraavan 0 vuoden aikana kuolevien puiden määrän [runkoa/ha], jos metsikköä ei harvenneta. (maksimi 7p) d) Esitä lauseke b-kohdan metsikön elävien puiden kokonaistilavuudelle [m /ha] :n funktiona. (maksimi 6p) Mallivastaus: (Yht. p) a) Sijoitetaan annetut arvot kaavaan. Saadaan N 0000 / 00 =0000/0=000 (p) Itseharvenemisraja on 000 runkoa/ha b) Koealalta saatu arvo on skaalattava hehtaarikohtaiseksi. Koealan pinta-ala oli 0 0 m =00 m =0,0 ha. (p) Runkoluku (/ha) on silloin 0/0,0=000 runkoa/ha. (p) Kerrotaan annettu yhtälö puolittain V :llä ja saadaan a=n V = (tai 000 0=40000) (oltava oikein skaalattu) (p) Vastaus: a=40000 c) Elävien runkojen määrä 0 vuoden kuluttua on N 0 =a/ V 0 Kuolleiden puiden määrä on N-N 0 Sijoitetaan kaavaan ja saadaan N-N 0 = / (tai / 44 tai 40000(/ 400 -/ 44 ) (p) [Jos vakio on väärin, antaa sijoitus pistettä. Jos on sijoitettu oikein, mutta sieventäminen jäi kesken (esim. muoto 40000/ / 44 ), saa sijoituksesta pistettä.] d) Puuston kokonaistilavuus on runkoluku keskitilavuus. (Tämä voidaan päätellä esimerkiksi keskiarvon kaavasta) Tilavuus litroina on V totl = N = a/ V = a V Tilavuus kuutiometreinä on V totm =V totl /000 (p) =40000 V /000=40 V (p) Vastaus: Metsikön elävien puiden kokonaistilavuuden [m /ha] lauseke on 40 V

5 MATEMATIIKKA. Puuston hakkuuarvo H [ ha - ] kehittyy puuston iän t [vuosi] funktiona seuraavasti H(t) = a) Mikä on puuston hakkuuarvo, kun puuston ikä on 0 vuotta? (maksimi p) b) Esitä lauseke puuston vuotuisen hakkuuarvon muutokselle (arvokasvulle) [ ha - a - ] puuston iän funktiona (maksimi 4p) c) Mikä on puuston arvokasvu 0-vuotiaana? (maksimi 4p) d) Minkä ikäisenä puuston arvokasvu on suurimmillaan? Kuinka suuri vuotuinen hakkuuarvon lisäys tällöin on? (maksimi 0p) Mallivastaus: (Yht. p) a) H(0)=5 0=500 Puuston hakkuuarvo 0-vuotiaana on 500 /ha. (p) b) Vuotuinen hakkuuarvon muutos (arvokasvu) saadaan derivoimalla H(t) H (t)=5, kun 0<t 0, H (t)=-800+0t-, kun 0<t 60. [tai vaihtoehtoisesti laskemalla kahden peräkkäisen vuoden hakkuuarvon erotus] c) H (0)=5 (p) Puuston vuotuinen hakkuuarvon muutos (arvokasvu) 0-vuotiaana on 5 ha - a - (p) [tai vaihtoehtoisesti laskemalla erotus H(0)-H(9)=50-5=5 euroa] d) Funktion ääriarvokohta saadaan laskemalla sen derivaattafunktion nollakohta. Derivoidaan H (t) ja asetetaan se nollaksi. H (t) = 0 - t = 0 => t = 0/ => t = 40. Kulkukaavion tai toisen derivaatan negatiivisuuden (H (t)=-) perusteella nollakohta on funktion maksimikohta (myös koska kyse on alaspäin aukeavasta paraabelista, koska t :n kerroin on negatiivinen, -/). Koska aika on vuosia, puuston vuotuinen arvokasvu maksimoituu, kun puuston ikä on 40 vuotta. Sijoitetaan 40 vuotta yhtälöön H (t): H (40) = / = = 600 Metsikön vuotuinen arvokasvu on 40-vuotiaana 600 ha - a -. (p) (p)

6 MATEMATIIKKA. Metsäpalstan kulmapaalut sijaitsevat koordinaattipisteissä A(4,), B(5,5) ja C(,). a) Piirrä palsta koordinaatistoon. (maksimi p) b) Laske palstan rajojen todelliset pituudet, kun koordinaatiston yksikkö vastaa luonnossa 00 metriä. (maksimi 8p) c) Kuinka suuri on metsäpalstan pinta-ala hehtaareina? (maksimi 0p) Mallivastaus: (Yht. p) a) Y B(5,5) C(,) A(4,) X (p) [Jos akselit ovat nimeämättöminä väärin päin tai jos kulmapisteitä ei ole yhdistetty, saa vastauksesta p] b) Rajan AB pituus voidaan kirjoittaa = 7 Vastaavasti rajan BC pituus on 5 5 = ja rajan CA pituus 4 = 8 Rajojen todelliset pituudet saadaan kertomalla koordinaatiston yksikköinä esitetyt pituudet 00 metrillä. Rajojen todelliset pituudet ovat siten 00 7 metriä (raja AB), 00 metriä (raja BC) ja 400 metriä (raja CA).

7 c) Y E(,5) B(5,5) C(,) H(4,) G(5,) I(4½,) F(,) D(5,) A(4,) X Suorakulmio FDBE:n pinta-ala on 4 = pinta-alayksikköä. Palstan pinta-ala saadaan vähentämällä suorakulmion pinta-alasta suorakulmaisten apukolmioiden ADB, ACF ja CBE pinta-alat. Apukolmion ADB pinta-ala on 4/= yksikköä, apukolmion ACF pinta-ala /= yksikköä ja apukolmion CBE pinta-ala /= yksikköä. Tällöin palstan pinta-ala on -(++)=5 pinta-alayksikköä eli 5 4 ha=0 ha. ( ruutu on 00m 00m= m =4 ha luonnossa) (4p) (4p) [Vaihtoehtoisesti: palstan pinta-ala saadaan suorakulmaisten kolmioiden BCG ja AHC pinta-alojen summana (+=5 pinta-alayksikköä, mikä vastaa 0 ha luonnossa), koska suorakulmaiset kolmiot AHI ja BGI ovat pinta-alaltaan samansuuruisia tai hyödyntämällä pisteen I sijaintitietoa kahden kolmion BCI ja AIC pinta-alojen summana (½+½=5 pinta-alayksikköä, mikä vastaa 0 ha luonnossa)]

(x 0 ) = lim. Derivoimissääntöjä. Oletetaan, että funktiot f ja g ovat derivoituvia ja c R on vakio. 1. Dc = 0 (vakiofunktion derivaatta) 2.

(x 0 ) = lim. Derivoimissääntöjä. Oletetaan, että funktiot f ja g ovat derivoituvia ja c R on vakio. 1. Dc = 0 (vakiofunktion derivaatta) 2. Derivaatta kuvaa funktion hetkellistä kasvunopeutta. Geometrisesti tulkittuna funktion derivaatta kohdassa x 0 on funktion kuvaajalle kohtaan x 0 piirretyn tangentin kulmakerroin. Funktio f on derivoituva

Lisätiedot

30 + x. 15 + 0,5x = 2,5 + x 0,5x = 12,5 x = 25. 27,5a + 27,5b = 1,00 55 = 55. 2,5a + (30 2,5)b (27,5a + 27,5b) = 45 55.

30 + x. 15 + 0,5x = 2,5 + x 0,5x = 12,5 x = 25. 27,5a + 27,5b = 1,00 55 = 55. 2,5a + (30 2,5)b (27,5a + 27,5b) = 45 55. RATKAISUT, Insinöörimatematiikan koe 1.5.201 1. Kahdessa astiassa on bensiinin ja etanolin seosta. Ensimmäisessä astiassa on 10 litraa seosta, jonka tilavuudesta 5 % on etanolia. Toisessa astiassa on 20

Lisätiedot

Itä-Suomen yliopisto/metsätieteiden osasto Valintakoe 2012/MALLIVASTAUKSET

Itä-Suomen yliopisto/metsätieteiden osasto Valintakoe 2012/MALLIVASTAUKSET Itä-Suomen yliopisto/metsätieteiden osasto Valintakoe 0/MALLIVASTAUKSET BIOLOGIA. Kasvisolun perusrakenne ja solun osien tehtävät. Ydinasiat: Uloimpana pääasiassa selluloosasta koostuva soluseinä, joka

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Derivaatta Tarkastellaan funktion f keskimääräistä muutosta tietyllä välillä ( 0, ). Funktio f muuttuu tällä välillä määrän. Kun tämä määrä jaetaan välin pituudella,

Lisätiedot

Biologia1. Kasvihuoneilmiö ja sen voimistumisen vaikutukset boreaalisiin havumetsiin.

Biologia1. Kasvihuoneilmiö ja sen voimistumisen vaikutukset boreaalisiin havumetsiin. Valintakoe 205/MALLIVASTAUKSET Itä-Suomen yliopisto/metsätieteiden osasto Biologia. Kasvihuoneilmiö ja sen voimistumisen vaikutukset boreaalisiin havumetsiin. Ydinasiat: Pisteytys Kasvihuoneilmiö ilmiönä:

Lisätiedot

4. Kertausosa. 1. a) 12

4. Kertausosa. 1. a) 12 . Kertausosa. a kun, : b kun, tai 8 . Paraabeli y a bc c aukeaa ylöspäin, jos a alaspäin, jos a a Funktion g kuvaaja on paraabeli, jolle a. Se aukeaa ylöspäin. b Funktion g kuvaaja on paraabeli, jolle

Lisätiedot

Mallivastaus: Selkeys ja johdonmukaisuus. Yhteensä 21

Mallivastaus: Selkeys ja johdonmukaisuus. Yhteensä 21 Joensuun yliopisto/metsätieteellinen tiedekunta Valintakoe 009/MALLIVATAUKET BIOLOGIA. ellunkeiton aikana puusta vapautuviin kuituihin jää noin 0 % jäännösligniiniä, joka aiheuttaa sellulle sen ominaisen

Lisätiedot

Koontitehtäviä luvuista 1 9

Koontitehtäviä luvuista 1 9 11 Koontitehtäviä luvuista 1 9 1. a) 3 + ( 8) + = 3 8 + = 3 b) x x 10 = 0 a =, b = 1, c = 10 ( 1) ( 1) 4 ( 10) 1 81 1 9 x 4 4 1 9 1 9 x,5 tai x 4 4 c) (5a) (a + 1) = 5a a 1 = 4a 1. a) Pythagoraan lause:

Lisätiedot

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE Matematiikan koe 1.6.2016 Nimi: Henkilötunnus: VASTAUSOHJEET 1. Koeaika on 2 tuntia (klo 12.00 14.00). Kokeesta saa poistua aikaisintaan klo

Lisätiedot

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Lyhyt Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Lyhyt Matematiikka..015 Vastaa enintään kymmeneen tehtävään. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. 1. a) Sievennä x( x ) ( x x). b) Ratkaise yhtälö 5( x 4) 5 ( x 4). 1 c)

Lisätiedot

MAA10 HARJOITUSTEHTÄVIÄ

MAA10 HARJOITUSTEHTÄVIÄ MAA0 Määritä se funktion f: f() = + integraalifunktio, jolle F() = Määritä se funktion f : f() = integraalifunktio, jonka kuvaaja sivuaa suoraa y = d Integroi: a) d b) c) d d) Määritä ( + + 8 + a) d 5

Lisätiedot

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3

Preliminäärikoe Tehtävät Pitkä matematiikka 4.2.2014 1 / 3 Preliminäärikoe Tehtävät Pitkä matematiikka / Kokeessa saa vastata enintään kymmeneen tehtävään Tähdellä (* merkittyjen tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6 Jos tehtävässä

Lisätiedot

2.2 Täydellinen yhtälö. Ratkaisukaava

2.2 Täydellinen yhtälö. Ratkaisukaava . Täydellinen yhtälö. Ratkaisukaava Tulon nollasäännöstä näkee silloin tällöin omituisia sovellutuksia. Jotkut näet ajattelevat, että on olemassa myöskin tulon -sääntö tai tulon "mikä-tahansa"- sääntö.

Lisätiedot

monissa laskimissa luvun x käänteisluku saadaan näyttöön painamalla x - näppäintä.

monissa laskimissa luvun x käänteisluku saadaan näyttöön painamalla x - näppäintä. .. Käänteisunktio.. Käänteisunktio Mikäli unktio : A B on bijektio, niin joukkojen A ja B alkioiden välillä vallitsee kääntäen yksikäsitteinen vastaavuus eli A vastaa täsmälleen yksi y B, joten myös se

Lisätiedot

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015

PRELIMINÄÄRIKOE. Pitkä Matematiikka 3.2.2015 PRELIMINÄÄRIKOE Pitkä Matematiikka..5 Vastaa enintään kymmeneen tehtävään. Tähdellä merkittyjen (*) tehtävien maksimipistemäärä on 9, muiden tehtävien maksimipistemäärä on 6.. a) Ratkaise epäyhtälö >.

Lisätiedot

Äänekosken lukio Mab4 Matemaattinen analyysi S2016

Äänekosken lukio Mab4 Matemaattinen analyysi S2016 Äänekosken lukio Mab4 Matemaattinen analyysi S016 A-osa Vastaa kaikkiin A-osan tehtäviin. Vastaukset kirjoitetaan kysymyspaperiin! Taulukkokirjaa saa käyttää. Laskinta ei saa käyttää! A-osan ratkaisut

Lisätiedot

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja?

B. 2 E. en tiedä C. 6. 2 ovat luonnollisia lukuja? Nimi Koulutus Ryhmä Jokaisessa tehtävässä on vain yksi vastausvaihtoehto oikein. Laske tehtävät ilman laskinta.. Missä pisteessä suora y = 3x 6 leikkaa x-akselin? A. 3 D. B. E. en tiedä C. 6. Mitkä luvuista,,,

Lisätiedot

Epäyhtälön molemmille puolille voidaan lisätä sama luku: kaikilla reaaliluvuilla a, b ja c on voimassa a < b a + c < b + c ja a b a + c b + c.

Epäyhtälön molemmille puolille voidaan lisätä sama luku: kaikilla reaaliluvuilla a, b ja c on voimassa a < b a + c < b + c ja a b a + c b + c. Epäyhtälö Kahden lausekkeen A ja B välisiä järjestysrelaatioita A < B, A B, A > B ja A B nimitetään epäyhtälöiksi. Esimerkiksi 2 < 6, 9 10, 5 > a + + 2 ja ( + 1) 2 2 + 2 ovat epäyhtälöitä. Epäyhtälössä

Lisätiedot

11 MATEMAATTINEN ANALYYSI

11 MATEMAATTINEN ANALYYSI Huippu Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 0.7.08 MATEMAATTINEN ANALYYSI ALOITA PERUSTEISTA 444A. a) Funktion arvot ovat positiivisia silloin, kun kuvaaja on x-akselin yläpuolella.

Lisätiedot

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 14..016 Kertaus K1. a) b) x 18 ( x 9) ( x ) ( x+ ) lim = lim = lim x+ x+ ( x + ) x x x = lim (x 6) = ( ) 6 = 1 x x + 6 ( ) + 6 0 lim = =

Lisätiedot

Syksyn 2015 Lyhyen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut

Syksyn 2015 Lyhyen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Sksn 015 Lhen matematiikan YO-kokeen TI-Nspire CAS -ratkaisut Tekijät: Olli Karkkulainen ja Markku Parkkonen Ratkaisut on laadittu TI-Nspire CAS -tietokoneohjelmalla kättäen Muistiinpanot -sovellusta.

Lisätiedot

3. Koko maassa alkutuotanto työllistää n. 7 % koko maan työvoimasta. 4. Vuonna 1999 maatalous työllisti 200 000 henkilöä.

3. Koko maassa alkutuotanto työllistää n. 7 % koko maan työvoimasta. 4. Vuonna 1999 maatalous työllisti 200 000 henkilöä. LUONNONVARA- JA YMPÄRISTÖALAN VALTAKUNNALLINEN VALINTAKOE 8.6.2004 Viestinnän ja tiedonhankinnan osuus Nimi Henkilötunnus Etukäteismateriaalina on maa- ja metsätalousministeriön Luonnonvarastrategia, MMM:n

Lisätiedot

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti! A-osio: ilman laskinta. MAOLia saa käyttää. Laske kaikki tehtävistä 1-. 1. a) Derivoi funktio f(x) = x (4x x) b) Osoita välivaiheiden avulla, että seuraava raja-arvo -lauseke on tosi tai epätosi: x lim

Lisätiedot

x = 6 x = : x = KERTAUSHARJOITUKSIA Funktion nollakohdat ja merkki 229.a) Funktio f ( x) = 2x+ Nollakohta f x b) Funktio gx ( ) = x

x = 6 x = : x = KERTAUSHARJOITUKSIA Funktion nollakohdat ja merkki 229.a) Funktio f ( x) = 2x+ Nollakohta f x b) Funktio gx ( ) = x KERTAUSHARJOITUKSIA Funktion nollakohdat ja merkki 9.a) Funktio f ( ) = + 6 Nollakohta f bg= + 6= = 6 :( ) = 6 = y 5 6 y = + 6 b) Funktio g ( ) = 5 Nollakohta g bg= = 5 = : 5 5 5 5 = : = = = 5 5 5 9 9

Lisätiedot

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ 8..5 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa.

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 12.4.2016 Julkaiseminen sallittu vain koulun suljetussa verkossa. KERTAUS Lukujono KERTAUSTEHTÄVIÄ K1. Ratkaisussa annetaan esimerkit mahdollisista säännöistä. a) Jatketaan lukujonoa: 2, 4, 6, 8, 10, 12, 14, 16, Rekursiivinen sääntö on, että lukujonon ensimmäinen jäsen

Lisätiedot

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua Mallivastaukset - Harjoituskoe E E a) x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4,35 < 0 x 3 7 4 b) 0 / x + dx = 0 ln x + = ln + ln 0 + = ln 0 Vastaus: ln c) x 4 3x 4 = 0 Sijoitetaan x = u Tulon nollasääntö

Lisätiedot

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot. 7 Sovelluksia 90 a) Koska sin saa kaikki välillä [,] olevat arvot, niin funktion f ( ) = sin pienin arvo on = ja suurin arvo on ( ) = b) Koska sin saa kaikki välillä [0,] olevat arvot, niin funktion f

Lisätiedot

Kuntosaliharjoittelun kesto tunteina Kokonaishyöty Rajahyöty 0 0 5 1 5 10 2 15 8 3 23 6 4 29 4 5 33 -

Kuntosaliharjoittelun kesto tunteina Kokonaishyöty Rajahyöty 0 0 5 1 5 10 2 15 8 3 23 6 4 29 4 5 33 - Harjoitukset 1 Taloustieteen perusteet Ratkaisuehdotukset Kesäyliopisto 2014 1. Oheisessa taulukossa on esitettynä kuluttajan saama hyöty kuntosaliharjoittelun kestosta riippuen. a) Laske taulukon tyhjään

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: MAB4 Koe Jussi Tyni 1..015 A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät: 1. a. Piirrä seuraava suora mahdollisimman tarkasti ruutupaperille:

Lisätiedot

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1.

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Vastaus: Määrittelyehto on x 1 ja nollakohta x = 1. Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 4..6 Kokoavia tehtäviä ILMAN TEKNISIÄ APUVÄLINEITÄ. a) Funktion f( ) = määrittelyehto on +, eli. + Ratkaistaan funktion nollakohdat. f(

Lisätiedot

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a) Juuri 9 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.5.6 Kertaus Integraalifunktio ja integrointi KERTAUSTEHTÄVIÄ K. a) ( )d C C b) c) d e e C cosd cosd sin C K. Funktiot F ja F ovat saman

Lisätiedot

Sekä A- että B-osasta tulee saada vähintään 7 pistettä. Mikäli A-osan pistemäärä on vähemmän kuin 7 pistettä, B-osa jätetään arvostelematta.

Sekä A- että B-osasta tulee saada vähintään 7 pistettä. Mikäli A-osan pistemäärä on vähemmän kuin 7 pistettä, B-osa jätetään arvostelematta. KOE Sekä A- että B-osasta tulee saada vähintään 7 pistettä. Mikäli A-osan pistemäärä on vähemmän kuin 7 pistettä, B-osa jätetään arvostelematta. B-OSA, ht. 0p. Ksmksen maksimipistemäärä on 7 pistettä.

Lisätiedot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot

1 2 x2 + 1 dx. (2p) x + 2dx. Kummankin integraalin laskeminen oikein (vastaukset 12 ja 20 ) antaa erikseen (2p) (integraalifunktiot Helsingin yliopisto, Itä-Suomen yliopisto, Jyväskylän yliopisto, Oulun yliopisto, Tampereen yliopisto ja Turun yliopisto Matematiikan valintakoe (Ratkaisut ja pisteytys) 500 Kustakin tehtävästä saa maksimissaan

Lisätiedot

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018 BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018 1. (a) Tunnemme vektorit a = [ 5 1 1 ] ja b = [ 2 0 1 ]. Laske (i) kummankin vektorin pituus (eli itseisarvo, eli normi); (ii) vektorien

Lisätiedot

3 TOISEN ASTEEN POLYNOMIFUNKTIO

3 TOISEN ASTEEN POLYNOMIFUNKTIO 3 TOISEN ASTEEN POLYNOMIFUNKTIO POHDITTAVAA 1. Kuvasta voidaan arvioida, että frisbeegolfkiekko käy noin 9 metrin korkeudella ja se lentää noin 40 metrin päähän. Vastaus: Frisbeegolfkiekko käy n. 9 m:n

Lisätiedot

Preliminäärikoe Pitkä Matematiikka 3.2.2009

Preliminäärikoe Pitkä Matematiikka 3.2.2009 Preliminäärikoe Pitkä Matematiikka..9 x x a) Ratkaise yhtälö =. 4 b) Ratkaise epäyhtälö x > x. c) Sievennä lauseke ( a b) (a b)(a+ b).. a) Osakkeen kurssi laski aamupäivällä,4 % ja keskipäivällä 5,6 %.

Lisätiedot

( ) ( ) ( ) ( ( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 271 Päivitetty 19.2.2006. 701 a) = keskipistemuoto.

( ) ( ) ( ) ( ( ) Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 271 Päivitetty 19.2.2006. 701 a) = keskipistemuoto. Pyramidi Analyyttinen geometria tehtävien ratkaisut sivu 7 Päivitetty 9..6 7 a) + y = 7 + y = 7 keskipistemuoto + y 7 = normaalimuoto Vastaus a) + y = ( 7 ) + y 7= b) + y+ 5 = 6 y y + + = b) c) ( ) + y

Lisätiedot

5 Rationaalifunktion kulku

5 Rationaalifunktion kulku Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.06 5 Rationaalifunktion kulku. Funktion f määrittelyehto on. Muodostetaan symbolisen laskennan ohjelman avulla derivaattafunktio f ja

Lisätiedot

MAB3 - Harjoitustehtävien ratkaisut:

MAB3 - Harjoitustehtävien ratkaisut: MAB - Harjoitustehtävien ratkaisut: Funktio. Piirretään koordinaatistoakselit ja sijoitetaan pisteet:. a) Funktioiden nollakohdat löydetään etsimällä kuvaajien ja - akselin leikkauspisteitä. Funktiolla

Lisätiedot

KERTAUSHARJOITUKSIA. 1. Rationaalifunktio a) ( ) 2 ( ) Vastaus: a) = = 267. a) a b) a. Vastaus: a) a a a a 268.

KERTAUSHARJOITUKSIA. 1. Rationaalifunktio a) ( ) 2 ( ) Vastaus: a) = = 267. a) a b) a. Vastaus: a) a a a a 268. KERTAUSHARJOITUKSIA. Rationaalifunktio 66. a) b) + + + = + + = 9 9 5) ( ) ( ) 9 5 9 5 9 5 5 9 5 = = ( ) = 6 + 9 5 6 5 5 Vastaus: a) 67. a) b) a a) a 9 b) a+ a a = = a + a + a a + a a + a a ( a ) + = a

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA

MATEMATIIKKA 5 VIIKKOTUNTIA EB-TUTKINTO 2010 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 4. kesäkuuta 2010 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

5. www-kierroksen mallit

5. www-kierroksen mallit 5. www-kierroksen mallit Tehtävä 1 Ratkaistaan tasapainopiste merkitsemällä kysyntä- ja tarjontakäyrät yhtäsuuriksi: 3 4 q+20=q+6 q=8 ja sijoittamalla p=14. Kuluttajan ja tuottajan ylijäämä voidaan ratkaista

Lisätiedot

Tekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a)

Tekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a) K1 a) Tekijä MAA Polynomifunktiot ja -yhtälöt 6.8.016 ( + + ) + ( ) = + + + = + + + = + 4 b) 4 4 ( 5 + ) ( 5 + 1) = 5 + + 5 + 1 4 = + + + 4 = + 5 5 1 1 Vastaus a) 4 + b) 4 + 1 K a) f ( ) = + 1 f () = +

Lisätiedot

Maapallon rajat ovat tulossa vastaan

Maapallon rajat ovat tulossa vastaan Maapallon rajat ovat tulossa vastaan BIOS 3 jakso 3 Talouskasvun priorisointi on tapahtunut ympäristön kustannuksella, mikä on johtanut mittaviin ympäristöongelmiin. Lisäksi taloudellinen eriarvoisuus

Lisätiedot

Huippu 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Huippu 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Huippu 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 8..08 KERTAUS KERTAUSTEHTÄVIÄ K. a) Keskimääräinen muutosnopeus välillä [0, ] saadaan laskemalla kohtia x = 0 ja x = vastaavien kuvaajan

Lisätiedot

Kenguru 2006 sivu 1 Benjamin 6. ja 7. luokka ratkaisut

Kenguru 2006 sivu 1 Benjamin 6. ja 7. luokka ratkaisut Kenguru 2006 sivu 1 3:n pisteen tehtävät 1. 3 2006 = 2005 + 2007 +?. Valitse sopiva luku?-merkin paikalle. A) 2005 B) 2006 C) 2007 D) 2008 E) 2009 2. Viereisiin kortteihin on kirjoitettu kuusi lukua. Mikä

Lisätiedot

( ) < ( ) Lisätehtävät. Polynomifunktio. Epäyhtälöt 137. x < 2. d) 2 3 < 8+ < 1+ Vastaus: x < 3. Vastaus: x < 5 6. x x. x < Vastaus: x < 2

( ) < ( ) Lisätehtävät. Polynomifunktio. Epäyhtälöt 137. x < 2. d) 2 3 < 8+ < 1+ Vastaus: x < 3. Vastaus: x < 5 6. x x. x < Vastaus: x < 2 Lisätehtävät Polnomifunktio 7. Epähtälöt = + 8. a) < + < + < Vastaus: ) < < Vastaus: < 8 8 8 = 8 = + c) ( ) < + ( ) < + < + < : ( > ) < Vastaus: < d) ( )

Lisätiedot

Jousen jaksonaikaan vaikuttavat tekijät

Jousen jaksonaikaan vaikuttavat tekijät 1 Jousen jaksonaikaan vaikuttavat tekijät Jarmo Vestola Koulun nimi Fysiikka luonnontieteenä FY5-Työseloste 6.2.2002 Arvosana: K (9) 2 1. Tutkittava ilmiö Tehtävänä oli tutkia mitkä tekijät vaikuttavat

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 18.3.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 8..05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2. MAA4. Koe 8.5.0 Jussi Tyni Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Ota kokeesta poistuessasi tämä paperi mukaasi! Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse

Lisätiedot

Ratkaisuehdotukset Kesäyliopisto 2014. 1. Kuvassa on esitetty erään ravintolan lounasbuffetin kysyntäfunktio.

Ratkaisuehdotukset Kesäyliopisto 2014. 1. Kuvassa on esitetty erään ravintolan lounasbuffetin kysyntäfunktio. Harjoitukset 2 Taloustieteen perusteet Ratkaisuehdotukset Kesäyliopisto 2014 1. Kuvassa on esitetty erään ravintolan lounasbuffetin kysyntäfunktio. a) Mikä on kysynnän hintajousto 12 :n ja 6 :n välillä?

Lisätiedot

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät: MAA3 Geometria Koe 5.2.2016 Jussi Tyni Lue ohjeet ja tee tehtävät huolellisesti! Tee tarvittavat välivaiheet, vaikka laskimesta voikin ottaa tuloksia. Välivaiheet perustelevat vastauksesi. Tee pisteytysruudukko

Lisätiedot

Solun toiminta. II Solun toiminta. BI2 II Solun toiminta 7. Fotosynteesi tuottaa ravintoa eliökunnalle

Solun toiminta. II Solun toiminta. BI2 II Solun toiminta 7. Fotosynteesi tuottaa ravintoa eliökunnalle Solun toiminta II Solun toiminta 7. Fotosynteesi tuottaa ravintoa eliökunnalle 1. Avainsanat 2. Fotosynteesi eli yhteyttäminen 3. Viherhiukkanen eli kloroplasti 4. Fotosynteesin reaktiot 5. Mitä kasvit

Lisätiedot

1.1 Funktion määritelmä

1.1 Funktion määritelmä 1.1 Funktion määritelmä Tämän kappaleen otsikoksi valittu funktio on hyvä esimerkki matemaattisesta käsitteestä, johon usein jopa tietämättämme törmäämme arkielämässä. Tutkiessamme erilaisia Jos joukkojen

Lisätiedot

Derivaatan sovellukset (ääriarvotehtävät ym.)

Derivaatan sovellukset (ääriarvotehtävät ym.) Derivaatan sovellukset (ääriarvotehtävät ym.) Tehtävät: 1. Tutki derivaatan avulla funktion f kulkua. a) f(x) = x 4x b) f(x) = x + 6x + 11 c) f(x) = x4 4 x3 + 4 d) f(x) = x 3 6x + 1x + 3. Määritä rationaalifunktion

Lisätiedot

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus: . Koska F( ) on jokin funktion f ( ) integraalifunktio, niin a+ a f() t dt F( a+ t) F( a) ( a+ ) b( a b) Vastaus: Kertausharjoituksia. Lukujonot 87. + n + lim lim n n n n Vastaus: suppenee raja-arvona

Lisätiedot

Tekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0.

Tekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0. Tekijä Pitkä matematiikka 6 9.5.017 K1 a) Ratkaistaan nimittäjien nollakohdat. x 1= 0 x = 1 ja x = 0 Funktion f määrittelyehto on x 1 ja x 0. Funktion f määrittelyjoukko on R \ {0, 1}. b) ( 1) ( 1) f (

Lisätiedot

3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =

3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) = BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 6, Syksy 2016 1. (a) Olkoon z = z(x,y) = yx 1/2 + y 1/2. Muodosta z:lle lineaarinen approksimaatio L(x,y) siten että approksimaation ja z:n arvot

Lisätiedot

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia.

Pitkä matematiikka Suullinen kuulustelu (ma00s001.doc) Tehtävät, jotka on merkitty (V), ovat vaativia. Pitkä matematiikka Suullinen kuulustelu (ma00s00doc) Tehtävät, jotka on merkitty (V), ovat vaativia Yleistä Ratkaise yhtälöt n n n n n 5 a) 5 + 5 + 5 + 5 + 5 = 5 b) ( ) ( ) > 0 + = + c) ( ) Suureet ja

Lisätiedot

lnx x 1 = = lim x = = lim lim 10 = x x0

lnx x 1 = = lim x = = lim lim 10 = x x0 BM0A580 - Differentiaalilaskenta ja sovellukset Harjoitus 5, Syksy 05. (a) (b) ln = sin(t π ) t π t π = = 0 = = cos(t π = ) = 0 t π (c) e [ = ] = = e e 3 = e = 0 = 0 (d) (e) 3 3 + 6 + 8 + 6 5 + 4 4 + 4

Lisätiedot

Mustan kappaleen säteily

Mustan kappaleen säteily Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi

Lisätiedot

2 Yhtälöitä ja epäyhtälöitä

2 Yhtälöitä ja epäyhtälöitä 2 Yhtälöitä ja epäyhtälöitä 2.1 Ensimmäisen asteen yhtälö ja epäyhtälö Muuttujan x ensimmäisen asteen yhtälöksi sanotaan yhtälöä, joka voidaan kirjoittaa muotoon ax + b = 0, missä vakiot a ja b ovat reaalilukuja

Lisätiedot

Malliratkaisut Demot

Malliratkaisut Demot Malliratkaisut Demot 1 23.1.2017 1. Päätösmuuttujiksi voidaan valita x 1 : tehtyjen peruspöytin lukumäärä x 2 : tehtyjen luxuspöytien lukumäärä. Optimointitehtäväksi tulee max 200x 1 + 350x 2 s. t. 5x

Lisätiedot

Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x

Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x MAA6 Lisätehtäviä Laske lisätehtäviä omaan tahtiisi kurssin aikan Palauta laskemasi tehtävät viimeistään kurssikokeeseen. Tehtävät lasketaan ilman laskint Rationaalifunktio Tehtäviä Hyvitys kurssiarvosanassa

Lisätiedot

Matematiikan peruskurssi (MATY020) Harjoitus 7 to

Matematiikan peruskurssi (MATY020) Harjoitus 7 to Matematiikan peruskurssi (MATY020) Harjoitus 7 to 5..2009 ratkaisut 1. (a) Määritä funktion f(x) = e x e x x + 1 derivaatan f (x) pienin mahdollinen arvo. Ratkaisu. (a) Funktio f ja sen derivaatat ovat

Lisätiedot

3 Yleinen toisen asteen yhtälö ja epäyhtälö

3 Yleinen toisen asteen yhtälö ja epäyhtälö Juuri Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.8.016 3 Yleinen toisen asteen yhtälö ja epäyhtälö ENNAKKOTEHTÄVÄT 1. a) x + x + 1 = 4 (x + 1) = 4 Luvun x + 1 tulee olla tai, jotta sen

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia?

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia? Kertaustesti Nimi:. Onko väite tosi (T) vai epätosi (E)? a) Polynomin 4 3 + + asteluku on. b) F unktio f () = 8 saa positiivisia arvoja, kun > 4. c) F unktion f () = 3 4 kuvaaja on alaspäin aukeava paraabeli.

Lisätiedot

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

Pyramidi 9 Trigonometriset funktiot ja lukujonot 15.4.2011 HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin Pyramidi 9 Trigonometriset funktiot ja lukujonot 5.4.0 HK- a) Dsin3 us ( ) cos3 3 us( ) s( ) 3cos3 s( ) 3 ja s( ) 3 u( ) sin ja u( ) cos b) Dsin 3 3 Dsin us ( ) s( ) sin ja s( ) cos 3 u( ) ja u( ) 3 3sin

Lisätiedot

Asenna myös mikroskopian lisäpala (MBF ImageJ for Microscopy Collection by Tony Collins) http://rsbweb.nih.gov/ij/plugins/mbf-collection.

Asenna myös mikroskopian lisäpala (MBF ImageJ for Microscopy Collection by Tony Collins) http://rsbweb.nih.gov/ij/plugins/mbf-collection. Asentaminen Ohjelman voi ladata vapaasti webistä (http://rsbweb.nih.gov/ij/) ja siitä on olemassa versiot eri käyttöjärjestelmille. Suurimmalle osalle käyttäjistä sopii parhaiten valmiiksi käännetty asennuspaketti

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioppilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitsten luonnehdinta

Lisätiedot

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla!

Lataa ilmaiseksi mafyvalmennus.fi/mafynetti. Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! Miten opit parhaiten? Valmistaudu pitkän- tai lyhyen matematiikan kirjoituksiin ilmaiseksi Mafynetti-ohjelmalla! n Harjoittelu tehdään aktiivisesti tehtäviä ratkomalla. Tehtävät kattavat kaikki yo-kokeessa

Lisätiedot

B-OSA. 1. Valitse oikea vaihtoehto. Vaihtoehdoista vain yksi on oikea.

B-OSA. 1. Valitse oikea vaihtoehto. Vaihtoehdoista vain yksi on oikea. B-OSA 1. Valitse oikea vaihtoehto. Vaihtoehdoista vain yksi on oikea. 1.1 Mitä voidaan sanoa funktion f raja-arvosta, kun x a? I Raja-arvo on f(a), jos f on määritelty kohdassa a. II Raja-arvo on f(a),

Lisätiedot

Kysymys 1. Mihin kuntiin ja domeeneihin eliökunta jaetaan, ja mitkä ovat domeenien väliset samankaltaisuudet ja erot?

Kysymys 1. Mihin kuntiin ja domeeneihin eliökunta jaetaan, ja mitkä ovat domeenien väliset samankaltaisuudet ja erot? Valintakoe 209/MALLIVASTAUKSET Itä-Suomen yliopisto/metsätieteiden osasto Kysymys. Mihin kuntiin ja domeeneihin eliökunta jaetaan, ja mitkä ovat domeenien väliset samankaltaisuudet ja erot? Ydinasiat Pisteet

Lisätiedot

2 Pistejoukko koordinaatistossa

2 Pistejoukko koordinaatistossa Pistejoukko koordinaatistossa Ennakkotehtävät 1. a) Esimerkiksi: b) Pisteet sijaitsevat pystysuoralla suoralla, joka leikkaa x-akselin kohdassa x =. c) Yhtälö on x =. d) Sijoitetaan joitain ehdon toteuttavia

Lisätiedot

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4 Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 06 Sivu / Laske yhteensä enintään 0 tehtävää. Kaikki tehtävät arvostellaan asteikolla 0-6 pistettä. Osiossa A EI SAA käyttää laskinta. Osiossa A

Lisätiedot

4 Polynomifunktion kulku

4 Polynomifunktion kulku 4 Polynomifunktion kulku. a) Funktio on kasvava jollakin välillä, jos sen arvo kasvaa tällä välillä. Kuvaajan nousemisen ja laskemisen perusteella funktio on kasvava kohtien x,4 ja x 0, välissä. b) Funktion

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4 KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + ( 1) + 3 ( 1) 3 = 3 + 3 = 4 K. a) x 3x + 7x 5x = 4x + 4x b) 5x 3 (1 x ) = 5x 3 1 + x = 6x 4 c) (x + 3)(x 4) = x 3 4x + 3x 1 = x 3 + 3x 4x 1 Vastaus: a) 4x +

Lisätiedot

2.7 Neliöjuuriyhtälö ja -epäyhtälö

2.7 Neliöjuuriyhtälö ja -epäyhtälö 2.7 Neliöjuuriyhtälö ja -epäyhtälö Neliöjuuren määritelmä palautettiin mieleen jo luvun 2.2 alussa. Neliöjuurella on mm. seuraavat ominaisuudet. ab = a b, a 0, b 0 a a b =, a 0, b > 0 b a2 = a a > b, a

Lisätiedot

Pythagoraan polku 16.4.2011

Pythagoraan polku 16.4.2011 Pythagoraan polku 6.4.20. Todista väittämä: Jos tasakylkisen kolmion toista kylkeä jatketaan omalla pituudellaan huipun toiselle puolelle ja jatkeen päätepiste yhdistetään kannan toisen päätepisteen kanssa,

Lisätiedot

MIKROTEORIA 1, HARJOITUS 1 BUDJETTISUORA, PREFERENSSIT, HYÖTYFUNKTIO JA VALINTA

MIKROTEORIA 1, HARJOITUS 1 BUDJETTISUORA, PREFERENSSIT, HYÖTYFUNKTIO JA VALINTA MIKROTEORIA, HARJOITUS BUDJETTISUORA, PREFERENSSIT, HYÖTYFUNKTIO JA VALINTA tilasto (600 00) 00 a. Kulmakerroin: = = =, koska 00 sivua lisää ta aiheuttaa (00 400) 00 luopumisen 00 sivusta tilastoa. Toisin

Lisätiedot

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0 Juuri 8 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 8.9.07 Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) K. a) b) c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 6 6 a a a, a > 0 6 6 a

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 23.9.2015 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 23.9.2015 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 3.9.05 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

MAA02. A-osa. 1. Ratkaise. a) x 2 + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x

MAA02. A-osa. 1. Ratkaise. a) x 2 + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x MAA0 A-osa. Ratkaise. a) x + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x a) Kirjoitetaan summa x + 6x yhteisen tekijän avulla tulomuotoon ja ratkaistaan yhtälö tulon nollasäännön avulla. x + 6x = 0 x(x + 6) =

Lisätiedot

KEMA221 2009 KEMIALLINEN TASAPAINO ATKINS LUKU 7

KEMA221 2009 KEMIALLINEN TASAPAINO ATKINS LUKU 7 KEMIALLINEN TASAPAINO Määritelmiä Kemiallinen reaktio A B pyrkii kohti tasapainoa. Yleisessä tapauksessa saavutetaan tasapainoa vastaava reaktioseos, jossa on läsnä sekä lähtöaineita että tuotteita: A

Lisätiedot

x + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli

x + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli BM0A5810 - Differentiaalilaskenta ja sovellukset Harjoitus, Syksy 015 1. a) Funktio f ) = 1) vaihtaa merkkinsä pisteissä = 1, = 0 ja = 1. Lisäksi se on pariton funktio joten voimme laskea vain pinta-alan

Lisätiedot

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0 Kertaus K. a) 6 4 64 0, 0 0 0 0 b) 5 6 = 5 6 = =, 0 c) d) 4 4 4 7 4 ( ) 7 7 7 7 87 56 7 7 7 K. a) b) c) d) 6 6 a a a, a > 0 6 6 a a a a, a > 0 5 5 55 5 5 5 5 5 5 5 5 5 5 a a a a a ( a ) a a a, a > 0 K.

Lisätiedot

Lukion. Calculus. Polynomifunktiot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Lukion. Calculus. Polynomifunktiot. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Calculus Lukion MAA Polynomifunktiot Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN Polynomifunktiot (MAA) Pikatesti ja kertauskokeet Tehtävien ratkaisut

Lisätiedot

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0. Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina

Lisätiedot

Helsingin yliopisto Maatalous-metsätieteellinen tiedekunta Valintakoe 2.6.2010 METSÄEKOLOGIA, METSÄVARATIEDE JA -TEKNOLOGIA

Helsingin yliopisto Maatalous-metsätieteellinen tiedekunta Valintakoe 2.6.2010 METSÄEKOLOGIA, METSÄVARATIEDE JA -TEKNOLOGIA Helsingin yliopisto Maatalous-metsätieteellinen tiedekunta Valintakoe 2.6.2010 METSÄEKOLOGIA, METSÄVARATIEDE JA -TEKNOLOGIA B-OSIO, 20p. (vastaaminen erillisille vastauspapereille): Metsäkoulu -kirjaan

Lisätiedot

4 TOISEN ASTEEN YHTÄLÖ

4 TOISEN ASTEEN YHTÄLÖ Huippu Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 7.4.016 4 TOISEN ASTEEN YHTÄLÖ POHDITTAVAA 1. Merkitään toisen neliön sivun pituutta kirjaimella x. Tällöin toisen neliön sivun pituus on

Lisätiedot

Liukeneminen 31.8.2016

Liukeneminen 31.8.2016 Liukeneminen KEMIAN MIKROMAAILMA, KE2 Kertausta: Kun liukenevan aineen rakenneosasten väliset vuorovaikutukset ovat suunnilleen samanlaisia kuin liuottimen, niin liukenevan aineen rakenneosasten välisiä

Lisätiedot

1 Rationaalifunktio , a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen.

1 Rationaalifunktio , a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen. Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty 5.7.06 Rationaalifunktio. a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen. f (50) 50 8 50 4 8 50 500 400 4 400

Lisätiedot

4 Yleinen potenssifunktio ja polynomifunktio

4 Yleinen potenssifunktio ja polynomifunktio 4 Yleinen potenssifunktio ja polynomifunktio ENNAKKOTEHTÄVÄT 1. a) Tutkitaan yhtälöiden ratkaisuja piirtämällä funktioiden f(x) = x, f(x) = x 3, f(x) = x 4 ja f(x) = x 5 kuvaajat. Näin nähdään, monessako

Lisätiedot

Taloustieteen perusteet 31A00110 2016 Mallivastaukset 3, viikko 4

Taloustieteen perusteet 31A00110 2016 Mallivastaukset 3, viikko 4 Taloustieteen perusteet 31A00110 2016 Mallivastaukset 3, viikko 4 1. Tarkastellaan pulloja valmistavaa yritystä, jonka päiväkohtainen tuotantofunktio on esitetty alla olevassa taulukossa. L on työntekijöiden

Lisätiedot