2 Permutaatioryhmät. 2.1 Permutaation olemus. 2.2 Permutaatioilla laskeminen
|
|
- Kirsti Penttilä
- 6 vuotta sitten
- Katselukertoja:
Transkriptio
1 2 Permutaatioryhmät Rubikin kuution siirrot ovat tietynlaisia permutaatioita Permutaatiot muodostavat ryhmiä, ja tällä tavoin ryhmäteorian työkaluja päästään käyttämään kuutio-ongelman selvittämiseen Tässä luvussa tutustutaan permutaatioryhmien perusteisiin sekä siihen, millä tavoin kuution siirrot tulkitaan permutaatioiksi 21 Permutaation olemus Matemaattisen määritelmän mukaan permutaatio on bijektio joukolta itselleen Näin yksinkertaiselle käsitteelle ei kuitenkaan syyttä ole annettu noin hienoa nimeä Latinan sana permutatio tarkoittaa muutosta tai vaihtoa, ja permutaatio kuvaakin joukon sisäistä muutosta, joka kuitenkin säilyttää kaikki joukon alkiot sellaisinaan; yleensä kyseessä on alkioiden järjestyksen vaihtuminen Vastaostetussa korttipakassa kortit ovat tietyssä perusjärjestyksessä Kun korttipakan ensimmäisen kerran sekoittaa, esimerkiksi herttaässän paikalle tulee joku toinen kortti, vaikkapa patakakkonen Voidaan ajatella, että herttaässä muuttui tai kuvautui patakakkoseksi On siis tapahtunut korttipakan permutaatio, jossa jokainen kortti on voinut vaihtua toiseksi, mutta yksikään kortti ei ole kadonnut eikä kortteja ole myöskään tullut lisää Permutaatiota voidaan tarkastella monelta kannalta Ensinnäkin permutaation voidaan ajatella tarkoittavan operaatiota, joka sekoittaa korttipakan tietyllä tavalla Toisaalta voidaan ajatella permutaation tarkoittavan sitä lopputulosta, johon alunperin perusjärjestyksessä oleva korttipakka asettuu tietyn sekoittamisen jälkeen Toisinaan toinen tulkinta on sopivampi, toisinaan toinen Vielä yksi ajattelutapa on syytä mainita Jos kuvitellaan kaikki uuden korttipakan kortit numeroiduiksi juoksevalla järjestysnumerolla, voidaan permutaation ajatella muuttavan näitä järjestysnumeroita, sen sijaan että se muuttaisi itse kortteja Tämä helpottaa matemaattista tarkastelua, kun voidaan aina rajoittua johonkin standardiin lukujoukkoon ja sen bijektioihin tarvitsematta määritellä erikseen korttien tai muiden esineiden joukkoja 22 Permutaatioilla laskeminen Permutaatiot ovat kuvauksia, joten niiden laskutoimitukseksi on luontevaa valita kuvausten yhdistäminen Kahden permutaation tulo on siis στ = σ τ, ja tuloksena on kuvaus, jossa suoritetaan ensin oikeanpuoleinen permutaatio τ, sitten vasemmanpuoleinen permutaatio σ Laskutoimituksen neutraalialkioksi tulee identtinen kuvaus id, joka ei muuta alkioiden järjestystä mitenkään Toisaalta permutaation σ käänteisalkioksi tulee käänteiskuvaus σ 1, joka vaihtaa alkioiden järjestyksen takaisin siksi, mikä se olisi ollut ennen permutaation σ soveltamista Käänteisfunktio on aina olemassa, koska permutaatiot ovat bijektioita Rajoitutaan nyt tarkastelemaan vain lukujoukkojen N n = {1, 2,, n} permutaatioita Joukolla N n on yhteensä n! permutaatiota, mikä nähdään tuloperiaatteen avulla: 7
2 ensimmäiselle alkiolle voidaan valita uusi paikka n:llä tavalla, tämän jälkeen toiselle voidaan valita uusi paikka (n 1):llä tavalla jne Määritelmä 21 Symmetrinen ryhmä S n on kaikkien joukon N n permutaatioiden muodostama ryhmä Ryhmän laskutoimituksena on kuvausten yhdistäminen, neutraalialkiona identtinen kuvaus id ja alkion σ S n käänteisalkio on käänteiskuvaus σ 1 Kuten aiemmin mainittiin, jokaisen äärellisen joukon alkiot voidaan varustaa järjestysnumerolla, jolloin joukon permutaatioiden voidaan ajatella olevan jonkin joukon N n permutaatioita Tämän vuoksi voidaan äärellisessä tapauksessa aina rajoittua tutkimaan symmetristen ryhmien S n ominaisuuksia Tällaisten ryhmien alkioita (mikäli n ei ole kohtuuttoman suuri) voidaan merkitä seuraavalla tavalla: σ = ( ) n σ(1) σ(2) σ(3) σ(n) Esimerkki 22 Olkoon permutaatio σ S 4 sellainen, että σ(1) = 2, σ(2) = 3, σ(3) = 1 ja σ(4) = 4 Tätä permutaatiota voidaan nyt merkitä seuraavasti: σ = ( ) Kun tämä permutaatio kerrotaan vasemmalta eräällä toisella permutaatiolla, tuloksena on ( ) ( ) ( ) = Toisaalta permutaation σ käänteisalkio on ( ) σ = Rubikin ryhmä Perusasemassa olevan Rubikin kuution kukin sivu on tietyn värinen ja jaettu yhdeksään ruutuun Kun Rubikin kuution tahkoja pyörittää, näiden ruutujen paikat sekoittuvat Jos ajatellaan jokainen ruutu keskiruutuja lukuunottamatta numeroiduksi tietyllä järjestysluvulla, voidaan kuutiota tarkastella joukkona N 48 Jokainen kuution siirto siis vastaa tiettyä joukon N 48 permutaatiota eli symmetrisen ryhmän S 48 alkiota (Keskipalojen ajatellaan pysyvän aina paikoillaan) Näitä alkioita on yhteensä 48! 1, kappaletta Kuitenkaan kaikkia joukon S 48 permutaatioita ei voida muodostaa kuution siirroilla Esimerkiksi punaisen ja sinisen sivun reunassa olevan särmäpalan punaista ruutua ei voi vaihtaa sinisen ja keltaisen sivun reunan särmäpalan sinisen sivun ruudun kanssa Tällöin nimittäin kuutioon tulisi särmäpala, jolla olisi kaksi sinistä ruutua Tällaista palaa ei alkuperäisessä kuutiossa kuitenkaan ole, eivätkä siirrot voi muuttaa 8
3 palojen rakennetta Toisaalta on paljon muitakin siirtoja, jotka eivät ole mahdollisia Esimerkiksi minkään särmäpalan kahta ruutua ei voi vaihtaa keskenään ilman että muutkin ruudut muuttuisivat Syy tähän nähdään myöhemmin Rubikin kuution mahdolliset siirrot muodostavat ryhmän Jos nimittäin tehdään kaksi mahdollista siirtoa peräkkäin, tulos on edelleen mahdollinen siirto Toisaalta se, ettei tee mitään, on myös mahdollinen siirto, ja tämä siirto vastaa identtistä permutaatiota Edelleen minkä tahansa siirron voi peruuttaa kääntämällä tahkoja päinvastaisessa järjestyksessä toiseen suuntaan, joten minkä tahansa mahdollisen siirron käänteissiirto on myös mahdollinen Määritelmä 23 Olkoon X joukko, johon kuuluvat kaikki Rubikin kuution ruudut keskiruutuja lukuunottamatta Rubikin ryhmä R on sellainen joukon X permutaatioiden joukko, jonka jokainen alkio vastaa jotakin Rubikin kuution laillista siirtoa Rubikin ryhmä voidaan tulkita symmetrisen ryhmän S 48 aliryhmäksi Kun konkreettisten objektien järjestyksen muutos tulkitaan permutaatioksi, tulkinnassa on aina useita kaksi vaihtoehtoja Jotta vältyttäisiin ristiriidoilta, on kiinnitettävä jokin Rubikin ryhmän siirtojen tulkinta, jota tullaan jatkossa käyttämään Tarkastellaan yksinkertaisuuden vuoksi vain yhtä sivua ja sen ruutuja Kuvassa 3 näkyy eräs siirto, joka permutoi ruutuja Kuvassa ruutujen paikat on numeroitu vapaavalintaisella tavalla, ja valkoisten ruutujen oletetaan pysyvän paikallaan Siirron permutaatioesitys saadaan nyt seuraavasti: 1) Katsotaan, mikä ruutu on paikalla i 2) Katsotaan, millä paikalla j kyseinen ruutu on siirron jälkeen 3) Sanotaan, että etsittävä permutaatio kuvaa luvun i luvuksi j Tällä tavalla tulkittuna kuvan siirto on permutaatio ( ) Kuva 3: Eräs Rubikin ryhmän siirto Rubikin ryhmän keskeisimmät alkiot ovat niin sanotut perussiirrot, joilla tarkoitetaan kunkin tahkon neljännesympyrän suuruista pyörähdystä myötäpäivään Näitä siirtoja merkitään kirjaimilla U, D, F, B, L ja R seuraavan kuvan mukaisesti (Tämä on yleisesti käytetty merkintätapa, jonka esitteli David Singmaster) Kuvassa sininen sivu on ylhäällä ja keltainen sivu osoittaa katsojaan päin Keskitahkojen pyöritys vastaa sitä, että pyöritetään molempia rinnakkaisia sivutahkoja vastakkaiseen suuntaan ja sitten käännetään koko kuutiota takaisinpäin Tämän 9
4 U B F s L F R L s U s D Kuva 4: Kuution perussiirrot ja keskitahkojen siirrot vuoksi keskitahkojen pyöritystä ei tarvitse ottaa erikseen huomioon Merkintöjen helpottamiseksi voidaan näitä näennäisperussiirtoja kuitenkin merkitä kirjaimilla U S, F S ja L S oheisen kuvan mukaisesti (Alaindeksi tulee englannin sanasta slice ) Oikeastaan siis U S = UD 1, F S = F B 1 ja L S = LR 1, ja näihin on vielä lisättävä koko kuution kääntäminen Rubikin ryhmä on määritelmänsä mukaisesti perussiirtojen virittämä, eli jokainen Rubikin ryhmän alkio voidaan muodostaa äärellisenä tulona perussiirroista tai niiden käänteisalkioista Sitä ruutujen järjestystä, johon perusjärjestyksessä oleva Rubikin kuutio joutuu tietyn laillisen permutaation jälkeen, kutsutaan kuution tilaksi Jokaista tilaa vastaa siis tietty permutaatio, ja monesti tiloja nimitetäänkin myös permutaatioiksi Jos mihin tahansa tilaan sovelletaan kyseistä tilaa vastaavan permutaation käänteisalkiota, saadaan kuutio palautetuksi perusjärjestykseen Ongelmana on vain se, että kyseistä käänteisalkiota ei ole helppo palauttaa perussiirroiksi Määritelmä 24 Olkoon kuution tilaa vastaava permutaatio σ Kyseisen tilan ratkaiseminen tarkoittaa käänteispermutaation σ 1 ilmaisemista perussiirtojen ja niiden käänteisalkioiden avulla Rubikin kuution ratkaisualgoritmi on jokin menetelmä, jolla mikä tahansa tila voidaan ratkaista Ratkaisualgoritmin löytämiseksi tullaan jatkossa syventymään Rubikin ryhmän rakenteeseen Sitä varten täytyy kuitenkin ensin tutustua eräisiin permutaatioryhmiä koskeviin käsitteisiin 24 Syklit Syklit ovat permutaatioita, jotka kuvaavat joitain alkioita kehässä toinen toisilleen: Muut alkiot sykli pitää paikallaan x 1 x 2 x 3 x n x 1 10
5 Määritelmä 25 Olkoon X jokin äärellinen joukko Joukon X permutaatiota σ nimitetään sykliksi, jos löytyy sellainen x X, että kaikilla y X pätee y = σ k (x) jollain k N tai σ(y) = y Koska joukko X on äärellinen ja permutaatiot ovat bijektioita, voidaan todistaa, että jollain n > 0 pätee σ n (x) = x Pienintä tällaista lukua n kutsutaan syklin pituudeksi Toisaalta sykliä, jonka pituus on n, kutsutaan n-sykliksi σ(x) σ 2 (x) x = σ 4 (x) σ 3 (x) y = σ(y) Kuva 5: Eräs 4-sykli Sykliä, jonka pituus on n, voidaan merkitä seuraavasti: (x σ(x) σ 2 (x) σ n 1 (x)) Jos n = 2, sykliä nimitetään vaihdoksi tai transpositioksi Esimerkki 26 Permutaatio σ = ( ) on 4-sykli, sillä 3 = σ(2), 6 = σ 2 (2), 4 = σ 3 (2), 2 = σ 4 (2) ja toisaalta σ(1) = 1 ja σ(5) = 5 Voidaan merkitä σ = (2364) tai yhtä hyvin esimerkiksi σ = (3642) tai σ = (4236) Sen sijaan permutaatio ( ) τ = ei ole sykli, koska 3 = σ(2) ja 2 = σ 2 (2), mutta σ(4) 4 Jokainen permutaatio voidaan kirjoittaa erillisten syklien tulona Tämä merkintätapa on yksikäsitteinen lukuunottamatta sitä, että jokainen n-sykli voidaan kirjoittaa n:llä eri tavalla ja lisäksi syklit voidaan kirjoittaa tuloksi missä järjestyksessä tahansa (erilliset syklit ovat keskenään vaihdannaisia) Sykliesitys löydetään lähtemällä jostain alkiosta x ja muodostamalla siitä lähtevä sykli (x σ(x) ) Sen jälkeen otetaan jokin alkio y, joka ei esiinny jo muodostetussa syklissä ja muodostetaan siitä lähtevä sykli (y σ(y) ) Näin jatketaan, kunnes uusia alkioita ei enää löydy 11
6 Esimerkki 27 Edellisen esimerkin permutaatio τ voidaan kirjoittaa syklien tulona muodossa τ = (1)(23)(456) Yhden alkion syklejä ei tarvitse merkitä sykliesitykseen Tällöin edellisen esimerkin sykliesitys olisi yksinkertaisemmin kirjoitettuna τ = (23)(456) Jos sykliesityksessä on vain yhden alkion syklejä eli kyseessä on identtinen permutaatio, niin tällöin yksi 1-sykli on kuitenkin merkittävä Jotta kuvauksen arvoa merkittäessä eivät sulut menisi sekaisin 1-syklin kanssa, merkitään toisinaan selvyyden vuoksi kuvaussulkuja hakasuluilla esimerkiksi seuraavasti: τ(4) = (23)(456)[4] = 5 25 Permutaation etumerkki Permutaatiot voidaan jakaa ns parillisiin ja parittomiin permutaatioihin sen mukaan, koostuvatko ne parillisesta vai parittomasta määrästä 2-syklejä eli vaihtoja Seuraavaksi on tarkoitus osoittaa, että jokainen permutaatio voidaan kirjoittaa vaihtojen tulona ja että vaikka tietty permutaatio voidaan kirjoittaa tällaisena tulona usealla eri tavalla, vaihtoja tulee kuitenkin joka tapauksessa joko parillinen tai pariton määrä Lause 28 Jokainen äärellisen joukon permutaatio voidaan muodostaa 2-syklien tulona Toisin sanoen 2-syklit virittävät ryhmän S n Todistus Lähdetään liikkeelle permutaation sykliesityksestä Jos permutaatiossa esiintyy n-sykli τ = (x 1 x 2 x n ), korvataan tämä vaihtojen tulolla τ = (x 1 x 2 )(x 2 x 3 ) (x n 1 x n ) Helposti nähdään, että τ = τ Jos nimittäin y x k kaikilla k, niin τ(y) = y = τ (y) Toisaalta jos 1 k < n, niin τ(x k ) = x k+1, ja tällöin Edelleen τ(x n ) = x 1, ja τ (x k ) = (x 1 x 2 )(x 2 x 3 ) (x k 1 x k )(x k x k+1 ) (x n 1 x n )[x k ] = (x 1 x 2 )(x 2 x 3 ) (x k 1 x k )(x k x k+1 )[x k ] = (x 1 x 2 )(x 2 x 3 ) (x k 1 x k )[x k+1 ] = x k+1 τ (x n ) = (x 1 x 2 )(x 2 x 3 ) (x n 2 x n 1 )(x n 1 x n )[x n ] = (x 1 x 2 )(x 2 x 3 ) (x n 2 x n 1 )[x n 1 ] = (x 1 x 2 )[x 2 ] = x 1 Kun jokainen sykliesityksen sykli korvataan edellä mainitulla tavalla, saadaan permutaatio esitetyksi vaihtojen tulona 12
7 Olkoon σ S n Merkitään Merkitään lisäksi (id) = n (σ) = Esimerkki 29 Jos σ S 3, niin Tällöin erityisesti ( σ(j) σ(i) ) (σ) = ( σ(2) σ(1) )( σ(3) σ(1) )( σ(3) σ(2) ) (id) = 3 = (2 1)(3 1)(3 2) = = 2, ((12)) = (1 2)(3 2)(3 1) = = 2, ja ((123)) = (3 2)(1 2)(1 3) = 1 ( 1) ( 2) = 2 Huomaa, että tulon (σ) eri arvot poikkeavat toisistaan vain etumerkiltään Tulon (σ) avulla voidaan määritellä permutaation etumerkki Osoitetaan kuitenkin sitä ennen eräs tekninen aputulos Tämä tulos selittää samalla edellisessä esimerkissä havaitun tulon etumerkkiin liittyvän ilmiön Lemma 210 Kaikilla σ, τ S n pätee (στ) = ( 1) k (σ), missä k on sellaisten parien i, j N n lukumäärä, joilla j < i mutta τ(j) > τ(i) Erityisesti, jos σ = id, väite pätee muodossa (τ) = ( 1) k n Todistus Todistus perustuu seuraavaan havaintoon: koska τ on bijektio, lukujen i ja j käydessä kertaalleen joukon N n parit läpi, myös arvot τ(i) ja τ(j) käyvät kertaalleen läpi samat parit, joskin eri järjestyksessä Tämän tiedon perusteella voidaan luvuilla i ja j indeksöityjä tuloja indeksöidä yhtä hyvin luvuilla τ(i) ja τ(j) Aina kun i < j, pätee joko τ(i) < τ(j) tai τ(j) < τ(i), koska τ on injektio Näin ollen tulo (στ) voidaan aluksi jakaa kahteen osaan: (στ) = ( ) ( ) ( ) στ(j) στ(i) = στ(j) στ(i) στ(j) στ(i) τ(j)<τ(i) Käännetään jälkimmäisen tulon tekijät ympäri kertomalla ne luvulla 1, ja vaihdetaan sitten samassa tulossa kertomisindeksit i ja j päittäin: ( ) στ(j) στ(i) = ( στ(i) στ(j) ) = ( στ(j) στ(i) ) τ(j)<τ(i) τ(j)<τ(i) 1 j<i n Jos nyt merkitään kirjaimella k niiden parien i, j N n lukumäärää, joille pätee j < i ja τ(j) > τ(i), näyttää kokonaistulo tältä: (στ) = ( ) στ(j) στ(i) ( στ(j) στ(i) ) 1 j<i n = ( 1) k ( ) ( ) στ(j) στ(i) στ(j) στ(i) 1 j<i n 13
8 Ensimmäisessä tulossa esiintyy nyt sellaisia tekijöitä, joilla i < j, toisessa sellaisia, joilla j < i Muita vaihtoehtoja ei kuitenkaan ole niin kauan kuin τ(i) < τ(j) Näin ollen tulot voidaan yhdistää, jolloin saadaan (στ) = ( 1) k ( ) στ(j) στ(i) i,j N n Lopulta voidaan käyttää hyväksi alussa tehtyä havaintoa Yllä olevassa tulossa luvut τ(i) ja τ(j) käyvät kerran läpi kaikki sellaiset joukon N n parit, joille pätee τ(i) < τ(j) Täten tulo voidaan kirjoittaa vielä kerran uudelleen korvaamalla τ(i) = i ja τ(j) = j : Näin on väite todistettu (στ) = ( 1) k ( σ(j ) σ(i ) ) = ( 1) k (σ) 0 i <j n Määritelmä 211 Permutaation σ S n etumerkki on sign(σ) = (σ) n Edellisen lemman perusteella kaikilla σ S n pätee sign(σ) = ±1 Permutaatiota kutsutaan parilliseksi, jos sen etumerkki on 1, ja parittomaksi, jos etumerkki on 1 Aputuloksesta 210 saadaan tulkinta permutaation σ etumerkille: se kertoo, onko sellaisia pareja i < j, joille pätee σ(i) > σ(j) (eli jotka vaihtavat järjestystä), parillinen vai pariton määrä Aputuloksen avulla voidaan helposti todistaa myös eräs tärkeä etumerkin ominaisuus Lemma 212 Kaikilla σ, τ S n pätee sign(στ) = sign(σ) sign(τ) Todistus Olkoon k niiden parien i, j N n lukumäärä, joilla i < j mutta τ(j) < τ(i) Lemman 210 perusteella pätee (τ) = ( 1) k n, joten ( 1) k = sign(τ) Nyt voidaan laskea samaisen lemman avulla (στ) = ( 1) k (σ) = sign(τ) (σ) Jakamalla tämän yhtälön molemmat puolet luvulla n saadaan kuten haluttiin sign(στ) = sign(τ) sign(σ), Permutaation etumerkin laskeminen määritelmän 211 perusteella on työlästä Seuraavan lauseen avulla etumerkki voidaan laskea helposti sykliesityksestä lähtien 14
9 Lause 213 Olkoon σ S n Jos sign(σ) = 1 eli σ on parillinen, jokainen σ:n esitys 2-syklien tulona sisältää parillisen määrän tekijöitä Jos taas sign(σ) = 1, niin tekijöitä on pariton määrä Todistus Lasketaan ensin mielivaltaisen vaihdon etumerkki käyttämällä lemmaa 210 Olkoon τ = (k 1 k 2 ) S n jokin vaihto Lisäksi voidaan olettaa, että k 1 < k 2 Lasketaan, kuinka monella parilla i, j N n pätee i < j mutta τ(i) > τ(j), eli kuinka monen parin järjestys kääntyy vaihdossa toisin päin Olkoon siis i < j Käydään läpi eri tapaukset 1) Mikäli i / {k 1, k 2 } ja j / {k 1, k 2 }, niin τ(i) = i ja τ(j) = j, joten τ(i) < τ(j) Järjestys ei siis vaihdu 2) Jos i = k 2, täytyy olla j > k 2 Tällöin τ(i) = k 1 < k 2 < j = τ(j), joten järjestys ei vaihdu 3) Jos j = k 1, täytyy olla i < k 1, ja tilanne on samanlainen kuin edellisessä tapauksessa Järjestys ei vaihdu 4) Jos i = k 1 ja j = k 2, niin τ(i) = j > i = τ(j) Tästä tulee siis yksi pari, jonka järjestys kääntyy 5) Jos i = k 1 ja j k 2, niin τ(i) = k 2 ja τ(j) = j Parin järjestys kääntyy siis täsmälleen silloin, kun k 1 < j < k 2 Tällaisia tapauksia on k 2 k 1 1 kappaletta (ks kuva 6) 6) Jos j = k 2 ja i k 1, tilanne on samanlainen kuin edellisessä tapauksessa Pareja, joiden järjestys vaihtuu, on k 2 k 1 1 kappaletta k 1 k 2 n k 2 k 2 1 kpl Kuva 6: Vaihdon etumerkin laskeminen Yhteensä järjestyksen kääntäviä pareja on 1+2(k 2 k 1 1) = 2(k 2 k 1 )+1 kappaletta Näin ollen lemman 210 mukaan (τ) = ( 1) 2(k 2 k 1 )+1 n = n, joten sign(τ) = 1 Olkoon sitten σ = τ 1 τ 2 τ m, missä jokainen τ k on vaihto Yllä suoritetun laskun sekä lemman 210 perusteella sign(σ) = sign(τ 1 ) sign(τ 2 ) sign(τ m ) = ( 1) m Siispä vaihtojen määrä m on pariton, jos ja vain jos sign(σ) = 1 Korollaari 214 Olkoon σ = τ 1 τ 2 τ m S n, missä jokainen τ k on n k -sykli Permutaatio σ on pariton, jos ja vain jos summa (n 1 1) + (n 2 1) + + (n m 1) on pariton 15
10 Todistus Koska lauseen 28 perusteella jokainen n-sykli voidaan kirjoittaa n 1 vaihdon tulona, permutaatio σ voidaan kirjoittaa tulona, joka sisältää (n 1 1) + + (n m 1) vaihtoa Esimerkki 215 Permutaatio ( ) σ = S voidaan kirjoittaa syklien tulona muodossa σ = (2 8)(3 10 7)( ) Syklien pituuden ovat 2, 3 ja 4 Koska summa (2 1) + (3 1) + (4 1) = = 6 on parillinen, niin sign(σ) = 1 Lopuksi voidaan vielä mainita, että etumerkki on itse asiassa ryhmähomomorfismi Lause 216 Kuvaus σ sign(σ) on homomorfismi ryhmältä (S n, ) kertolaskuryhmälle ({1, 1}, ) Todistus Koska jokaisella σ pätee sign(σ) = 1 tai sign(σ) = 1, niin sign on kuvaus S n { 1, 1} Toisaalta lemman 212 perusteella sign on homomorfismi 16
2 Permutaatioryhmät. 2.1 Permutaation olemus
2 Permutaatioryhmät Rubikin kuution siirrot ovat tietynlaisia permutaatioita Permutaatiot muodostavat ryhmiä, ja tällä tavoin ryhmäteorian työkaluja päästään käyttämään kuutioongelman selvittämisessä Tässä
1 Johdanto 1.1 Yleistä
1 Johdanto 11 Yleistä Unkarilainen kuvanveistäjä ja arkkitehtuurin professori Ernő Rubik kehitti maineikkaan kuutionsa vuonna 1974 Kuutio oli alun perin tarkoitettu arkkitehtiopiskelijoiden visuaalisen
Ryhmäteoreettinen näkökulma Rubikin kuutioon. Jokke Häsä
Ryhmäteoreettinen näkökulma Rubikin kuutioon Jokke Häsä Matematiikan ja tilastotieteen laitos, kevät 2008 Korjattu syksyllä 2012 Sain idean tämän kurssin pitämiseen luettuani Jyrki Lahtosen artikkelin
Tekijäryhmiä varten määritellään aluksi sivuluokat ja normaalit aliryhmät.
3 Tekijäryhmät Tekijäryhmän käsitteen avulla voidaan monimutkainen ryhmä jakaa osiin. Ideana on, että voidaan erikseen tarkastella, miten laskutoimitus vaikuttaa näihin osiin kokonaisuuksina, ja jättää
Ryhmäteoreettinen näkökulma Rubikin kuutioon. Jokke Häsä Matematiikan ja tilastotieteen laitos
Ryhmäteoreettinen näkökulma Rubikin kuutioon Jokke Häsä Matematiikan ja tilastotieteen laitos Päivitetty syksyllä 2010 Sisältö 1 Johdanto 4 1.1 Yleistä.................................. 4 1.2 Kuution rakenne............................
Tekijäryhmän määrittelemistä varten määritellään aluksi sivuluokat ja normaalit aliryhmät. gh = {gh h H}.
Tekijäryhmät Tekijäryhmän käsitteen avulla voidaan monimutkainen ryhmä jakaa suuriin, helpommin käsiteltäviin osiin. Tämän jälkeen voidaan erikseen tarkastella, miten laskutoimitus vaikuttaa näihin osiin
Ryhmäteoreettinen näkökulma Rubikin kuutioon Harjoitus 6, ratkaisuehdotus (5 sivua)
Ryhmäteoreettinen näkökulma Rubikin kuutioon Harjoitus 6, ratkaisuehdotus (5 sivua) 10.12.2012 Tehtävä 1. Osoita, että tuloryhmän R np R sp indeksi Rubikin paikkaryhmässä R p on täsmälleen kaksi. (Tarkkaan
Lisäksi seuraavat kaavat ovat kommutaattoreita käsiteltäessä hyödyllisiä:
6 Kommutaattorit Ryhmässä kahden alkion kommutaattori on kolmas alkio, joka mittaa alkuperäisten alkioiden vaihdannaisuutta. Jos alkiot kommutoivat keskenään, niiden kommutaattori on neutraalialkio. Kommutaattorit
7 Rubikin kuution laajennoksia
7 Rubikin kuution laajennoksia Tavallista Rubikin kuutiota voidaan laajentaa monilla tavoilla. Ensi näkemältä nämä uudet versiot vaikuttavat paljon hankalammilta ratkaista, mutta tarkempi tarkastelu osoittaa,
Tarkastellaan aluksi permutaatioryhmiin liittyvää esimerkkiä.
5 Tuloryhmät Jotkin ryhmät voidaan jakaa toisistaan riippumattomiin osiin niin, että jokainen ryhmän alkio saadaan tulona eri osista valituista alkioista. Tällöin ryhmää voidaan käsitellä osiensa tulona
Approbatur 3, demo 5, ratkaisut
Approbatur 3, demo 5, ratkaisut 51 Tehtävänä on luetella kaikki joukon S 4 alkiot eli neljän alkion permutaatiot Tämä tarkoittaa kaikkia eri tapoja kuvata joukko {1, 2, 3, 4} bijektiivisesti itselleen
15. Laajennosten väliset homomorfismit
15. Laajennosten väliset homomorfismit Rakenteiden väliset homomorfismit auttavat selvittämään rakenteiden suhteita toisiinsa. Rakenteen sisäiset isomorfismit niin sanotut automorfismit auttavat vastaavasti
Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen
Mikäli huomaat virheen tai on kysyttävää liittyen malleihin, lähetä viesti osoitteeseen anton.mallasto@aalto.fi. 1. 2. Muista. Ryhmän G aliryhmä H on normaali aliryhmä, jos ah = Ha kaikilla a G. Toisin
Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013
Dihedraalinen ryhmä Pro gradu Elisa Sonntag Matemaattisten tieteiden laitos Oulun yliopisto 2013 Sisältö Johdanto 2 1 Ryhmä 3 2 Symmetrinen ryhmä 6 3 Symmetriaryhmä 10 4 Dihedraalinen ryhmä 19 Lähdeluettelo
Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle.
Kombinatoriikka, kesä 2010 Harjoitus 1 Ratkaisuehdotuksia (RT (5 sivua Kaikki kurssin laskuharjoitukset pidetään Exactumin salissa C123. Malliratkaisut tulevat nettiin kurssisivulle. 1. Osoita, että vuoden
= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120
Tehtävä 1 : 1 Merkitään jatkossa kirjaimella H kaikkien solmujoukon V sellaisten verkkojen kokoelmaa, joissa on tasan kolme särmää. a) Jokainen verkko G H toteuttaa väitteen E(G) [V]. Toisaalta jokainen
x gxg 1 Esimerkin 3-sykli saatiin siis konjugoimalla siirretyksi toimimaan lukujen 1, 2 ja 3 sijasta luvuilla 5, 8 ja 6.
4 Konjugointi 4.1 Konjugoinnin määritelmä Usein ryhmän alkiot kuvaavat operaatioita jossain joukossa. Permutaatiot ovat tästä hyvä esimerkki. Tällaisessa tapauksessa voidaan konjugoinnilla siirtää jossain
π πρ = ρ, π πρ 3 = ρ 3, πρ 2 πρ = ρ 3 πρ 2 πρ 3 = ρ.
Rhmäteoreettinen näkökulma Rubikin kuutioon Harjoitus 4, ratkaisuehdotus (5 sivua) 26.11.2012 Tehtävä 1. Etsi neliön smmetriarhmän D 8 kaikki alirhmät. Mitkä niistä ovat normaaleja? Ratkaisu. Rhmää D 8
Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla
Johdatus diskreettiin matematiikkaan Harjoitus 2, 23.9.2015 1. Osoita että A on hyvin määritelty. Tee tämä osoittamalla a) että ei ole olemassa surjektiota f : {1,, n} {1,, m}, kun n < m. b) että a) kohdasta
4 Konjugointi. 4.1 Konjugoinnin määritelmä
4 Konjugointi 4.1 Konjugoinnin määritelmä Usein ryhmän alkiot kuvaavat operaatioita jossain joukossa. Ryhmäteoriassa tätä kutsutaan ryhmän toiminnaksi. Permutaatiot ovat hyvä esimerkki ryhmän toiminnasta.
Symmetrisistä ryhmistä symmetriaryhmiin
Symmetrisistä ryhmistä symmetriaryhmiin 16. marraskuuta 2006 1 Symmetrisistä ryhmistä... Bijektiivistä kuvausta {1,..., n} {1,..., n} kutsutaan n-permutaatioksi. Merkitään n-permutaatioden joukkoa S n.
Alternoivien ryhmien ominaisuuksista
Alternoivien ryhmien ominaisuuksista Pro gradu -tutkielma Anssi Aska 2257068 Matemaattisten tieteiden laitos Oulun yliopisto 2017 Sisältö 1 Johdanto 2 2 Peruskäsitteitä 3 2.1 Ryhmä ja aliryhmä........................
σ = σ = ( ).
APPROBATUR 3 (MATP170) Harjoitus 6, Ratkaisut 1. Kirjoita permutaatio perinteisessä kaksirivisessä esitysmuodossa. σ = ( 1 3 6 2 )( 4 5 6 1 )( 2 3 4 5 ) Ratkaisu. Katsotaan alkioden 1, 2, 3, 4, 5, 6 kuvautuminen
Algebra I, harjoitus 8,
Algebra I, harjoitus 8, 4.-5.11.2014. 1. Olkoon G ryhmä ja H sen normaali aliryhmä. Todista, että tällöin G/H on ryhmä, kun määritellään laskutoimitus joukossa G/H asettamalla aina, kun x, y G (lauseen
6. Tekijäryhmät ja aliryhmät
6. Tekijäryhmät ja aliryhmät Tämän luvun tavoitteena on esitellä konstruktio, jota kutsutaan tekijäryhmän muodostamiseksi. Konstruktiossa lähdetään liikkeelle jostakin isosta ryhmästä, samastetaan alkioita,
A = a b B = c d. d e f. g h i determinantti on det(c) = a(ei fh) b(di fg) + c(dh eg). Matriisin determinanttia voi merkitä myös pystyviivojen avulla:
11 Determinantti Neliömatriisille voidaan laskea luku, joka kertoo muun muassa, onko matriisi kääntyvä vai ei Tätä lukua kutsutaan matriisin determinantiksi Determinantilla on muitakin sovelluksia, mutta
Permutaatioista alternoivaan ryhmään
Permutaatioista alternoivaan ryhmään Pro Gradu-tutkielma Sini-Susanna Fetula Matemaattisten tieteiden laitos Oulun yliopisto Syksy 2014 Sisältö 1 Johdanto 2 2 Esitietoja 3 3 Permutaatioista. 6 3.1 Symmetrinen
Esko Turunen Luku 3. Ryhmät
3. Ryhmät Monoidia rikkaampi algebrallinen struktuuri on ryhmä: Määritelmä (3.1) Olkoon joukon G laskutoimitus. Joukko G varustettuna tällä laskutoimituksella on ryhmä, jos laskutoimitus on assosiatiivinen,
isomeerejä yhteensä yhdeksän kappaletta.
Tehtävä 2 : 1 Esitetään aluksi eräitä havaintoja. Jokaisella n Z + symbolilla H (n) merkitään kaikkien niiden verkkojen joukkoa, jotka vastaavat jotakin tehtävänannon ehtojen mukaista alkaanin hiiliketjua
Ryhmäteoreettinen näkökulma Rubikin kuutioon. Jokke Häsä Matematiikan ja tilastotieteen laitos, kevät 2008 Korjattu syksyllä 2010
Ryhmäteoreettinen näkökulma Rubikin kuutioon Jokke Häsä Matematiikan ja tilastotieteen laitos, kevät 2008 Korjattu syksyllä 2010 Sisältö 1 Johdanto 4 1.1 Yleistä.................................. 4 1.2
15. Laajennosten väliset homomorfismit
15. Laajennosten väliset homomorfismit Rakenteiden väliset homomorfismit auttavat selvittämään rakenteiden suhteita toisiinsa. Rakenteen sisäiset isomorfismit eli niin sanotut automorfismit auttavat vastaavasti
Rubikin kuutio ja ryhmät. Johanna Rämö Helsingin yliopisto, Matematiikan ja tilastotieteen laitos
Rubikin kuutio ja ryhmät Johanna Rämö Helsingin yliopisto, Matematiikan ja tilastotieteen laitos Kehittäjä unkarilainen Erno Rubik kuvanveistäjä ja arkkitehtuurin professori 1974 Halusi leikkiä geometrisilla
5.6 Yhdistetty kuvaus
5.6 Yhdistetty kuvaus Määritelmä 5.6.1. Oletetaan, että f : æ Y ja g : Y æ Z ovat kuvauksia. Yhdistetty kuvaus g f : æ Z määritellään asettamalla kaikilla x œ. (g f)(x) =g(f(x)) Huomaa, että yhdistetty
Megaminx ja sen ratkaisun ryhmäteoriaa
Megaminx ja sen ratkaisun ryhmäteoriaa Hanna Koivisto Helsingin yliopisto Matemaattis-luonnontieteellinen tiedekunta Matematiikan ja tilastotieteen laitos Pro gradu -tutkielma Ohjaaja: Jokke Häsä HELSINGIN
1. Tarkastellaan esimerkissä 4.9 esiintynyttä neliön symmetriaryhmää
Ryhmäteoreettinen näkökulma Rubikin kuutioon Matematiikan ja tilastotieteen laitos Syksy 2010 Harjoitus 2 Ratkaisuehdotus 1. Tarkastellaan esimerkissä 4.9 esiintynyttä neliön symmetriaryhmää D 8 = { id,
Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara
Kuvauksista ja relaatioista Jonna Makkonen Ilari Vallivaara 20. lokakuuta 2004 Sisältö 1 Esipuhe 2 2 Kuvauksista 3 3 Relaatioista 8 Lähdeluettelo 12 1 1 Esipuhe Joukot ja relaatiot ovat periaatteessa äärimmäisen
verkkojen G ja H välinen isomorfismi. Nyt kuvaus f on bijektio, joka säilyttää kyseisissä verkoissa esiintyvät särmät, joten pari
Tehtävä 9 : 1 Merkitään kirjaimella G tehtäväpaperin kuvan vasemmanpuoleista verkkoa sekä kirjaimella H tehtäväpaperin kuvan oikeanpuoleista verkkoa. Kuvan perusteella voidaan havaita, että verkko G on
Transversaalit ja hajoamisaliryhmät
Transversaalit ja hajoamisaliryhmät Graduseminaariesitelmä Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2006 Motivointi Esimerkki 1 (Ryhmäteorian kurssin harjoitustehtävä). Jos G on ryhmä,
Algebra I. Jokke Häsä ja Johanna Rämö. Matematiikan ja tilastotieteen laitos Helsingin yliopisto
Algebra I Jokke Häsä ja Johanna Rämö Matematiikan ja tilastotieteen laitos Helsingin yliopisto Kevät 2011 Sisältö 1 Laskutoimitukset 6 1.1 Työkalu: Joukot ja kuvaukset..................... 6 1.1.1 Joukko..............................
Algebra I, Harjoitus 6, , Ratkaisut
Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut Algebra I Harjoitus 6 9. 13.3.2009 Ratkaisut (MV 6 sivua 1. Olkoot M ja M multiplikatiivisia monoideja. Kuvaus f : M M on monoidihomomorfismi jos 1 f(ab = f(af(b
Ryhmäteoriaa. 2. Ryhmän toiminta
Ryhmäteoriaa 2. Ryhmän toiminta Permutaatiot kuvaavat jonkin perusjoukon alkioita toisikseen. Eräät permutaatiot jättävät joitain alkioita paikalleen, toiset liikuttavat kaikkia joukon alkioita. Kaikki
Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto
Matematiikan ja tilastotieteen laitos Algebra I - Kesä 2009 Ratkaisuehdoituksia harjoituksiin 8 -Tehtävät 3-6 4 sivua Heikki Koivupalo ja Rami Luisto 3. Oletetaan, että kunnan K karakteristika on 3. Tutki,
jonka laskutoimitus on matriisien kertolasku. Vastaavasti saadaan K-kertoiminen erityinen lineaarinen ryhmä
4. Ryhmät Tässä luvussa tarkastelemme laskutoimituksella varustettuja joukkoja, joiden laskutoimitukselta oletamme muutamia yksinkertaisia ominaisuuksia: Määritelmä 4.1. Laskutoimituksella varustettu joukko
1 Lukujen jaollisuudesta
Matematiikan mestariluokka, syksy 2009 1 1 Lukujen jaollisuudesta Lukujoukoille käytetään seuraavia merkintöjä: N = {1, 2, 3, 4,... } Luonnolliset luvut Z = {..., 2, 1, 0, 1, 2,... } Kokonaisluvut Kun
Johdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä 2 Todistamisesta 2 3 Joukko-oppia Tässä luvussa tarkastellaan joukko-opin
b) Olkoon G vähintään kaksi solmua sisältävä puu. Sallitaan verkon G olevan
Tehtävä 7 : 1 a) Olkoon G jokin epäyhtenäinen verkko. Tällöin väittämä V (G) 2 pätee jo epäyhtenäisyyden nojalla. Jokaisella joukolla X on ehto X 0 voimassa, joten ehdot A < 0 ja F < 0 toteuttavilla joukoilla
Miten osoitetaan joukot samoiksi?
Miten osoitetaan joukot samoiksi? Määritelmä 1 Joukot A ja B ovat samat, jos A B ja B A. Tällöin merkitään A = B. Kun todistetaan, että A = B, on päättelyssä kaksi vaihetta: (i) osoitetaan, että A B, ts.
on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään
5. Primitiivinen alkio 5.1. Täydennystä lukuteoriaan. Olkoon n Z, n 2. Palautettakoon mieleen, että kokonaislukujen jäännösluokkarenkaan kääntyvien alkioiden muodostama osajoukko Z n := {x Z n x on kääntyvä}
Lukuteoria. Eukleides Aleksandrialainen (n. 300 eaa)
Lukuteoria Lukuteoria on eräs vanhimmista matematiikan aloista. On sanottu, että siinä missä matematiikka on tieteiden kuningatar, on lukuteoria matematiikan kuningatar. Perehdymme seuraavassa luonnollisten
Johdatus matematiikkaan
Johdatus matematiikkaan Luento 7 Mikko Salo 11.9.2017 Sisältö 1. Funktioista 2. Joukkojen mahtavuus Funktioista Lukiomatematiikassa on käsitelty reaalimuuttujan funktioita (polynomi / trigonometriset /
4. Ryhmien sisäinen rakenne
4. Ryhmien sisäinen rakenne Tässä luvussa tarkastellaan joitakin tapoja päästä käsiksi ryhmien sisäiseen rakenteeseen. Useimmat tuloksista ovat erityisen käyttökelpoisia äärellisten ryhmien tapauksessa.
Ratkaisut Summa on nolla, sillä luvut muodostavat vastalukuparit: ( 10) + 10 = 0, ( 9) + 9 = 0,...
Ratkaisut 1 1. Summa on nolla, sillä luvut muodostavat vastalukuparit: ( 10) + 10 = 0, ( 9) + 9 = 0,.... Nolla, koska kerrotaan nollalla. 3. 16 15 50 = ( 8) 15 50 = (8 15) ( 50) = 1000 500 = 500 000. 4.
Bijektio. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin jokaiselle alkiolle kuvautuu tasan yksi lähdön alkio.
Määritelmä Bijektio Oletetaan, että f : X Y on kuvaus. Sanotaan, että kuvaus f on bijektio, jos se on sekä injektio että surjektio. Huom. Voidaan päätellä, että kuvaus on bijektio, jos ja vain jos maalin
(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,
HN = {hn h H, n N} on G:n aliryhmä.
Matematiikan ja tilastotieteen laitos Algebra I Ratkaisuehdoituksia harjoituksiin 8, 23.27.3.2009 5 sivua Rami Luisto 1. Osoita, että kullakin n N + lukujen n 5 ja n viimeiset numerot kymmenkantaisessa
Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on
13 Pistetulo Avaruuksissa R 2 ja R 3 on totuttu puhumaan vektorien pituuksista ja vektoreiden välisistä kulmista. Kuten tavallista, näiden käsitteiden yleistäminen korkeampiulotteisiin avaruuksiin ei onnistu
TOD.NÄK JA TILASTOT, MAA10 Kombinaatio, k-kombinaatio
1..018 TOD.NÄK JA TILASTOT, MAA10 Kombinaatio, k-kombinaatio Esimerkki 1: Sinulla on 5 erilaista palloa. Kuinka monta erilaista kahden pallon paria voit muodostaa, kun valintajärjestykseen a) kiinnitetään
Ryhmäteoreettinen näkökulma Rubikin kuutioon. Jokke Häsä
Ryhmäteoreettinen näkökulma Rubikin kuutioon Jokke Häsä Matematiikan ja tilastotieteen laitos, kevät 2008 Korjattu syksyllä 2012 Sain idean tämän kurssin pitämiseen luettuani Jyrki Lahtosen artikkelin
Permutaatioryhmien radoista. Tero Suokas
Permutaatioryhmien radoista Tero Suokas Pro Gradu -tutkielma Matemaattisten tieteiden laitos Oulun yliopisto 2015 Sisältö 1 Johdanto 2 2 Määritelmiä 3 2.1 Ryhmistä............................. 3 2.2 Homomorsmeista........................
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden
Äärellisesti generoitujen Abelin ryhmien peruslause
Tero Harju (2008/2010) Äärellisesti generoitujen Abelin ryhmien peruslause Merkintä X on joukon koko ( eli #X). Vapaat Abelin ryhmät Tässä kappaleessa käytetään Abelin ryhmille additiivista merkintää.
Algebra I, harjoitus 5,
Algebra I, harjoitus 5, 7.-8.10.2014. 1. 2 Osoita väitteet oikeiksi tai vääriksi. a) (R, ) on ryhmä, kun asetetaan a b = 2(a + b) aina, kun a, b R. (Tässä + on reaalilukujen tavallinen yhteenlasku.) b)
10 Matriisit ja yhtälöryhmät
10 Matriisit ja yhtälöryhmät Tässä luvussa esitellään uusi tapa kirjoittaa lineaarinen yhtälöryhmä matriisien avulla käyttäen hyväksi matriisikertolaskua sekä sarakevektoreita Pilkotaan sitä varten yhtälöryhmän
Matematiikan peruskurssi 2
Matematiikan peruskurssi Demonstraatiot III, 4.5..06. Mikä on funktion f suurin mahdollinen määrittelyjoukko, kun f(x) x? Mikä on silloin f:n arvojoukko? Etsi f:n käänteisfunktio f ja tarkista, että löytämäsi
Tuloperiaate. Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta
Tuloperiaate Oletetaan, että eräs valintaprosessi voidaan jakaa peräkkäisiin vaiheisiin, joita on k kappaletta ja 1. vaiheessa valinta voidaan tehdä n 1 tavalla,. vaiheessa valinta voidaan tehdä n tavalla,
811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2018-2019 7. Kombinatoriikka 7.1 Johdanto Kombinatoriikka tutkii seuraavan kaltaisia kysymyksiä: Kuinka monella tavalla jokin toiminto voidaan suorittaa? Kuinka monta tietynlaista
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) OT
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 3 (9 sivua) 31.1.-4.2.2011 OT 1. Määritellään kokonaisluvuille laskutoimitus n m = n + m + 5. Osoita, että (Z, ) on ryhmä.
Tehtävä 4 : 2. b a+1 (mod 3)
Tehtävä 4 : 1 Olkoon G sellainen verkko, jonka solmujoukkona on {1,..., 9} ja jonka särmät määräytyvät oheisen kuvan mukaisesti. Merkitään lisäksi kirjaimella A verkon G kaikkien automorfismien joukkoa,
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 5 (6 sivua)
Algebra I Matematiika ja tilastotietee laitos Ratkaisuehdotuksia harjoituksii 5 (6 sivua) 14.2. 17.2.2011 1. Määritellää kuvaus f : S 3 S 3, f(α) = (123) α. Osoita, että f o bijektio. Mikä o se kääteiskuvaukse
Todistusmenetelmiä Miksi pitää todistaa?
Todistusmenetelmiä Miksi pitää todistaa? LUKUTEORIA JA TO- DISTAMINEN, MAA11 Todistus on looginen päättelyketju, jossa oletuksista, määritelmistä, aksioomeista sekä aiemmin todistetuista tuloksista lähtien
Luuppien ryhmistä Seminaariesitelmä Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2006
Luuppien ryhmistä Seminaariesitelmä Miikka Rytty Matemaattisten tieteiden laitos Oulun yliopisto 2006 Sisältö 1 Luupeista 2 1.1 Luupit ja niiden kertolaskuryhmät................. 2 2 Transversaalit 5 3
Luupit Pro gradu Anni Keränen Matemaattisten tieteiden laitos Oulun yliopisto 2014
Luupit Pro gradu Anni Keränen Matemaattisten tieteiden laitos Oulun yliopisto 2014 Sisältö Johdanto 2 1 Perusteita 3 1.1 Kuvauksista............................ 3 1.2 Relaatioista............................
MS-A0401 Diskreetin matematiikan perusteet
MS-A0401 Diskreetin matematiikan perusteet Osa 5: Ryhmät ja permutaatiot Riikka Kangaslampi Syksy 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ryhmät ja permutaatiot Väritysongelma Jos
Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin Yliopisto Harjoitus 1, ratkaisuehdotukset
Todennäköisyyslaskenta I, kesä 207 Helsingin yliopisto/avoin Yliopisto Harjoitus, ratkaisuehdotukset. Kokeet ja Ω:n hahmottaminen. Mitä tarkoittaa todennäköisyys on? Olkoon satunnaiskokeena yhden nopan
MS-A0402 Diskreetin matematiikan perusteet
MS-A0402 Diskreetin matematiikan perusteet Osa 5: Ryhmät ja permutaatiot Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Ryhmät ja permutaatiot Väritysongelma Jos meillä
Esko Turunen MAT Algebra1(s)
Määritelmä (4.1) Olkoon G ryhmä. Olkoon H G, H. Jos joukko H varustettuna indusoidulla laskutoimituksella on ryhmä, se on ryhmän G aliryhmä. Jos H G on ryhmän G aliryhmä, merkitään usein H G, ja jos H
Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141
Lineaarialgebra ja matriisilaskenta II LM2, Kesä 2012 1/141 Kertausta: avaruuden R n vektorit Määritelmä Oletetaan, että n {1, 2, 3,...}. Avaruuden R n alkiot ovat jonoja, joissa on n kappaletta reaalilukuja.
2.1. Tehtävänä on osoittaa induktiolla, että kaikille n N pätee n = 1 n(n + 1). (1)
Approbatur 3, demo, ratkaisut Sovitaan, että 0 ei ole luonnollinen luku. Tällöin oletusta n 0 ei tarvitse toistaa alla olevissa ratkaisuissa. Se, pidetäänkö nollaa luonnollisena lukuna vai ei, vaihtelee
Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi
Ilkka Mellin Todennäköisyyslaskenta Liite 1: Joukko-oppi TKK (c) Ilkka Mellin (2007) 1 Joukko-oppi >> Joukko-opin peruskäsitteet Joukko-opin perusoperaatiot Joukko-opin laskusäännöt Funktiot Tulojoukot
Ennakkotehtävän ratkaisu
Ennakkotehtävän ratkaisu Ratkaisu [ ] [ ] 1 3 4 3 A = ja B =. 1 4 1 1 [ ] [ ] 4 3 12 12 1 0 a) BA = =. 1 + 1 3 + 4 0 1 [ ] [ ] [ ] 1 0 x1 x1 b) (BA)x = =. 0 1 x 2 x [ ] [ ] [ 2 ] [ ] 4 3 1 4 9 5 c) Bb
1 Lineaariavaruus eli Vektoriavaruus
1 Lineaariavaruus eli Vektoriavaruus 1.1 Määritelmä ja esimerkkejä Olkoon K kunta, jonka nolla-alkio on 0 ja ykkösalkio on 1 sekä V epätyhjä joukko. Oletetaan, että joukossa V on määritelty laskutoimitus
kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja
Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi binääristä assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme muuten samat ominaisuudet kuin kokonaisluvuilta,
ei ole muita välikuntia.
ALGEBRA II 41 Lause 4.15. F q m on polynomin x qm x hajoamiskunta kunnan F q suhteen. Todistus. Olkoon α kunnan F q m primitiivialkio. Nyt F qm =< α > muodostuu täsmälleen polynomin x qm 1 1nollakohdistajatäten
Relaatioista. 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde.
Relaatioista 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde. Esimerkkejä Kokonaisluvut x ja y voivat olla keskenään mm.
a b c d + + + + + + + + +
28. 10. 2010!"$#&%(')'+*(#-,.*/1032/465$*784 /(9:*;9."$ *;5> *@9 a b c d 1. + + + 2. 3. 4. 5. 6. + + + + + + + + + + P1. Valitaan kannaksi sivu, jonka pituus on 4. Koska toinen jäljelle jäävistä sivuista
sitä vastaava Cliffordin algebran kannan alkio. Merkitään I = e 1 e 2 e n
Määritelmä 1.1 Algebran A keskus C on joukko C (A) = {a A ax = xa x A}. Lause 1. Olkoon Cl n Cliffordin algebra, jonka generoi joukko {e 1,..., e n }. Jos n on parillinen, niin C (Cl n ) = {λ λ R}. Jos
Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.
2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2
a 2 ba = a a + ( b) a = (a + ( b))a = (a b)a, joten yhtälö pätee mielivaltaiselle renkaalle.
Harjoitus 10 (7 sivua) Ratkaisuehdotuksia/Martina Aaltonen Tehtävä 1. Mitkä seuraavista yhtälöistä pätevät mielivaltaisen renkaan alkioille a ja b? a) a 2 ba = (a b)a b) (a + b + 1)(a b) = a 2 b 2 + a
Yhtälönratkaisusta. Johanna Rämö, Helsingin yliopisto. 22. syyskuuta 2014
Yhtälönratkaisusta Johanna Rämö, Helsingin yliopisto 22. syyskuuta 2014 Yhtälönratkaisu on koulusta tuttua, mutta usein sitä tehdään mekaanisesti sen kummempia ajattelematta. Jotta pystytään ratkaisemaan
Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.
Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa. Vastaus 2. Vertaillaan
Sanomme, että kuvaus f : X Y on injektio, jos. x 1 x 2 f (x 1 ) f (x 2 ) eli f (x 1 ) = f (x 2 ) x 1 = x 2.
Sanomme, että kuvaus f : X Y on injektio, jos x 1 x 2 f (x 1 ) f (x 2 ) eli f (x 1 ) = f (x 2 ) x 1 = x 2. Siis kuvaus on injektio, jos eri alkiot kuvautuvat eri alkioille eli maalijoukon jokainen alkio
Symmetristen ja alternoivien ryhmien yksinkertaisuus ja ratkeavuus
Symmetristen ja alternoivien ryhmien yksinkertaisuus ja ratkeavuus Pro gradu Tuomo Holma 2379771 Matemaattisten tieteiden laitos Oulun yliopisto Kevät 2018 Sisältö Johdanto 2 1 Permutaatiot 3 2 Ryhmistä
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin 8 (7 sivua)
Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdoituksia harjoituksiin ( sivua).... Nämä ovat kurssin Algebra I harjoitustehtävien ratkaisuehdoituksia. Ratkaisut koostuvat kahdesta osiosta,
Tehtävä 5 : 1. Tehtävä 5 : 2
Tehtävä 5 : 1 Merkitään kirjaimella H kuvan punaisten solmujen virittämää verkon G yhtenäistä aliverkkoa, jossa on yhteensä kolme särmää. Aliverkosta H voidaan kahdella tavalla valita kahden solmun joukko
Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }?
Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Miten perustella, että joukossa A = {a, b, c} on yhtä monta alkiota kuin joukossa B = {d, e, f }? Vastaus
MS-A0402 Diskreetin matematiikan perusteet
MS-A040 Diskreetin matematiikan perusteet Osa : Relaatiot ja funktiot Riikka Kangaslampi 017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Relaatiot Relaatio Määritelmä 1 Relaatio joukosta A
Jarkko Peltomäki. Aliryhmän sentralisaattori ja normalisaattori
Jarkko Peltomäki Aliryhmän sentralisaattori ja normalisaattori Matematiikan aine Turun yliopisto Syyskuu 2009 Sisältö 1 Johdanto 2 2 Määritelmiä ja perusominaisuuksia 3 2.1 Aliryhmän sentralisaattori ja
MAT Algebra 1(s)
8. maaliskuuta 2012 Esipuhe Tämä luentokalvot sisältävät kurssin keskeiset asiat. Kalvoja täydennetään luennolla esimerkein ja todistuksin. Materiaali perustuu Jyväskylän, Helsingin ja Turun yliopistojen
DMP / Kevät 2016 / Mallit Harjoitus 6 / viikko 13 / alkuviikko
DMP / Kevät 2016 / Mallit Harjoitus 6 / viikko 13 / alkuviikko Alkuviikon tuntitehtävä 1: Montako kahdeksaan yhtäsuureen sektoriin leikattua pitsaa voidaan tehdä kolmesta täytteestä siten, että kukin sektori