Metallit

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Metallit 2005. juha.nykanen@tut.fi"

Transkriptio

1 Metallit 2005

2 Käsitetesti 2

3 Suomugrafiittivalurauta (EN-GJL) Mikrorakenne vaihtoehdot jäähtymisnopeuden mukaan Grafiitti + ferriitti Grafittii + sementiitti + perliitti Grafiitti + ferriitti + perliitti Grafiitti + perliitti 3

4 4

5 Alue 1 5

6 Alue 2 6

7 Seostus Hiili- ja piipitoisuuden vaikutus valuraudan rakenteeseen näkyy Mauerin piirroksesta Alunperin vuodelta 1920, ei käytetä nykyisin Syntyvä rakenne määritetty 30 mm hiekkamuottiin valetuista sauvoista Ei ota huomioon seinämän paksuutta Alueet I Sementiitti + perliitti IIa Sementiitti + perliitti + grafiitti II Perliitti + grafiitti IIIa Perliitti + grafiitti + ferriitti III Grafiitti + ferriitti 7

8 Mauerin piirros 8

9 Seostus Vastaavia piirroksia hiiliekvivalentin ja ainepaksuuden mukaan Esimerkiksi halkaisijaltaan 10 mm sauvan valamiseen tarvitaan hiiliekvivalentiltaan 4,2 jotta rakenteeksi tulisi perliittiä ja grafiittia 30 mm sauvaan riittää hiiliekvivalentti 3,5 9

10 Seostus Paksujen seinämien valamiseen käytetään suurempaa hiili- ja piipitoisuutta Paksun kappaleen pinta jäähtyy nopeammin, joten rakenteeksi tulee ennemmin perliittiinen Paksun kappaleen keskiosa jäähtyy hitaammin, joten rakenteeksi tulee ennemmin ferriittinen Seuraus Keskiosat ovat heikommat Stadardeissa ei anneta koostumuksia Kiinni valetun, erillään valetun ja valusta irrotetun näytteen lujuuden ja kovuudet poikkeavat toisistaan 10

11 11

12 12

13 13

14 14

15 15

16 Kovuus ja lujuus Kovuusmittausta käyteään usein laadunvarmistuksessa, sillä vetokokeen tekeminen on hankalampaa ja kalliimpaa Brinell kovuudet ja murtolujuuden välillä on riippuvuus HB = RH*( *R m ), missä RH on suhteellinen kovuus Kovuuden ja lujuuden tarkka suhde riippuu ainakin raaka-aineista ja sulatusmenetelmästä. Jos ne eivät vaihtele suurelti, suhteellinen kovuus pysyy lähes vakiona 16

17 Kovuus vs. lujuus 17

18 Suomugrafiittivalurauta (EN-GJL) Ominaisuuksia ja käyttökohteita Ei sovellu kylmä- tai kuumamuokkaukseen (murtovenymät vedossa luokkaa %) Pieni loviherkkyys teräkseen verrattuna Lastuttavuus hyvä Matriisin rakenne joko ferriittinen, ferriittis- perliittinen tai perliittinen Kestää huonosti vetoa, paremmin puristusta ja taivutusta Hyvä kulumiskestävyys karkaistua terästä vastaan; sylinterilohkot, jarrurummut Valettavuudeltaan metallimateriaalien parhaita 18

19 Suomugrafiittivalurauta (EN-GJL) Ominaisuuksia ja käyttökohteita Hinnaltaan halvin metallinen konstruktiomateriaali Hitsattavuus heikko suuren hiilipitoisuuden vuoksi. Kylmähitsaus ilman esilämmitystä; lisäaineena pronssit, niukkahiilinen teräs, austeniittinen ruostumaton teräs ja Monelmetallit Puolikuumahitsaus. Esilämmitys 300 C- asteen lämpötilaan saakka Kuumahitsaus. Esilämmitys C ja hyvin hidas jäähdytys hitsauksen jälkeen, Runsaasti hiiltä ja piitä sisältävät lisäaineet mahdollisia Hyvät vaimennusominaisuudet; työstökonerungot ja -alustat jne. 19

20 Valurautojen vaimennus GJS = pallografiitti GJM = adusoitu GJL = suomugrafiitti Värähtely vaimentuu suomugrafiitissa nopeasti ominaisuudet 20

21 Suomugrafiittivalurauta (EN-GJL) Turpoaminen yli 400 C- asteen lämpötiloissa. Johtuu raudan sisäisestä hapettumisesta, kun happi kulkeutuu valuraudan sisäosiin pitkin grafiittisuomuja Ymppäyksellä (deoksidoivien aineiden kuten kalsiumsilisidin, piiraudan tai piikarbidin lisäyksellä sulaan juuri ennen valua) parannetaan grafiitin ydintymismahdollisuuksia ja saadaan se ydintymään hienojakoisena; Jähmettyminen harmaana suuremmilla jäähtymisnopeuksilla Pieni turpoaminen Paremmat lujuusominaisuudet ja nuorrutettavuus Suomugrafiittivalurautoja ei yleensä karkaista, koska martensiittimuutokseen liittyvä tilavuudenmuutos repii rakenteen helposti rikki pitkin grafiittisuomuja. 21

22 Grafiitin ydintymisestä ja kasvusta

23 Grafiitin ydintyminen Ydintyminen Grafiitin kiderakenne tuhoutuu korkeassa lämpötilassa (luokkaa 4000 C) Yli 3% hiilipitoisuudella sulaan rautahiiliseokseen syntyy hiilirikkaita kasaumia Oletettu rakenne Fe 3 C tai C n 23

24 24

25 Grafiitin ydintyminen Riippue jähtymisnopeudesta, kasvunopeudesta, koostumuksesta, viikonpäivästä, kuun asennosta grafiitti voi ydintyä a) Suomugrafiittina (flake) b) Tylppägrafiittina (Compacted/vermicular) c) Koralligrafiittina? (Coral) d) Pallografiittina (Spheroidal,nodular) 25

26 Grafiitin ydintyminen Sulan ylikuumentaminen saa aikaa suuremman alijäähtymisen Korkeampi lämpötila tuhoaa sulassa olevien (etenkin helposti hajoavien) ydintymiskohtien lukumäärää Suomugrafiitille suotuisia ovat Grafiitti ja SiO 2 Suolamaiset karbidit (esim. NaHC 2, CaC 2, YC 2, KHC 2, SrC 2, LaC 2, BaC 2 ) 26

27 Suomugrafiitin kasvu Suomugrafiitissa austeniitin ja grafiitin kasvaminen sulasta tapahtuu yhtäaikaa eutektisessa solussa (eutectic cell) Grafiitti kasvaa austeniittia nopeammin Alijäähtymisen kasvaminen lisää grafiitin haaroittumista 27

28 Pallografiitin ydintyminen Pallografiitin keskeltä on löytynyt yhdisteitä joiden oletetaan edistävän sen ydintymistä Esim. xmgo yal 2 O 3 zsio 2, xmgo ysio 2, xmgo ysio 2 zmgs, MgS, Te + Mn + S, lantanidisulfidit Ytimen keskellä on todennäköisesti Ca-Mg tai Ca-Mg-Sr sulfidia ja ulkokuori Mg-Al-Si-Ti oksidia. Rajapinnoilla Ytimen keskusta ja kuori? Ytimen kuori ja grafiitti 28

29 Pallografiitin kasvu Austeniitin kasvunopeutta säätelee lämpötilagradientti ja diffuusionopeus kun taas grafiitin kasvunopeus riippuu kidetasosta ja sulan epäpuhtauksista. Grafiitin pohjataso tai suunta [0001] on suosituin kasvusuunta, koska sen sulan välisen rajapinnan enegia on pienin. Seurauksena on grafiittipallon muodostuminen Jos sulassa on pinta-aktiivisia elementtejä (O, S, Pb, Te) ne adsorpoituvat grafiitin sivutasoille, laskien sen ja sulan pintaenergian pohjatason pintaenergiaa pienemmäksi. Kasvu tapahtuu suuntaan [10-10] Sulassa olevat reaktiiviset aineet (Mg, Ce, La) poistavat kasvua haittaavien aineiden vaikutukset (S, O, Pb, Sb, Ti) 29

30 31

31 Pallografiitin kasvu Austeniitti dendriittien vaikutus Dendriitit ja grafiitti ydintyvät toisistaan riippumatta eutektisessa lämpötilassa Sulassa olevat grafiittipallot kasvavat hitaasti Jossain vaiheessa dendriitit ja grafiitti kohtaavat, jonka jälkeen grafiitin kasvu jatkuu austeniitin sisällä 32

32 Pallografiitin kasvu Sulan hiilipitoisuus laskee grafiittipallon (spherulite, spheroid) lähellä Austeniitti muodostaa kiinteän kuoren grafiitin ympärille b) Austeniitin hiilipitoisuus grafiitin lähellä on pienempi kuin muualla 33

33 Pallografiitin kasvu Sekä grafiitti että austeniitti kasvavat ulospäin Hiili diffudoituu austeniitin läpi grafiittiin c) 34

34 35

35 Eutektoidinen lämpötila Kun kaikki sula on jähmettynyt jatkuu jo syntyneiden grafiittipallojen kasvu Grafiitin ydintyminen kiinteässä tilassa hyvin epätodennäköinen vaihtoehto Lämpötilan laskeminen pienentää hiilen liukoisuutta austeniittiin (muistele tasapainopiirrosta) Jäähtyminen tapahtuu hitaasti verrattuna diffuusionopeuteen Austeniitti muuttuu ferriitiksi ja grafiitiksi Austeniitista hajaantuva ferriitti ydintyy normaalisti hitaassa jäähtymisessä grafiitti-austeniitti rajapinnalle, koska hiilipitoisuus on siellä pienin 36

36 37

37 Eutektoidinen reaktio Fe-C-Si järjestelmässä ferriitin ja grafiitin kasvu tapahtuu lämpötilassa C. Jos austeniittia on jäljellä kun seos saavuttaa metastabiilin järjestelmän eutektoidin, syntyy perliittiä Austeniitti voi hajaantua myös perliitiksi, jos lämpötila, jäähtymisnopeus ja koostumus ovat oikeita. Myös sementiitti voi muuttua ferriitiksi ja grafiitiksi. Perliitti ydintyy mielellään ferriitti-austeniitti raerajalle, mutta sopivalla seostuksella se saadaan ydintymään myös austeniitti-grafiitti tai austeniitti-austeniitti rajapinnalle. Grafiitin ympärille syntyy ferriitin muodostama halo 38

38 Lähde: 39

39 Pallografiittivaluraudat Yleistä Materiaalissa yhdistyvät teräksen hyvä sitkeys ja valuraudan valettavuus, joka aikaisemmin saatiin aikaan adusoidulla valaraudalla. Ensimmäiset pallomaiset grafiitit saatiin aikaan Englannissa 1948 cerium lisäyksellä Samana vuona amerikassa International Nickel Company teki kokeita magnesium lisäyksellä (patentoitu vuona 1949) Pallografiitin käyttö lisääntyy jatkuvasti vähentäen muiden rautapohjaisten valumateriaalien käyttöä. 40

40 Ominaisuudet Yleistä pallografiittivaluraudoista Paremmat lujuus- ja sitkeysominaisuudet kuin suomugrafiittivaluraudalla, jonka murtovenymät muutamia prosentteja Valettavuus harmaata valurautaa huonompi, mutta terästä parempi Ei turpoamista korkeissa lämpötiloissa Loviherkkyys terästä pienempi Kestävyys kuoppautumista vastaan (hammaspyörät) Myös karkaistavia laatuja Somugrafiittivalurautaa vaativampiin kohteisiin, jopa valuterästen korvaajina (murtolujuus jopa 900 MPa) 41

41 Yleistä pallografiittivaluraudoista Tyypillinen koostumus C % Si % Mg % P % S % Eri mikrorakenteita Ferriittinen Ferriittis-perliittinen Perliittinen (Päästö)martensiittinen Austeniittis-ferriittinen Austeniittinen Ferriittinen Hidas jäähtyminen Sitkeä, venyvä, ei niin luja Perliittinen Keskiverto jäähtymisnopeus Luja, ei niin venyvä Martensiittinen Nopea jäähtyminen Hauras 42

42 Pallografiittiraudat SFS-EN 1563 Murtolujuus Myötöraja Murtovenymä Kovuus MPa MPa % HB EN-GJS EN-GJS EN-GJS EN-GJS EN-GJS EN-GJS EN-GJS EN-GJS EN-GJS

43 Standardit ASTM jaottelu käyttökohteen mukaan 44

44 Standardit ASTM A 536 Nerokas luokittelu murtolujuuden, myötölujuuden ja murtovenymän avulla kunhan vain muistaa että 1 ksi on vajaa 7 MPa 45

45 Lämpökäsittelyt Useimmiten pallografiittivalurautoja ei lämpökäsitellä. Niille voidaan kuitenkin tehdään seuraavia lämpökäsittelyjä Myöstö (stress relieving) Ferritointi (ferritizing, annealing) Normalisointi (normalization) Nuorrutus (hardening and tempering) Austemperointi (austempering) Pintakarkaisu (surface hardening, case hardening) 46

46 Lämpökäsittelyt Myöstö (jännitysten poisto) Isoihin ja poikkileikkaukseltaan vaihteleviin valuihin voi syntyä jäähtymisen aikana jännityksiä Jäännösjännitykset voivat aiheuttaa mittamuutoksia (vetelyjä) koneistuksen aikana Jäännösjännitykset poistetaan C lämpötilassa Ferritointi Halutaan hyvä koneistettavuus ja lujuudella ei ole väliä Karbidien (ja perliitin) liuottaminen tehdään lämpötilassa 900 C (austeniitti alueella). Hidas jäähdytys uunin mukana 47

47 Lämpökäsittelyt Normalisointi (perlitointi) Lujuuden nostamiseksi, rakenteeksi tulee hienojakoista perliittiä Rakenteen syntymiseen vaikuttaa oleellisesti koostumus ja jäähtymisnopeus Nuorrutus Kappale sammutetaan austeniittialueelta tyypillisesti öljyyn. Rakenteeksi tulee lujaa, kovaa ja haurasta martensiittia Hauraus saadaan pienemmäksi päästämällä matalassa lämpötilassa, jolloin martensiitista syntyy päästömartensiittia 48

48 49

49 Austemperoitu pallografiittirauta Kappale jäähdytetään nopeasti muutaman sadan asteen lämpötilaan Austeniitti hajoaa metastabiiliksi austeniitiksi (γ H ) ja levymäiseksi ferriitiksi (α) tai ferriitiksi ja karbiksi riippuen käytetystä lämpötilasta ja ajasta (luokkaa 1-4h) Kappale jäähdytetään ennen bainiittireaktion alkua Metastabiilin austeniitin (γ H ) hiilipitoisuus on kasvanut niin paljon (martensiittireaktion alkamislämpötila on alle huoneen lämmön) että siitä ei synny martensiittia nopeassa jäähdytyksessä Bainiittialueelle ei haluta mennä, sillä bainiittinen rakenne heikentää valuraudan sitkeyttä ja murtovenymää (toisin kuin teräksen) Mikrorakenne: asikulaarinen ferriitti + austeniitti Austempered ductile iron (ADI) 50

50 51

51 52

52 Teräs

53 Raudan valmistus Rauta esiintyy maankuoressa tyypillisesti oksideina ja useimmiten rautaa halutaan käyttää metallisessa muodossa. Tyypilliset rautamalmit ovat magnetiitti (Fe 3 O 4 ) hematiitti (Fe 2 O 3 ) limoniitti (2Fe 2 O 3 3H 2 O) rautasälpä (FeCO 3 ) 54

54 Pelkistys Rautaoksidi muutetaan metalliseksi raudaksi hiilimonoksidin avulla 2O + C = CO 2 CO 2 + C = 2CO 3Fe 2 O 3 + CO = 2Fe 3 O 4 + CO 2 Fe 3 O 4 + CO = 3FeO + CO 2 FeO + CO = Fe + CO 2 3Fe + 2CO = Fe 3 C + CO 2 55

55 Masuuni Raudan pelkistäminen tehdään masuunissa. Tarvittavat raaka-aineet malmia 6000 tonnia koksia 2000 tonnia kalkkikiveä 2500 tonnia ilmaa tonnia Masuunissa syntyy kuonaa 2500 tonnia masuunikaasua tonnia raakarautaa 4000 tonnia Syntyvän harkkoraudan koostumus on tyypillisesti C % Si % Mn % S % P % 56

56 Teräksen valmistus Masuunista saatavan raudan hiilipitoisuus on liian korkea teräksen valmistukseen, mutta valurautaan sitä voidaan käyttää. Terästä saadaan kun harkkoraudalle tehdään mellotus eli hiilenpoisto raffinointi eli haitta-aineiden poisto seostus tiivistys eli kaasun poisto 57

57 Mellotus Raudan hiilipitoisuus lähtötilanteessa on noin 4%. Kun sulaan rautaan lisätään happea esimerkiksi puhaltamalla, palavat sulassa olevat alkuaineet seuraavassa järjestyksessä alumiini pii mangaani kromi hiili fosfori rauta Alumiini, pii, mangaani, kromi ja fosfori muodostamat oksidit liukenevat sulan pinnalla olevaan kuonaan. Hiili muodostaa hiilimonoksidia (kaasu), joka poistuu 58

58 Mellotus Konvertteri käsittely kestää luokkaa 7-8 minuuttia. Sulan tiheys kasvaa kun sen hiilipitoisuus pienenee. Raskas sula painuu konvertterin pohjalle ja kevyt hiilipitoinen sula nousee pinnalle Erillistä sekottamista ei tarvita 59

59 Konvertteri Mellotus tehdään pääasiassa erilaisissa konvertereissa LD konvertteri LD-KG konvertteri OBM konvertteri Konvertterit eroavat toisistaan puhallustavan mukaan. LD:ssä happea puhalletaan ylhäältä. LD-KG:ssä happea puhalletaan ylhäältä, alta puhalletaan argonia tai typpeä ja OBM:ssä happea puhalletaan alhaalta. Aikaisemmin puhalluksessa käytettiin ilmaa, jolloin kysymyksessä olivat Bessemer konvertteri Thomas konvertteri 60

60 Raffinointi Masuunissa käytettiin rautaoksidin pelkistämiseen koksia, mikä normaalisti nostaa raudan rikkipitoisuuden liian korkeaksi. Lisäksi malmin fosforipitoisuus on tyypillisesti liian korkea. Tyypillisesti käytetään kalkkia CaO, joka muodostaa kuonaa sekä rikin että fosforin kanssa. 61

61 Seostus Teräksen tyypillisiä seosaineita ovat: Si, Mn, Cr, Ni ja Mo. Seosaineet lisätään sopivina raudan yhdisteinä ferropii (75% Si) ferromangaani (75% Mn) ferrokromi (60% Cr) nikkeli metallisena ferromolybdeeni (60% Mo) Seostus tehdään yleensä mellotusuunissa 62

62 Kaasujen poisto Mellotetussa teräksessä on liuenneena happea, typpeä ja vetyä. typpi lisää teräksen vanhenemistaipumusta vety aiheuttaa haurausilmiöitä Nämä voidaan poistaa argonhuuhtelulla tai tyhjiökäsittelyllä AOD-konvertteri (Argon Oxygen Decarburization) VODC-konvertteri (Vacuum Oxygen Decarburization Converter) 63

63 Kaasujen poisto 64

64 Tiivistäminen Kun sulaan teräksen lämpötila laskee, hapen liukoisuus pienenee. Vapautunut happi muodostaa hiilimonoksidia, josta osa jää loukkuun jähmettyneen metallin sisään tiivistämätön teräs Jos vapautuvat happi sidotaan alumiiniin, ei kaasuhuokosia synny. Tällöin teräs kutistuu jäähtymisen aikana alumiinilla tiivistetty teräs Tiivistäminen voidaan tehdä myös piillä ja mangaanilla 65

65 Terässtandardit

66 Standardit Joka maalla ja järjestöllä oma standardi AISI (USA) SAE (USA) ASTM (USA) ASME (USA) UNS (USA) DIN (Saksa) Werkstoff numero (Saksa) BS (Iso-Britania) AFNOR (Ranska) UNI (Italia) SS (Ruotsi) SFS EN 67

67 Standardit American Iron and Steel Institute (AISI) ja Steels Society of Automotive Engineers (SAE) xx40 Hiilipitoisuus 0,40 painoprosenttia 10xx Hiiliteräkset, Mn enintään 1.00% 15xx Hiiliteräkset, Mn % 13xx Hiiliteräkset, Mn % 11xx Hiiliteräkset, korotettu rikkipitoisuuttu 12xx Hiiliteräkset, korotettu rikki- ja fosforipitoisuus Seostetut teräkset jaetaan niukkaseosteisiin (<8%) ja runsasseosteisiin (>8%) 68

68 69

69 Standardit Amerikkalaiset standardit koottu yhteen AISI/SAE 1040 = UNS G10400 Uni?ed Numbering System (UNS) G = AISI/SAE hiili ja seosteräkset F = valuraudat ja valuteräkset J = valuteräkset D = teräkset joilta vaaditaan tietyt mekaaniset ominaisuudet S = lämmönkestävät ja ruostumattomat teräkset T = työkaluteräkset H = karkenevat teräkset 70

70 Standardit The American Society for Testing and Materials (ASTM) Rautametallit, sementti, puu, kankaat, kupari, jne. Materiaaleilta vaaditaan tarkemmat ominaisuudet käyttökohteen mukaan Samalle materiaalille useita standardeja (esimerkiksi 2¼Cr-1Mo löytyy seuraavista) 71

71 Standardit ASTM:n yhdessä standardissa on taasen mukava useita teräksiä. Esimerkiksi ASTM A 213 Seamless Ferritic and Austenitic Alloy Steel for Boiler, Superheater, and Heat Exchanger Tubes pitää sisällään 14 ferriittistä ja 14 austeniittista terästä tulistimia varten Eri teräkset merkitään Txx merkinnällä. Esimerkiksi 2¼Cr-1Mo on tässä standardissa nimellä ASTM A 213 T22 72

72 Standardit American Society of Mechanical Engineers (ASME) Erityisesti paineastiat ASME Boiler & Pressure Vessel Code Käyttää hyväksi ASTM:n merkintöjä ASTM A 213 = ASME SA213 73

73 Standardit Deutsches Institut fur Normung (DIN) jaottelee seuraavasti Seostamattomat: Al<0.1%, Cu<0.25%, Mn<0.8%, Si<0.5% ja Ti<0.1% Niukkaseosteiset: seosainepitoisuus ei saa ylittää 5% Runsasseosteiset: seosainepitoisuus yli 5% Seostamattomien ja niukkastiseostettujen nimeäminen Co, Cr, Mn, Ni, Si ja W nimellinen pitoisuus ilmoitetaan luvulla 4 kerrottuna Al, Cu, Mo, Ti ja V nimellinen pitoisuus ilmoitetaan luvulla 10 kerrottuna C, N, P ja S nimellinen pitoisuus ilmoitetaan luvulla 100 kerrottuna Tulkinta voi olla joskus hankalaa... 74

74 Standardit Esimerkiksi 17 CrNiMo 6 Hiili = 17/100 = 0,17% Kromi = 6/4 = 1.5% Nikkeli = 6/4 = 1.5% ja taulukkoarvot Hiili = 0,15-0,20% Pii < 0,40% Mangaani = 0,40-0,60% Fosfori < 0,035% Rikki < 0,035% Kromi = 1,50-1,80% Molybdeeni = 0,25-0,35% Nikkeli = 1,40-1,70% Esimerkiksi 21 NiCrMo 2 Hiili = 21/100 = 0,21% Nikkeli = 2/4 = 0,5% Kromi = 2/4 = 0,5% ja taulukkoarvot Hiili = 0,17-0,23% Pii < 0,40% Mangaani = 0,65-0,95% Fosfori < 0,035% Rikki < 0,035% Kromi = 0,40-0,70% Molybdeeni = 0,15-0,25% Nikkeli = 0,40-0,70% 75

75 Standardit Lisäksi DIN standardin rinnalla käytetään Werkstoff numeroita Teräksen tietojen ja vastaavuuksien löytäminen ehkä helpointa ko numeron avulla Varsin täsmällinen listaus esim. Stahlschlüssel teoksesta 76

76 Stahlschlüssel 77

77 Stahlschlüssel 78

78 Stahlschlüssel 79

79 Terästen mikrorakenteet

80 Austeniitin hajaantuminen tasapainon mukaisesti 81

81 Hiilipitoisuuden vaikutus mikrorakenteeseen Mitä enemmän hiiltä sen enemmän perliittiä 0,10% perliitti näkyy pieniä tummina laikkuina ferriitin seassa. Lamelirakennetta ei tahdo erottaa 0.40% perliittiä (tummat alueet) ehkä hiukan enemmän kuin ferriittiä (vaaleat alueet). Perliitin lamelirakenne näkyy osissa alueita otollisen orientaation takia (vertaa lohifileeseen) 0.95% perliittiä, mutta ei ferriittiä. Ylieutektoidinen teräs, joten ferriitin sijasta näkyy pieniä määriä esieutektoidista sementiittiä (valkoiset alueet). Hyvällä mielikuvituksella kuvasta näkee myös perinnäisen austeniitin raerajat. 82

82 83

83 84

84 85

85 Normalisointi Normalisointia käyteään transiitiolämpötilan laskemiseen Mekaaniset ominaisuudet voivat huonontua Mikroseostuksella voidaan parantaa normalisoinnissa saatavia ominaisuuksia Niobikarbidit eivät liukene helposti, haittaavat raeraojen liikkumista ja estävä siten rakeen kasvua 86

86 Normalisointi 87

87 Austeniitin hajaantuminen ei tasapainon mukaisesti Austeniitin hajaantumisen tapahtuessa niin nopeasti ettei tasapainorakennetta (ferriitti, perliitti tai näiden seos) ehdi muodostua, tulee rakenteeksi joko Bainiittia, joka syntyy matalan lämpötilan eutektoidisen reaktion tuloksena tai Martensiittia, joka muodostuu ilman diffuusiota martensiittimekanismilla 88

88 Bainiitti Bainiitti on ferriitin ja sementiitin eilamellaarinen seos. Korkeissa hajaantumislämpötiloissa muodostuu yläbainiittia, alhaisemmissa alapainiittia 89

89 Ylä- ja alabainiitti Yläbainiitti Sementiittierkaumat ovat ferriitti-liuskojen rajoilla. Kovaa, korkeanlujuuksista ja haurasta. Alabainiitti Runsas dislokaatioisia ferriittiliuskoja, joiden sisällä on sementiittierkaumia. Kohtalainen kovuus sekä erinomaiset lujuus- ja sitkeysarvot. Tärkeä rakenne erikoislujissa nuorrutetuissa rakenneteräksissä. 90

90 Martensiitti Martensiitti on tetragonaalisesti vääristynyttä hiiliylikyllästeistä ferriittiä eli uusi ferriittiin pohjautuva rakenne, johon hiili on jäänyt pakkotilaan. Martensiitti muodostuu austeniitista alle 220 C lämpötiloissa. Suurilla jäähtymisnopeuksilla eli matalissa austeniitin hajaantumislämpötiloissa ei diffuusio tapahdu riittävän nopeasti, vaan austeniitti hajaantuu leikkautumismekanismilla. 91

91 Leikkautuminen Leikkautumismekanismi on hyvin nopea ja martensiittia muodostuu erittäin suurillakin jäähtymisnopeuksilla. Martensiitin ja austeniitin yksikkökopeilla on selvä yhteys Martensiitin tetragonaalisuus riippuu hiilipitoisuudesta Muodostuneen martensiitin kovuus riippuu myös hiilipitoisuudesta Muodostuva martensiitti on usein niin haurasta, että sitä pitää sitkistää päästön avulla (lähes aina). 92

92 Austeniitista martensiitiksi 93

93 94

94 95

95 Levy ja sälemartensiitit Kun hiilipitoisuus on korkeampi ja/tai jäähtymisnopeus hitaampi on tuloksena levymartensiittia. Kovaa ja haurasta Taipumus lohkomurtumiseen Matalammalla hiilipitoisuudella ja/tai nopeammalla jäähtymisnopeudella syntyy sälemartensiittia Kovaa, lujaa ja kohtuullisen sitkeää 96

96 97

97 Hiilipitoisuuden vaikutus 98

98 Hiilipitoisuuden vaikutus teräksen kovuuteen ennen päästöä eri martensiittipitoisuuksilla 99

Faasimuutokset ja lämpökäsittelyt

Faasimuutokset ja lämpökäsittelyt Faasimuutokset ja lämpökäsittelyt Yksinkertaiset lämpökäsittelyt Pehmeäksihehkutus Nostetaan lämpötilaa Diffuusio voi tapahtua Dislokaatiot palautuvat Materiaali pehmenee Rekristallisaatio Ei ylitetä faasirajoja

Lisätiedot

Valuraudat.

Valuraudat. Valuraudat juha.nykanen@tut.fi Esitiedot Miten pallografiitin ydintyminen ja kasvu poikkeaa suomugrafiitin ydintymisestä ja kasvusta? Mitkä ovat pallografiittivalurautojen ja adusoitujen valurautojen edut

Lisätiedot

Esitiedot. Valuraudat. Miten pallografiitin ydintyminen ja kasvu poikkeaa suomugrafiitin ydintymisestä ja kasvusta?

Esitiedot. Valuraudat. Miten pallografiitin ydintyminen ja kasvu poikkeaa suomugrafiitin ydintymisestä ja kasvusta? Esitiedot Valuraudat juha.nykanen@tut.f i Miten pallografiitin ydintyminen ja poikkeaa suomugrafiitin ydintymisestä ja sta? Mitkä ovat pallografiittivalurautojen ja adusoitujen valurautojen edut ja rajoitukset?

Lisätiedot

Valurauta ja valuteräs

Valurauta ja valuteräs Valurauta ja valuteräs Seija Meskanen Teknillinen korkeakoulu Tuula Höök Tampereen teknillinen yliopisto Valurauta ja valuteräs ovat raudan (Fe), hiilen (C), piin (Si) ja mangaanin (Mn) sekä muiden seosaineiden

Lisätiedot

Esitiedot. Luento 6. Esitiedot

Esitiedot. Luento 6. Esitiedot Esitiedot Luento 6 Miten terästen karkenevuutta voidaan parantaa? Miten päästölämpötila ja aika vaikuttavat karkaistun rakenteen mekaanisiin ominaisuuksiin? Mitä tarkoittaa päästöhauraus? 2 Esitiedot Epäselviä

Lisätiedot

Esitiedot. Valuraudat. Esitiedot. Esitiedot

Esitiedot. Valuraudat. Esitiedot. Esitiedot Esitiedot Valuraudat juha.nykanen@tut.fi Mistä tulevat nimitykset valkoinen valurauta ja harmaa valurauta? Miten ja miksi niiden ominaisuudet eroavat toisistaan? Miksi sementiitti on kovaa ja haurasta?

Lisätiedot

Binäärinen tasapaino, ei täyttä liukoisuutta

Binäärinen tasapaino, ei täyttä liukoisuutta Tasapainopiirrokset Binäärinen tasapaino, ei täyttä liukoisuutta Binäärinen tasapaino Kiinteässä tilassa koostumuksesta riippuen kahta faasia Eutektisella koostumuksella ei puuroaluetta Faasiosuudet muuttuvat

Lisätiedot

Luento 5 Hiiliteräkset

Luento 5 Hiiliteräkset Luento 5 Hiiliteräkset Hiiliteräkset Rauta (

Lisätiedot

Kon Teräkset Viikkoharjoitus 2. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikan laitos

Kon Teräkset Viikkoharjoitus 2. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikan laitos Kon-67.3110 Teräkset Viikkoharjoitus 2. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikan laitos Luennolta: Perustieto eri ilmiöistä Kirjoista: Syventävä tieto eri

Lisätiedot

Terästen lämpökäsittelyn perusteita

Terästen lämpökäsittelyn perusteita Terästen lämpökäsittelyn perusteita Austeniitin nopea jäähtyminen Tasapainopiirroksen mukaiset faasimuutokset edellyttävät hiilen diffuusiota Austeniitin hajaantuminen nopeasti = ei tasapainon mukaisesti

Lisätiedot

TERÄKSISTÄ Terästen luokittelusta

TERÄKSISTÄ Terästen luokittelusta TERÄKSISTÄ Terästen luokittelusta Seostamattomat teräkset (niukkaseosteiset teräkset) Ruostumattomat teräkset Mangaaniteräkset Pikateräkset Työkaluteräkset Kuumalujat teräkset Tulenkestävät teräkset 1

Lisätiedot

Luento 5. Pelkistys. Rikastus

Luento 5. Pelkistys. Rikastus Raudan valmistus Luento 5 Rauta esiintyy maankuoressa tyypillisesti oksideina ja useimmiten rautaa halutaan käyttää metallisessa muodossa. Tyypilliset rautamalmit ovat magnetiitti (Fe 3 O 4 ) hematiitti

Lisätiedot

Luento 1 Rauta-hiili tasapainopiirros Austeniitin hajaantuminen perliittimekanismilla

Luento 1 Rauta-hiili tasapainopiirros Austeniitin hajaantuminen perliittimekanismilla Luento 1 Rauta-hiili tasapainopiirros Austeniitin hajaantuminen perliittimekanismilla Vapaa energia ja tasapainopiirros Allotropia - Metalli omaksuu eri lämpötiloissa eri kidemuotoja. - Faasien vapaat

Lisätiedot

Ultralujien terästen hitsausmetallurgia

Ultralujien terästen hitsausmetallurgia 1 Ultralujien terästen hitsausmetallurgia CASR-Steelpolis -seminaari Oulun yliopisto 16.5.2012 Jouko Leinonen Nostureita. (Rautaruukki) 2 Puutavarapankko. (Rautaruukki) 3 4 Teräksen olomuodot (faasit),

Lisätiedot

Valujen lämpökäsittely

Valujen lämpökäsittely Valujen lämpökäsittely Lämpökäsittelyillä muutetaan materiaalin ominaisuuksia, lujuutta, sitkeyttä ja työstettävyyttä. Lämpökäsiteltävyyden ja lämpökäsittelyn käytön suhteen materiaalit voidaan jakaa ryhmiin

Lisätiedot

Valunhankintakoulutus 15.-16.3. 2007 Pirjo Virtanen Metso Lokomo Steels Oy. Teräsvalujen raaka-ainestandardit

Valunhankintakoulutus 15.-16.3. 2007 Pirjo Virtanen Metso Lokomo Steels Oy. Teräsvalujen raaka-ainestandardit Teräsvalut Valunhankintakoulutus 15.-16.3. 2007 Pirjo Virtanen Metso Lokomo Steels Oy Teräsvalujen raaka-ainestandardit - esitelmän sisältö Mitä valun ostaja haluaa? Millaisesta valikoimasta valuteräs

Lisätiedot

Keskinopea jäähtyminen: A => Bainiitti

Keskinopea jäähtyminen: A => Bainiitti Keskinopea jäähtyminen: A => Bainiitti Fe 3 C F = Bainiitti (B) C ehtii diffundoitua lyhyitä matkoja. A A A A Lämpötila laskee è Austeniitti Ferriitti Austeniitti => ferriitti muutos : atomit siirtyvät

Lisätiedot

Metallurgian perusteita

Metallurgian perusteita Metallurgian perusteita Seija Meskanen, Teknillinen korkeakoulu Pentti Toivonen, Teknillinen korkeakoulu Korkean laadun saavuttaminen edellyttää sekä rauta että teräsvalujen tuotannossa tiukkaa prosessikuria

Lisätiedot

Teräkset Kon-67.3110 kurssi Tekn. tri Kari Blomster LÄMPÖKÄSITTELY KARKAISUT 10.3.2015. Karkaisu ja päästö

Teräkset Kon-67.3110 kurssi Tekn. tri Kari Blomster LÄMPÖKÄSITTELY KARKAISUT 10.3.2015. Karkaisu ja päästö 1 Teräkset Kon-67.3110 kurssi Tekn. tri Kari Blomster LÄMPÖKÄSITTELY KARKAISUT 10.3.2015 Karkaisu ja päästö Teräs kuumennetaan austeniittialueelleen (A), josta se jäähdytetään nopeasti (sammutetaan) nesteeseen,

Lisätiedot

Valujen raaka-ainestandardit - Valurauta

Valujen raaka-ainestandardit - Valurauta Valujen raaka-ainestandardit - Valurauta Valunhankinta-koulutus 15.-16.3.2007 Marko Riihinen Metso Foundries Jyväskylä Oy Valurauta / rautavalun valumateriaali - rakkaalla lapsella on monta nimeä Suomugrafiittivalurauta

Lisätiedot

Metallit 2005. juha.nykanen@tut.fi

Metallit 2005. juha.nykanen@tut.fi Metallit 2005 juha.nykanen@tut.fi Aikataulu Pe 2.9.2005 Pe 9.9.2005 Pe 16.9.2005 Pe 23.9.2005 Pe 10.9.2005 Pe 8.10.2005 Valurauta Valurauta ja teräs Teräs Teräs ja alumiini Magnesium ja titaani Kupari,

Lisätiedot

Ruostumattoman teräksen valmistaminen loppupään terässulattoprosessit.

Ruostumattoman teräksen valmistaminen loppupään terässulattoprosessit. Ruostumattoman teräksen valmistaminen loppupään terässulattoprosessit www.outokumpu.com Johdanto Tuotantokaavio AOD-konvertteri AOD Senkka-asema SA Yhteenveto Ruostumaton teräs Ruostumaton teräs koostuu

Lisätiedot

SEOSAINEIDEN VAIKUTUKSET TERÄSTEN HITSATTAVUUTEEN. MIKRORAKENTEEN MUUTOKSET HITSAUSLIITOKSESSA.

SEOSAINEIDEN VAIKUTUKSET TERÄSTEN HITSATTAVUUTEEN. MIKRORAKENTEEN MUUTOKSET HITSAUSLIITOKSESSA. 1 HITSAVONIA PROJEKTI Teemapäivä 13.12.2005. DI Seppo Vartiainen Savonia-amk/tekniikka/Kuopio SEOSAINEIDEN VAIKUTUKSET TERÄSTEN HITSATTAVUUTEEN. MIKRORAKENTEEN MUUTOKSET HITSAUSLIITOKSESSA. 1. Hitsiaine

Lisätiedot

RUOSTUMATTOMAT TERÄKSET

RUOSTUMATTOMAT TERÄKSET 1 RUOSTUMATTOMAT TERÄKSET 3.11.2013 Seuraavasta aineistosta kiitän Timo Kauppia Kemi-Tornio Ammattikorkeakoulu 2 RUOSTUMATTOMAT TERÄKSET Ruostumattomat teräkset ovat standardin SFS EN 10022-1 mukaan seostettuja

Lisätiedot

Kon Harjoitus 4: standardit ja terästunnukset. Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto

Kon Harjoitus 4: standardit ja terästunnukset. Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto Kon-67.3110 Harjoitus 4: standardit ja terästunnukset Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto Harjoitus 4 Tällä kerralla tutustutaan erilaisiin terästen nimikejärjestelmiin ja

Lisätiedot

Metallit 2005. juha.nykanen@tut.fi

Metallit 2005. juha.nykanen@tut.fi Metallit 2005 juha.nykanen@tut.fi Kertaus Luento 2 Raudan valmistus Teräksen valmistus Standardit Teräksen mikrorakenteet (ferriitti, perliitti, bainiitti, martensiitti) 2 Karkaisu ja päästö Muutama vuosi

Lisätiedot

Valurautojen lämpökäsittelyt. SVY opintopäivät Kaisu Soivio

Valurautojen lämpökäsittelyt. SVY opintopäivät Kaisu Soivio Valurautojen lämpökäsittelyt SVY opintopäivät 3.2.2017 Kaisu Soivio Moventas lyhyesti Moventas on yksi johtavista tuulivoimavaihteiden valmistajista Ensimmäinen tuulivoimavaihde toimitettu 1980, asennuskanta

Lisätiedot

Deformaatio. Kiteen teoreettinen lujuus: Todelliset lujuudet lähempänä. σ E/8. σ E/1000

Deformaatio. Kiteen teoreettinen lujuus: Todelliset lujuudet lähempänä. σ E/8. σ E/1000 Deformaatio Kertaus Deformaatio Kiteen teoreettinen lujuus: σ E/8 Todelliset lujuudet lähempänä σ E/1000 3 Dislokaatiot Mekanismi, jossa deformaatio mahdollista ilman että kaikki atomisidokset murtuvat

Lisätiedot

Dislokaatiot - pikauusinta

Dislokaatiot - pikauusinta Dislokaatiot - pikauusinta Ilman dislokaatioita Kiteen teoreettinen lujuus ~ E/8 Dislokaatiot mahdollistavat deformaation Kaikkien atomisidosten ei tarvitse murtua kerralla Dislokaatio etenee rakeen läpi

Lisätiedot

Luento 2. Kon Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto

Luento 2. Kon Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto Luento 2 Kon-67.3110 Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto Rauta-hiili -tasapainopiirros Honeycombe & Bhadeshia s. 30-41. Uudistettu Miekk oj s. 268-278. Rauta (Fe)

Lisätiedot

Kon Teräkset Harjoituskierros 6.

Kon Teräkset Harjoituskierros 6. Kon-67.3110 Teräkset Harjoituskierros 6. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikka Viikkoharjoitus #6 - kysymykset Mitä on karkaisu? Miten karkaisu suunnitellaan?

Lisätiedot

Mak Sovellettu materiaalitiede

Mak Sovellettu materiaalitiede .106 tentit Tentti 21.5.1997 1. Rekristallisaatio. 2. a) Mitkä ovat syyt metalliseosten jähmettymisen yhteydessä tapahtuvalle lakimääräiselle alijäähtymiselle? b) Miten lakimääräinen alijäähtyminen vaikuttaa

Lisätiedot

Mikä on ruostumaton teräs? Fe Cr > 10,5% C < 1,2%

Mikä on ruostumaton teräs? Fe Cr > 10,5% C < 1,2% Cr > 10,5% C < 1,2% Mikä on ruostumaton teräs? Rautaseos, johon on seostettu 10,5 % kromia ja 1,2 % hiiltä. Seostuksen ansiosta ruostumattomaan teräkseen muodostuu korroosiolta suojaava sekä itsekorjautuva

Lisätiedot

B.3 Terästen hitsattavuus

B.3 Terästen hitsattavuus 1 B. Terästen hitsattavuus B..1 Hitsattavuus käsite International Institute of Welding (IIW) määrittelee hitsattavuuden näin: Hitsattavuus ominaisuutena metallisessa materiaalissa, joka annetun hitsausprosessin

Lisätiedot

Kon Teräkset Viikkoharjoitus 1. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikka

Kon Teräkset Viikkoharjoitus 1. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikka Kon-67.3110 Teräkset Viikkoharjoitus 1. Timo Kiesi Koneenrakennuksen materiaalitekniikan tutkimusryhmä Koneenrakennustekniikka Luennolta: Perustieto eri ilmiöistä Kirjoista: Syventävä tieto eri ilmiöistä

Lisätiedot

Luento 4 Karkenevuus ja pääseminen. Kon Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto

Luento 4 Karkenevuus ja pääseminen. Kon Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto Luento 4 Karkenevuus ja pääseminen Kon-67.3110 Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto Karkenevuus Honeycombe & Bhadeshia ch 8 s. 151-170 Uudistettu Miekk oja luku

Lisätiedot

Suprajohteet. Suprajohteet. Suprajohteet. Suprajohteet. Niobi-titaani seoksia Nb-46.5Ti Nb-50Ti Nb-65Ti

Suprajohteet. Suprajohteet. Suprajohteet. Suprajohteet. Niobi-titaani seoksia Nb-46.5Ti Nb-50Ti Nb-65Ti Joitain materiaaleja Kriittinen lämpötila Pb 7.3 Nb 9.3 Nb-Ti 8.9-9.3 Nb 3 Sn 18 Nb 3 Ge 23 NbN 16-18 PbMo 6 S 8 14-15 YBa 2 Cu 3 O 7 92 2 Niobi-titaani seoksia Nb-46.5Ti Nb-50Ti Nb-65Ti Sulatus kahteen

Lisätiedot

I. Lämpökäsittely. I.1 Miksi? Pekka Niemi - Tampereen ammattiopisto. Valukappaleita lämpökäsitellään seuraavista syistä:

I. Lämpökäsittely. I.1 Miksi? Pekka Niemi - Tampereen ammattiopisto. Valukappaleita lämpökäsitellään seuraavista syistä: I. Lämpökäsittely Pekka Niemi - Tampereen ammattiopisto Kuva 284. Lämpökäsittelyhehkutus tapahtunut, uunin ovi aukaistu I.1 Miksi? Valukappaleita lämpökäsitellään seuraavista syistä: poistetaan ei-toivottuja

Lisätiedot

Valuraudat.

Valuraudat. Valuraudat juha.nykanen@tut.fi Esitiedot Miten ja miksi jäähtymisnopeus ja pii pitoisuus vaikuttaa valuraudan rakenteeseen? Mikä on piin tärkein vaikutus? Miksi nopea jäähdytys suosii sementiitin syntymistä?

Lisätiedot

B.1 Johdatus teräkseen

B.1 Johdatus teräkseen B.1 Johdatus teräkseen 1 B.1.1 Terästen valmistus B.1.1.1 Terästen valmistus raakaraudasta Masuunissa valmistettu raakarauta sisältää 4-5 % hiiltä. Teräksissä pitoisuus on tavallisimmin alle 1 % ja yleisissä

Lisätiedot

METALLIEN JALOSTUKSEN YLEISKUVA

METALLIEN JALOSTUKSEN YLEISKUVA METALLIEN JALOSTUKSEN YLEISKUVA Raaka-aine Valu Valssaus/pursotus/ Tuotteet syväveto KAIVOS malmin rikastus MALMI- ja/tai KIERRÄTYSMATERIAALI- POHJAINEN METALLIN VALMISTUS LEVYAIHIO TANKOAIHIO Tele- ja

Lisätiedot

Tärkeitä tasapainopisteitä

Tärkeitä tasapainopisteitä Tietoa tehtävistä Tasapainopiirrokseen liittyviä käsitteitä Tehtävä 1 rajojen piirtäminen Tehtävä 2 muunnos atomi- ja painoprosenttien välillä Tehtävä 3 faasien koostumus ja määrät Tehtävä 4 eutektinen

Lisätiedot

Rauta-hiili tasapainopiirros

Rauta-hiili tasapainopiirros Rauta-hiili tasapainopiirros Teollisen ajan tärkein tasapainopiirros Tasapainon mukainen piirros on Fe-C - piirros, kuitenkin terästen kohdalla Fe- Fe 3 C -piirros on tärkeämpi Fe-Fe 3 C metastabiili tp-piirrosten

Lisätiedot

Lujat termomekaanisesti valssatut teräkset

Lujat termomekaanisesti valssatut teräkset Lujat termomekaanisesti valssatut teräkset Sakari Tihinen Tuotekehitysinsinööri, IWE Ruukki Metals Oy, Raahen terästehdas 1 Miten teräslevyn ominaisuuksiin voidaan vaikuttaa terästehtaassa? Seostus (CEV,

Lisätiedot

Joitain materiaaleja Kriittinen lämpötila

Joitain materiaaleja Kriittinen lämpötila Suprajohteet Suprajohteet Joitain materiaaleja Kriittinen lämpötila Pb 7.3 Nb 9.3 Nb-Ti 8.9-9.3 Nb 3 Sn 18 Nb 3 Ge 23 NbN 16-18 PbMo 6 S 8 14-15 YBa 2 Cu 3 O 7 92 2 Suprajohteet Niobi-titaani seoksia Nb-46.5Ti

Lisätiedot

FERRIITTISET RUOSTUMATTOMAT TERÄKSET. www.polarputki.fi

FERRIITTISET RUOSTUMATTOMAT TERÄKSET. www.polarputki.fi FERRIITTISET RUOSTUMATTOMAT TERÄKSET www.polarputki.fi Polarputken valikoimaan kuuluvat myös ruostumattomat ja haponkestävät tuotteet. Varastoimme saumattomia ja hitsattuja putkia, putkenosia sekä muototeräksiä.

Lisätiedot

Corthal, Thaloy ja Stellite

Corthal, Thaloy ja Stellite Corthal, Thaloy ja Stellite KOVAHITSAUSTÄYTELANGAT KORJAUS JA KUNNOSSAPIDON AMMATTILAISILLE SOMOTEC Oy Tototie 2 70420 KUOPIO puh. 0207 969 240 fax. 0207 969 249 email: somotec@somotec.fi internet: www.somotec.fi

Lisätiedot

Hakemisto. C CCT-käyrä... ks. S-käyrä CVD-pinnoitus...ks. kaasufaasipinnoitus

Hakemisto. C CCT-käyrä... ks. S-käyrä CVD-pinnoitus...ks. kaasufaasipinnoitus A A 1-lämpötila... 17 A 3-lämpötila... 17 Abrasiivinen kuluminen... 110 A cm-lämpötila... 17 Adhesiivinen kitka... 112 Adhesiivinen kuluminen... 110 ADI... ks. ausferriittinen pallografiittivalurauta Adusointi...

Lisätiedot

Fe - Nb - C ja hienoraeteräkset

Fe - Nb - C ja hienoraeteräkset Fe - Nb - C ja hienoraeteräkset 0.10 %Nb 0.08 NbC:n liukoisuus austeniitissa γ + NbC 1200 C 0.06 0.04 1100 C 0.02 0 γ 0 0.05 0.1 0.15 0.2 %C Tyypillinen C - Nb -yhdistelmä NbC alkaa erkautua noin 1000

Lisätiedot

kansainvälisyys JACQUET johtava, maailmanlaajuinen ruostumattomien kvarttolevyjen käyttäjä 483 työntekijää

kansainvälisyys JACQUET johtava, maailmanlaajuinen ruostumattomien kvarttolevyjen käyttäjä 483 työntekijää JACQUET kansainvälisyys johtava, maailmanlaajuinen ruostumattomien kvarttolevyjen käyttäjä 43 työntekijää 3 yksikköä 20 eri maassa / 21 palvelukeskusta 7 500 asiakasta 60 eri maassa liikevaihto 23 M5 7

Lisätiedot

Liuoslujitettujen ferriittisten pallografiittivalurautojen austemperoitavuus

Liuoslujitettujen ferriittisten pallografiittivalurautojen austemperoitavuus Lauri Karhula Liuoslujitettujen ferriittisten pallografiittivalurautojen austemperoitavuus Diplomityö, joka on jätetty opinnäytteenä tarkastettavaksi diplomi-insinöörin tutkintoa varten. Espoossa 27.09.2016

Lisätiedot

KOVAJUOTTEET 2009. Somotec Oy. fosforikupari. hopea. messinki. alumiini. juoksutteet. www.somotec.fi

KOVAJUOTTEET 2009. Somotec Oy. fosforikupari. hopea. messinki. alumiini. juoksutteet. www.somotec.fi KOVAJUOTTEET 2009 fosforikupari hopea messinki alumiini juoksutteet Somotec Oy www.somotec.fi SISÄLLYSLUETTELO FOSFORIKUPARIJUOTTEET Phospraz AG 20 Ag 2% (EN 1044: CP105 ). 3 Phospraz AG 50 Ag 5% (EN 1044:

Lisätiedot

www.ruukki.com MINERAALI- TUOTTEET Kierrätys ja Mineraalituotteet

www.ruukki.com MINERAALI- TUOTTEET Kierrätys ja Mineraalituotteet www.ruukki.com MINERAALI- TUOTTEET Kierrätys ja Mineraalituotteet Masuunihiekka stabiloinnit (sideaineena) pehmeikkörakenteet sidekivien alusrakenteet putkijohtokaivannot salaojan ympärystäytöt alapohjan

Lisätiedot

UDDEHOLM UNIMAX 1 (5) Yleistä. Käyttökohteet. Mekaaniset ominaisuudet. Ominaisuudet. Fysikaaliset ominaisuudet

UDDEHOLM UNIMAX 1 (5) Yleistä. Käyttökohteet. Mekaaniset ominaisuudet. Ominaisuudet. Fysikaaliset ominaisuudet 1 (5) Yleistä Uddeholm Unimax on kromi/molybdeeni/vanadiini - seosteinen muovimuottiteräs, jonka ominaisuuksia ovat: erinomainen sitkeys kaikissa suunnissa hyvä kulumiskestävyys hyvä mitanpitävyys lämpökäsittelyssä

Lisätiedot

TERÄKSEN KÄYTTÄYTYMINEN ÄÄRIOLOSUHTEISSA.

TERÄKSEN KÄYTTÄYTYMINEN ÄÄRIOLOSUHTEISSA. 1 SAVONIA-AMK TEKNIIKKA/ KUOPIO HitSavonia- projekti Seppo Vartiainen Esitelmä paineastiat / hitsausseminaarissa 1.11.05 TERÄKSEN KÄYTTÄYTYMINEN ÄÄRIOLOSUHTEISSA. Kylmät olosuhteet. Teräksen transitiokäyttäytyminen.

Lisätiedot

Sisällysluettelo. Kierretapit 51-77. Kierretappien valintajärjestelmä ja symbolien merkitys 52-55. Metrinen kierre M 56-74

Sisällysluettelo. Kierretapit 51-77. Kierretappien valintajärjestelmä ja symbolien merkitys 52-55. Metrinen kierre M 56-74 Sisällysluettelo Kierretapit 51-77 Kierretappien valintajärjestelmä ja symbolien merkitys 52-55 Metrinen kierre M 56-74 Metrinen hienokierre MF 75-76 Putkikierre (R)G 77 51 Materiaalien luokitus Materiaali-

Lisätiedot

Puukkoteräkset. Juha Perttula. www.terastieto.com. Juha Perttula, Puukkoteräkset 1

Puukkoteräkset. Juha Perttula. www.terastieto.com. Juha Perttula, Puukkoteräkset 1 Puukkoteräkset Juha Perttula www.terastieto.com Juha Perttula, Puukkoteräkset 1 Sisällysluettelo Esipuhe 3 1. Rauta ja teräs 4 Meteoriittirauta 4, Meteoriittiraudan testasus 5, Malmista takoraudaksi ja

Lisätiedot

Puukkoteräkset. Juha Perttula. www.terastieto.com. Juha Perttula, Puukkoteräkset 1

Puukkoteräkset. Juha Perttula. www.terastieto.com. Juha Perttula, Puukkoteräkset 1 Puukkoteräkset Juha Perttula www.terastieto.com Juha Perttula, Puukkoteräkset 1 Sisällysluettelo Esipuhe 3 1. Rauta ja teräs 4 Meteoriittirauta 4, Malmista takoraudaksi ja teräkseksi 6, Valurauta 6, Valuraudan

Lisätiedot

UDDEHOLM VANADIS 4 EXTRA. Työkaluteräksen kriittiset ominaisuudet. Käyttökohteet. Ominaisuudet. Yleistä. Työkalun suorituskyvyn kannalta

UDDEHOLM VANADIS 4 EXTRA. Työkaluteräksen kriittiset ominaisuudet. Käyttökohteet. Ominaisuudet. Yleistä. Työkalun suorituskyvyn kannalta 1 (6) Työkaluteräksen kriittiset ominaisuudet Ohjeanalyysi % Toimitustila C 1,4 Si 0,4 Mn 0,4 Cr 4,7 Mo 3,5 pehmeäksihehkutettu noin 230 HB V 3,7 Työkalun suorituskyvyn kannalta käyttökohteeseen soveltuva

Lisätiedot

Petri Rantapelkonen TERÄKSEN VALMISTAMINEN

Petri Rantapelkonen TERÄKSEN VALMISTAMINEN Petri Rantapelkonen TERÄKSEN VALMISTAMINEN Kone- ja tuotantotekniikan koulutusohjelma 2014 TERÄKSEN VALMISTAMINEN Rantapelkonen, Petri Satakunnan ammattikorkeakoulu Kone- ja tuotantotekniikan koulutusohjelma

Lisätiedot

Jälkikäsittelyt. Tuotantohitsaus. ValuAtlas Hiekkavalimon valimoprosessi - Seija Meskanen, Tuula Höök

Jälkikäsittelyt. Tuotantohitsaus. ValuAtlas Hiekkavalimon valimoprosessi - Seija Meskanen, Tuula Höök Jälkikäsittelyt Puhdistuksen jälkeen valuille voidaan tehdä vielä seuraavia jälkikäsittelytoimenpiteitä: tuotantohitsaus lämpökäsittely koneistus pintakäsittely Tuotantohitsaus Tuotantohitsaus jakaantuu

Lisätiedot

Metallien plastinen deformaatio on dislokaatioiden liikettä

Metallien plastinen deformaatio on dislokaatioiden liikettä Metallien plastinen deformaatio on dislokaatioiden liikettä Särmädislokaatio 2 Ruuvidislokaatio 3 Dislokaation jännitystila Dislokaatioiden vuorovaikutus Jännitystila aiheuttaa dislokaatioiden vuorovaikutusta

Lisätiedot

Sulaperäiset valuviat

Sulaperäiset valuviat Sulaperäiset valuviat Seija Meskanen, Teknillinen korkeakoulu Pentti Toivonen, Teknillinen korkeakoulu Matkalla sulatusuuneilta valupaikalle sulan metallin lämpötila alenee aina. Tähän alenemiseen vaikuttavat

Lisätiedot

Raudan valmistus masuunissa

Raudan valmistus masuunissa Raudan valmistus masuunissa Valtaosa maailman rautamalmista valmistetaan raakaraudaksi masuuneissa. Pääosa raakaraudasta käytetään sulana teräksen valmistukseen. Masuuni on ikivanha keksintö. Todennäköisesti

Lisätiedot

Korjaushitsauskäsikirja

Korjaushitsauskäsikirja Korjaushitsauskäsikirja Osa 2, Hitsausohjeita OY ESAB Ruosilantie 18, 00390 HELSINKI puh. (09) 547 761, faksi (09) 547 7771, www.esab.fi Sisällys Osa 2, Hitsausohjeita Valuraudan hitsaus... 2-3 Huonosti

Lisätiedot

KJR-C2004 materiaalitekniikka. Harjoituskierros 3

KJR-C2004 materiaalitekniikka. Harjoituskierros 3 KJR-C2004 materiaalitekniikka Harjoituskierros 3 Tänään ohjelmassa 1. Tasapainopiirros 1. Tulkinta 2. Laskut 2. Faasimuutokset 3. Ryhmätyöt 1. Esitehtävän yhteenveto (palautetaan harkassa) 2. Ryhmätehtävä

Lisätiedot

Kon Harjoitus 8: Ruostumattomat teräkset. Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto

Kon Harjoitus 8: Ruostumattomat teräkset. Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto Kon-67.3110 Harjoitus 8: Ruostumattomat teräkset Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto EN AISI/SAE Tyyppi 1.4021 1.4301 1.4401 1.4460 304L 201 316LN 321H EN vs AISI/SAE tunnukset

Lisätiedot

2. Sulattamisen periaate

2. Sulattamisen periaate 2. Sulattamisen periaate Raimo Keskinen Pekka Niemi - Tampereen ammattiopisto Valamiseen tarvittava sula metalli saadaan aikaan sulattamalla sopivaa metalliromua tai metalliharkkoja sulatusuunissa. Sulattamiseen

Lisätiedot

Sisällysluettelo Kierretapit 43-67 UNC Kaikki hinnat ilman Alv.

Sisällysluettelo Kierretapit 43-67 UNC Kaikki hinnat ilman Alv. Sisällysluettelo Kierretapit 43-67 Kierretappien valintajärjestelmä ja ikonien merkitys 44-47 Metrinen kierre M 48-61 Metrinen hienokierre MF 62-65 UNC-kierre UNC 66 Putkikierre G 67 43 Kaikki hinnat ilman

Lisätiedot

TYÖVÄLINEIDEN KARKAISU

TYÖVÄLINEIDEN KARKAISU TYÖVÄLINEIDEN KARKAISU 12 bar 10 bar 10 bar Pakkaskarkaisu Teräksen karkaisun yhteydessä tehtävää kylmäkäsittelyä on perinteisesti kutsuttu pakkaskarkaisuksi. Pakkaskarkaisu tarkoittaa sitä että karkaisuhehkutuksen

Lisätiedot

Esipuhe. Helsingissä heinäkuussa 2004 Lämpökäsittelyn toimialaryhmä Teknologiateollisuus ry

Esipuhe. Helsingissä heinäkuussa 2004 Lämpökäsittelyn toimialaryhmä Teknologiateollisuus ry Lämpökäsittelyoppi Esipuhe Metallit ovat kiehtova materiaaliryhmä erityisesti siksi, että niiden ominaisuudet ovat muunneltavissa hyvin laajasti. Metalleja voidaan seostaa keskenään, mutta ennen kaikkea

Lisätiedot

Ferriittiset ruostumattomat teräkset ja niiden hitsaus. May 12, 2011 www.outokumpu.com

Ferriittiset ruostumattomat teräkset ja niiden hitsaus. May 12, 2011 www.outokumpu.com Ferriittiset ruostumattomat teräkset ja niiden hitsaus May 12, 2011 www.outokumpu.com Ruostumattomat teräkset Ferriittisten ominaisuudet Ferriittisten hitsaus 2 12.5.2011 Hannu-Pekka Heikkinen Ruostumaton

Lisätiedot

Luento 3. Kon Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto

Luento 3. Kon Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto Luento 3 Kon-67.3110 Teräkset DI Timo Kiesi Koneenrakennuksen materiaalitekniikka Aalto-yliopisto Seosaineiden liuoslujittava vaikutus ferriittiin Seosaineiden vaikutus Fe-C tasapainopiirrokseen Honeycombe

Lisätiedot

Metalliseokset. Alumiiniseokset. ValuAtlas Suunnittelijan perusopas Seija Meskanen, Tuula Höök

Metalliseokset. Alumiiniseokset. ValuAtlas Suunnittelijan perusopas Seija Meskanen, Tuula Höök Metalliseokset Seija Meskanen Teknillinen korkeakoulu Tuula Höök Tampereen teknillinen yliopisto Alumiiniseokset Eri tavoin seostettu alumiini sopii kaikkiin yleisimpiin valumenetelmiin. Alumiiniseoksia

Lisätiedot

LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta Konetekniikan koulutusohjelma

LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta Konetekniikan koulutusohjelma LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta Konetekniikan koulutusohjelma HAMMASPYÖRÄN HAMPAAN TÄYTEHITSAUS REPAIR WELDING A SPROCKET OF A GEARWHEEL Lappeenrannassa 27.04.2012 Leevi Paajanen

Lisätiedot

HITSAUSVIRTALÄHTEEN OHJAUS LÄMMÖNTUONNIN JA JATKUVAN JÄÄHTYMISEN S-KÄYRÄN PERUSTEELLA

HITSAUSVIRTALÄHTEEN OHJAUS LÄMMÖNTUONNIN JA JATKUVAN JÄÄHTYMISEN S-KÄYRÄN PERUSTEELLA LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta Konetekniikan koulutusohjelma Severi Iso-Markku HITSAUSVIRTALÄHTEEN OHJAUS LÄMMÖNTUONNIN JA JATKUVAN JÄÄHTYMISEN S-KÄYRÄN PERUSTEELLA Työn tarkastajat:

Lisätiedot

Vapaataontapuristimien puristusvoima on 80/100, 55 ja 20 meganewtonia. Niillä voidaan takoa jopa 160 tonnin painoisia kappaleita.

Vapaataontapuristimien puristusvoima on 80/100, 55 ja 20 meganewtonia. Niillä voidaan takoa jopa 160 tonnin painoisia kappaleita. www.polarputki.fi 2 aksalainen Buderus Edelstahl GmbH on Euroopan johtavia korkealaatuisten vaihde- ja erikoisterästen valmistajia. Buderuksen kokemus erikoisterästen valmistuksesta ja jalostuksesta tekee

Lisätiedot

Rauno Toppila. Kirjallisuusselvitys. Ferriittiset ruostumattomat teräkset

Rauno Toppila. Kirjallisuusselvitys. Ferriittiset ruostumattomat teräkset Rauno Toppila Kirjallisuusselvitys Ferriittiset ruostumattomat teräkset Kemi-Tornion ammattikorkeakoulun julkaisuja Sarja E. Työpapereita 1/2010 Rauno Toppila Kirjallisuusselvitys Ferriittiset ruostumattomat

Lisätiedot

10. Valuraudan sulatus ja käsittely

10. Valuraudan sulatus ja käsittely 10. Valuraudan sulatus ja käsittely Raimo Keskinen Pekka Niemi - Tampereen ammattiopisto Valuraudan hiilipitoisuus on korkea, yleensä 2,4 3,6 % ja se on noin 10 15 kertainen teräksen hiilipitoisuuteen

Lisätiedot

Pehmeä magneettiset materiaalit

Pehmeä magneettiset materiaalit Pehmeä magneettiset materiaalit Timo Santa-Nokki Pehmeä magneettiset materiaalit Johdanto Mittaukset Materiaalit Rauta-pii seokset Rauta-nikkeli seokset Rauta-koboltti seokset Amorfiset materiaalit Nanomateriaalit

Lisätiedot

Rautametallien sulametallurgia

Rautametallien sulametallurgia Rautametallien sulametallurgia Seija Meskanen, Teknillinen korkeakoulu Pentti Toivonen, Teknillinen korkeakoulu Johdanto Induktiouuneista keskitaajuusuuneja käytetään valurautojen sulatukseen. Verkkotaajuusuunit

Lisätiedot

Rautametallien sulatuksen raaka ja apuaineet 1

Rautametallien sulatuksen raaka ja apuaineet 1 Rautametallien sulatuksen raaka ja apuaineet Seija Meskanen, Teknillinen korkeakoulu Pentti Toivonen, Teknillinen korkeakoulu Valuraudan ja valuteräksen raaka ainekanta muodostuu metallisista raaka aineista,

Lisätiedot

LPK / Oulun yliopisto

LPK / Oulun yliopisto 1 Coal Raahe Works Production Flow Limestone Plate rolling Direct quenching and Marking Normalising furnace Lime kilns Pusher type slab reheating furnaces Plate mill Pre-leveller accelerated cooling Hot

Lisätiedot

Mak Materiaalitieteen perusteet

Mak Materiaalitieteen perusteet Mak-45.310 tentit Mak-45.310 Materiaalitieteen perusteet 1. välikoe 24.10.2000 1. Vertaile ionisidokseen ja metalliseen sidokseen perustuvien materiaalien a) sähkönjohtavuutta b) lämmönjohtavuutta c) diffuusiota

Lisätiedot

Lastuavat työkalut A V A 2007/2008

Lastuavat työkalut A V A 2007/2008 Lastuavat työkalut 2007/2008 Jyrsimiä Poranteriä Kierretappeja Maailmanlaajuisesti lastuavia työkaluja Pyöriviä viiloja YG-1 CO., LTD. SISÄLLYSLUETTELO Poranterät pikateräksestä ja kovametallista 2-38

Lisätiedot

MIG 350 DIN 8555: MSG 2 GZ 350 kovahitsaus, koneistettavaa... 3-2 MIG 600 DIN 8555: MSG 6 GZ 60 iskut, hankauskuluminen. 3-3

MIG 350 DIN 8555: MSG 2 GZ 350 kovahitsaus, koneistettavaa... 3-2 MIG 600 DIN 8555: MSG 6 GZ 60 iskut, hankauskuluminen. 3-3 MIG-hitsauslangat KOVAHITSAUS MIG 350 DIN 8555: MSG 2 GZ 350 kovahitsaus, koneistettavaa..... 3-2 MIG 600 DIN 8555: MSG 6 GZ 60 iskut, hankauskuluminen. 3-3 RUOSTUMATTOMAT MIG 307Si AWS A5.9: ~ ER307 sekaliitos

Lisätiedot

17VV VV Veden lämpötila 14,2 12,7 14,2 13,9 C Esikäsittely, suodatus (0,45 µm) ok ok ok ok L. ph 7,1 6,9 7,1 7,1 RA2000¹ L

17VV VV Veden lämpötila 14,2 12,7 14,2 13,9 C Esikäsittely, suodatus (0,45 µm) ok ok ok ok L. ph 7,1 6,9 7,1 7,1 RA2000¹ L 1/5 Boliden Kevitsa Mining Oy Kevitsantie 730 99670 PETKULA Tutkimuksen nimi: Kevitsan vesistötarkkailu 2017, elokuu Näytteenottopvm: 22.8.2017 Näyte saapui: 23.8.2017 Näytteenottaja: Eerikki Tervo Analysointi

Lisätiedot

UDDEHOLM VANCRON 40 1 (6) Työkaluteräksen kriittiset ominaisuudet. Yleistä. Ominaisuudet. Käyttökohteet. Työkalun suorituskyvyn kannalta

UDDEHOLM VANCRON 40 1 (6) Työkaluteräksen kriittiset ominaisuudet. Yleistä. Ominaisuudet. Käyttökohteet. Työkalun suorituskyvyn kannalta 1 (6) Työkaluteräksen kriittiset ominaisuudet Työkalun suorituskyvyn kannalta Monissa kylmätyösovelluksissa työkalut on pintakäsitelty kiinnileikkautumisen ja adhesiivisen kulumisen estämiseksi. Ennenaikaisen

Lisätiedot

Laatutason määrittely ja laatustandardit - Valurauta

Laatutason määrittely ja laatustandardit - Valurauta Laatutason määrittely ja laatustandardit - Valurauta Valunhankinta-koulutus 15.-16.3.2007 Marko Riihinen Metso Foundries Jyväskylä Oy Rautavalussa mahdollisesti esiintyviä valuvirheitä Muoto: IV + V ~40

Lisätiedot

Polarputki kumppanina takaa korkean laadun pyöröteräsvalinnoissa Polarputki on toimittanut pyöröteräksiä suomalaisille

Polarputki kumppanina takaa korkean laadun pyöröteräsvalinnoissa Polarputki on toimittanut pyöröteräksiä suomalaisille www.polarputki.fi 2 3 aksalainen Buderus Edelstahl GmbH on Euroopan johtavia korkealaatuisten vaihde- ja erikoisterästen valmistajia. Buderuksen kokemus erikoisterästen valmistuksesta ja jalostuksesta

Lisätiedot

TERÄSTEN STANDARDINMUKAISET SEOSAINEPITOISUUDET JA NIIDEN VAIHTELUIDEN VAIKUTUS HITSATTAVUUTEEN

TERÄSTEN STANDARDINMUKAISET SEOSAINEPITOISUUDET JA NIIDEN VAIHTELUIDEN VAIKUTUS HITSATTAVUUTEEN LAPPEENRANNAN TEKNILLINEN YLIOPISTO Teknillinen tiedekunta Konetekniikan koulutusohjelma BK10A0400 Kandidaatintyö ja seminaari TERÄSTEN STANDARDINMUKAISET SEOSAINEPITOISUUDET JA NIIDEN VAIHTELUIDEN VAIKUTUS

Lisätiedot

Terästen lämpökäsittelyt

Terästen lämpökäsittelyt Terästen lämpökäsittelyt Teräkseen halutaan käyttötarkoituksen mukaan erilaisia ominaisuuksia. Jossain tapauksessa teräksestä tehdyn kappaleen tulee olla kovaa ja kulutusta kestävää, joskus taas sitkeää

Lisätiedot

Alumiinin ominaisuuksia

Alumiinin ominaisuuksia Alumiini Alumiini Maaperän yleisin metalli Kuuluu kevytmetalleihin Teräksen jälkeen käytetyin metalli Käytetty n. 110 v. Myrkytön Epämagneettinen Kipinöimätön 1 Alumiinin ominaisuuksia Tiheys, ~ teräs/3

Lisätiedot

UDDEHOLM CALDIE 1 (6) Yleistä. Ominaisuudet. Fysikaaliset ominaisuudet. Käyttökohteet. Puristuslujuus. Lohkeilunkestävyys. Kylmätyöstösovellukset

UDDEHOLM CALDIE 1 (6) Yleistä. Ominaisuudet. Fysikaaliset ominaisuudet. Käyttökohteet. Puristuslujuus. Lohkeilunkestävyys. Kylmätyöstösovellukset 1 (6) Yleistä Uddeholm Caldie on kromi/molybdeeni/vanadiini seosteinen teräs, jonka ominaisuuksia ovat erittäin hyvä lohkeilun- ja halkeilun kestävyys hyvä kulumiskestävyys suuri kovuus (> 60 HRC) korkeassa

Lisätiedot

Sulzer Pumps. Valumateriaalit. The Heart of Your Process

Sulzer Pumps. Valumateriaalit. The Heart of Your Process Sulzer Pumps Valumateriaalit The Heart of Your Process Sulzer Pumps palvelee asiakkaitaan yhä paremmin Sulzer Pumps on maailman johtavia pumpputoimittajia, joka tarjoaa luotettavia ja innovatiivisia pumppausratkaisuja

Lisätiedot

Korkeiden lämpötilojen teräkset

Korkeiden lämpötilojen teräkset Timo Kauppi Korkeiden lämpötilojen teräkset Kirjallisuustutkimus Kemi-Tornion ammattikorkeakoulun julkaisuja Sarja B. Raportit ja selvitykset 12/2013 Korkeiden lämpötilojen teräkset Timo Kauppi Korkeiden

Lisätiedot

Luento 1. Muutama vuosi historiaa

Luento 1. Muutama vuosi historiaa Luento 1 Muutama vuosi historiaa Kipsi ja keramiikka Kipsi CaCO 3 = CaO + CO 2 CaO + H 2 O = Ca(OH) 2 Ca(OH) 2 + CO 2 = CaCO 3 + H 2 O Lämmön lähteenä puu Keramiikka Polttamalla savea saadaan valmistettua

Lisätiedot

Tarkastusmenetelmät. ValuAtlas Suunnittelijan perusopas Seija Meskanen, Tuula Höök

Tarkastusmenetelmät. ValuAtlas Suunnittelijan perusopas Seija Meskanen, Tuula Höök Tarkastusmenetelmät Tuula Höök, Tampereen teknillinen yliopisto Seija Meskanen, Teknillinen korkeakoulu Valimossa tarkastetaan valukappaleet niiltä osin kuin asiakas on tilauksen yhteydessä esittänyt vaatimuksia.

Lisätiedot

Prosessi- ja ympäristötekniikan perusta

Prosessi- ja ympäristötekniikan perusta Prosessi- ja ympäristötekniikan perusta Aihe 2: Materiaalitaseet Tavoite Tavoitteena on oppia tasetarkastelun käsite ja oppia tuntemaan, miten materiaalitaseita voidaan hyödyntää kokonaisprosessien sekä

Lisätiedot