Sanaluokkajäsennystä rinnakkaisilla transduktoreilla

Save this PDF as:
 WORD  PNG  TXT  JPG

Koko: px
Aloita esitys sivulta:

Download "Sanaluokkajäsennystä rinnakkaisilla transduktoreilla"

Transkriptio

1 Sanaluokkajäsennystä rinnakkaisilla transduktoreilla Nykykielten laitos FIN-CLARIN-seminaarissa 4. marraskuuta 2010

2 Sanaluokkajäsennys Mr. Gelbert also has fun with language. NNP NNP RB VBZ NN IN NN. Sanaluokkajäsennin määrittää jokaiselle tekstin sanalle sanaluokan ja taivutusmuodon. Sanaluokkajäsentimestä on hyötyä: lauseenjäsennyksessä. oikeinkirjoituksen ja kieliopin tarkistuksessa. puhesynteesissä. tiedonhaussa.

3 Sanaluokkajäsennys Sanaluokkajäsentimet ovat usein joko sääntöpohjaisia tai tilastollisia. Sääntöpohjainen sanaluokkajäsennin on usein nopea ja vaatii vähän muistia. Sen kehittäminen voi kuitenkin olla hidasta. Tilastollisen sanaluokkajäsentimen kehittäminen on nopeaa kunhan saatavilla on riittävästi opetusaineistoa. Tilastolliset jäsentimet vievät kuitenkin paljon muistia ja saattavat olla hitaita.

4 Sanaluokkajäsennys Päämääränä hybridijäsennin Hybridijäsennin yhdistää tilastollisen ja sääntöpohjaisen sanaluokkajäsentämisen. Onnistuneessa hybridijäsentimessä opetusaineistoa tarvitaan vähemmän kuin puhtaasti tilastollisessa sanaluokkajäsentimessä Hybridijäsentimen puutteita korjataan kirjoittamalla sääntöjä joita tarvitaan vähemmän kuin sääntöpohjaisessa jäsentimessä, koska suurin osa työstä hoidetaan tilastollisella mekanismilla. Miten tilastollinen ja lingvistinen tieto yhdistetään?

5 Markovin piilomalli perustana on Markovin piilomalli. Markovin piilomalli luokittelee jonomaisen datan alkiota (esim. virkkeen sanoja). Mr. Gelbert also has fun with language. NNP NNP RB VBZ NN IN NN. Usein käytetty toisen asteen Markovin piilomalli päättelee sanaluokkatulkinnan (VBZ) sanamuodon (has) ja kahden edeltävän sanan sanaluokkatulkinnan (NNP ja RB) perusteella.

6 Markovin piilomalli Kolmen sanaluokkatunnuksen mittaiset jonot ovat harvinaisia. Tästä syystä Markovin piilomalli sisältää tietoa myös yhden ja kahden tunnuksen mittaisista jonoista. Mikäli tunnusjono NNP RB VBZ ei esiintynyt mallin opetusaineistossa, malli arvioi jonon todennäköisyyttä kahden mittaisten tunnusjonojen NNP RB ja RB VBZ avulla. Tällainen varmistusmalli voidaan toteuttaa joko tukeutuen lyhyempiin jonoihin vain mikäli pidempiä ei ollut opetusaineistossa tai laskemalla tunnuksen todennäköisyys aina yhdistelmänä pitkistä ja lyhyistä tunnusjonoista.

7 Transduktorit Sanaluokkajäsennin on toteutettu käyttämällä transduktoreita. Transduktorit ovat tapa esittää malleja, jotka kuvaavat jonomaista dataa. Niillä voi vaikkapa toteuttaa mallin joka kuvaa kaikkia kielen virkkeitä. 0 <fail>:<fail> 1 NNP:NNP <fail>:<fail>/1 NNP:NNP <empty>:<empty> RB:RB <fail>:<fail>/1 NNP:NNP <fail>:<fail> <fail>:<fail>/ <fail>:<fail> <fail>:<fail> <fail>:<fail> Painollisilla transduktoreilla voi esittää tilastollisia malleja kuten Markovin piilomalleja mutta myös kielioppisääntöjä

8 Mr. Gelbert also has fun with language. Tilastollinen malli Leksikko Arvain 3 gram malli 2 gram malli 1 gram malli Mr. Gelbert also has fun with language. NNP NNP RB VBZ NN IN NN.

9 Leksikko Leksikko sisältää tiedon siitä mitkä sanaluokkatunnukset todennäköisesti ovat oikeita sanoille. Todennäköisyyslaskentaan liittyvistä syistä leksikko ei anna sanoille sanaluokkatunnusten jakaumaa P(tunnus sana). Sen sijaan se kertoo sanaluokkatunnuksille sanojen jakauman P(sana tunnus). Leksikko on toteutettu hfst-kirjaston optimized lookup -muodossa, joten sen käyttäminen on hyvin nopeaa.

10 Arvain Osa sanaluokkatunnusten jakaumista varataan tuntemattomille sanoille. Arvaaminen: 1 Sana detection ei esiintynyt opetusaineistossa. 2 Opetusaineistossa esiintyi kumminkin sana protection, joka sai aina analyysin NN. 3 Sanoilla on pitkä yhteinen pääte -tection, joten on järkevää olettaa että sanat esiintyvät suurin piirtein yhtä usein tunnuksen NN kanssa. 4 Arvaaminen on epätarkkaa, joten muutkin tunnukset kuin NN ovat mahdollisia vaikka epätodennäköisiä. Lopullinen arvaus kullekin sanaluokkatunnukselle on yhdistelmä päätejakaumista päätteille -n, -on,..., -tection.

11 Yleinen n-gram -malli Mr. Gelbert also has fun with language. NNP NNP RB VBZ NN IN NN. N-gram-malli arvioi sanaluokkatunnuksen (esim. VBZ) esiintymistodennäköisyyttä aiempien tunnusten (esim. RB ja NNP) perusteella. Tällä hetkellä käytetään rinnakkain malleja, jotka arvioivat todennäköisyyttä edellisen ja kahden edellisen tunnuksen perusteella. Lisäksi käytetään tietoa tunnusten jakaumista ilman kontekstia. N-gram-mallin antama lopullinen arvio todennäköisyydelle on lineaarinen yhdistelmä osamallien antamista todennäköisyyksistä.

12 Tarkkuus ja suoritusaika Tarkkuus on tällä hetkellä 96.12% kun jäsennetään Penn Treebank -korpusta. Vertailuna perinteisesti toteutettu Markovin malli TNT-jäsennin pääsee tarkkuuteen 96.46%. Ero 0.34 %-yksikköä tarkoittaa että 300 sanaa kohti tehdään noin yksi virhe enemmän. Jäsentimen nopeus on tällä hetkellä noin 2000 sanaa sekunnissa (eli Seitsemän veljestä 45 sekunnissa). Tätä voi kuitenkin parantaa.

13 Sanaluokkajäsenninkirjasto Piakkoin julkaistaan hfst-rajapinnan avulla toteutettu kirjasto, jolla voi rakentaa muunkinlaisia tilastollisia malleja kuin toisen asteen Markovin malleja. n avulla voi esimerkiksi tehdä n-gram-mallin joka käyttää perusmuotoja ja sanamuotoja n-grammeissa tai n-grammeja joissa on aukkoja. Mitään erityistä tietoa tilastollisista menetelmistä tai transduktoreista ei tarvita jäsentimien rakentamisessa, koska tämä tieto on sisäänttuna kirjastoon.

14 Selvittämättömiä kysymyksiä liittyen tilastolliseen malliin: Kannattaako ta hyödyntää myös harvinaisten sanojen kanssa, joita esiintyi opetusaineistossa? Montako arvausta arvaimelta kannattaa pyytää? Miten eri mallit painotetaan automaattisesti?

15 Kielioppisääntöjen yhdistäminen tilastolliseen malliin. Mielenkiintoinen kysymys on miten tilastollinen tieto saadaan käytettyä jäsentämisen nopeuttamiseen. Lauseopillinen jäsentäminen.

16 Kiitos!

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30.

FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30. FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa Luentokuulustelujen esimerkkivastauksia Pertti Palo 30. marraskuuta 2012 Saatteeksi Näiden vastausten ei ole tarkoitus olla malleja vaan esimerkkejä.

Lisätiedot

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi.

1 + b t (i, j). Olkoon b t (i, j) todennäköisyys, että B t (i, j) = 1. Siis operaation access(j) odotusarvoinen kustannus ajanhetkellä t olisi. Algoritmien DP ja MF vertaileminen tapahtuu suoraviivaisesti kirjoittamalla kummankin leskimääräinen kustannus eksplisiittisesti todennäköisyyksien avulla. Lause T MF ave = 1 + 2 1 i

Lisätiedot

T Luonnollisen kielen tilastollinen käsittely Vastaukset 5, ti , 8:30-10:00 N-grammikielimallit, Versio 1.1

T Luonnollisen kielen tilastollinen käsittely Vastaukset 5, ti , 8:30-10:00 N-grammikielimallit, Versio 1.1 T-6.28 Luonnollisen kielen tilastollinen käsittely Vastaukset 5, ti 24.2.2004, 8:30-0:00 N-grammikielimallit, Versio.. Alla on erään henkilön ja tilaston estimaatit sille, miten todennäköistä on, että

Lisätiedot

1 Bayesin teoreeman käyttö luokittelijana

1 Bayesin teoreeman käyttö luokittelijana 1 Bayesin teoreeman käyttö luokittelijana Bayesin kaavan mukaan merkityksen kontekstille c ehdollistettu todennäkköisyys voidaan määrittää alla olevan yhtälön perusteella: P ( c) = P (c )P ( ) P (c) (1)

Lisätiedot

Kielellisen datan käsittely ja analyysi tutkimuksessa

Kielellisen datan käsittely ja analyysi tutkimuksessa Kielellisen datan käsittely ja analyysi tutkimuksessa Kimmo Koskenniemi 4.4.2007 Yleisen kielitieteen laitos Humanistinen tiedekunta Kielidataa on monenlaista Tekstiä erilaisista lähteistä kirjoista, lehdistä,

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS LUONNOLLISEN KIELEN KÄSITTELY (NATURAL LANGUAGE PROCESSING, NLP) TEKOÄLYSOVELLUKSET, JOTKA LIITTYVÄT IHMISTEN KANSSA (TAI IHMISTEN VÄLISEEN) KOMMUNIKAATIOON, OVAT TEKEMISISSÄ

Lisätiedot

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0503 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Frekventistiset vs. bayeslaiset menetelmät Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2006) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Tilastotiede ottaa aivoon

Tilastotiede ottaa aivoon Tilastotiede ottaa aivoon kuinka aivoja voidaan mallintaa todennäköisyyslaskennalla, ja mitä yllättävää hyötyä siitä voi olla Aapo Hyvärinen Laskennallisen data-analyysin professori Matematiikan ja tilastotieteen

Lisätiedot

T Luonnollisten kielten tilastollinen käsittely Vastaukset 5, ti , 16:15-18:00 N-grammikielimallit, Versio 1.0

T Luonnollisten kielten tilastollinen käsittely Vastaukset 5, ti , 16:15-18:00 N-grammikielimallit, Versio 1.0 T-61.281 Luonnollisten kielten tilastollinen käsittely Vastaukset 5, ti 25.2.2003, 16:15-18:00 N-grammikielimallit, Versio 1.0 1. Alla on erään henkilön ja tilaston estimaatit sille, miten todennäköistä

Lisätiedot

https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014

https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014 1 MTTTP3 Tilastollisen päättelyn perusteet 2 Luennot 8.1.2015 ja 13.1.2015 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014

Lisätiedot

Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava. TKK (c) Ilkka Mellin (2005) 1 Johdatus todennäköisyyslaskentaan Kokonaistodennäköisyys ja Bayesin kaava TKK (c) Ilkka Mellin (2005) 1 Kokonaistodennäköisyys ja Bayesin kaava Kokonaistodennäköisyys ja Bayesin kaava: Johdanto Kokonaistodennäköisyyden

Lisätiedot

Esimerkki: Tietoliikennekytkin

Esimerkki: Tietoliikennekytkin Esimerkki: Tietoliikennekytkin Tämä Mathematica - notebook sisältää luennolla 2A (2..26) käsitellyn esimerkin laskut. Esimerkin kuvailu Tarkastellaan yksinkertaista mallia tietoliikennekytkimelle. Kytkimeen

Lisätiedot

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2014 Harjoitus 4 Ratkaisujen viimeinen palautuspäivä: pe 662014 klo 1930 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun

Lisätiedot

Osa 2: Otokset, otosjakaumat ja estimointi

Osa 2: Otokset, otosjakaumat ja estimointi Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi TKK (c) Ilkka Mellin (2007) 1 Estimointi >> Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin

Lisätiedot

Ongelma(t): Miten jollakin korkeamman tason ohjelmointikielellä esitetty algoritmi saadaan suoritettua mikro-ohjelmoitavalla tietokoneella ja siinä

Ongelma(t): Miten jollakin korkeamman tason ohjelmointikielellä esitetty algoritmi saadaan suoritettua mikro-ohjelmoitavalla tietokoneella ja siinä Ongelma(t): Miten jollakin korkeamman tason ohjelmointikielellä esitetty algoritmi saadaan suoritettua mikro-ohjelmoitavalla tietokoneella ja siinä olevilla komponenteilla? Voisiko jollakin ohjelmointikielellä

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat

Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Kokonaistodennäköisyyden ja Bayesin kaavat TKK (c) Ilkka Mellin (2007) 1 Kokonaistodennäköisyys ja Bayesin kaava >> Kokonaistodennäköisyys

Lisätiedot

Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin Yliopisto Harjoitus 1, ratkaisuehdotukset

Todennäköisyyslaskenta I, kesä 2017 Helsingin yliopisto/avoin Yliopisto Harjoitus 1, ratkaisuehdotukset Todennäköisyyslaskenta I, kesä 207 Helsingin yliopisto/avoin Yliopisto Harjoitus, ratkaisuehdotukset. Kokeet ja Ω:n hahmottaminen. Mitä tarkoittaa todennäköisyys on? Olkoon satunnaiskokeena yhden nopan

Lisätiedot

CLT131: Tekstityökalut 2011, viides luento

CLT131: Tekstityökalut 2011, viides luento CLT131: Tekstityökalut 2011, viides luento Tommi A Pirinen tommi.pirinen+clt131@helsinki.fi Helsingin yliopisto Kieliteknologian oppiaine, Nykykielten laitos 30. marraskuuta 2011 tommi.pirinen+clt131@helsinki.fi

Lisätiedot

1. Esitä rekursiivinen määritelmä lukujonolle

1. Esitä rekursiivinen määritelmä lukujonolle Matematiikan laitos Johdatus Diskrettiin Matematiikkaan Harjoitus 4 24.11.2011 Ratkaisuehdotuksia Aleksandr Pasharin 1. Esitä rekursiivinen määritelmä lukujonolle (a) f(n) = (2 0, 2 1, 2 2, 2 3, 2 4,...)

Lisätiedot

Avainsanojen poimiminen Eeva Ahonen

Avainsanojen poimiminen Eeva Ahonen Avainsanojen poimiminen 5.10.2004 Eeva Ahonen Sisältö Avainsanat Menetelmät C4.5 päätöspuut GenEx algoritmi Bayes malli Testit Tulokset Avainsanat Tiivistä tietoa dokumentin sisällöstä ihmislukijalle hakukoneelle

Lisätiedot

Poikkeavuuksien havainnointi (palvelinlokeista)

Poikkeavuuksien havainnointi (palvelinlokeista) Poikkeavuuksien havainnointi (palvelinlokeista) TIES326 Tietoturva 2.11.2011 Antti Juvonen Sisältö IDS-järjestelmistä Datan kerääminen ja esiprosessointi Analysointi Esimerkki Lokidatan rakenne Esikäsittely,

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti

Lisätiedot

Järvitesti Ympäristöteknologia T571SA 7.5.2013

Järvitesti Ympäristöteknologia T571SA 7.5.2013 Hans Laihia Mika Tuukkanen 1 LASKENNALLISET JA TILASTOLLISET MENETELMÄT Järvitesti Ympäristöteknologia T571SA 7.5.2013 Sarkola Eino JÄRVITESTI Johdanto Järvien kuntoa tutkitaan monenlaisilla eri menetelmillä.

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-5 Todennäköisyyslaskenta Tentti.. / Kimmo Vattulainen Vastaa jokainen tehtävä eri paperille. Funktiolaskin sallittu.. a) P A). ja P A B).6. Mitä on P A B), kun A ja B ovat riippumattomia b) Satunnaismuuttujan

Lisätiedot

Harjoitus 7: NCSS - Tilastollinen analyysi

Harjoitus 7: NCSS - Tilastollinen analyysi Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen

Lisätiedot

Avoimen lähdekoodin kaksitasokielioppikääntäjä

Avoimen lähdekoodin kaksitasokielioppikääntäjä Avoimen lähdekoodin kaksitasokielioppikääntäjä Miikka Silfverberg miikka piste silfverberg at helsinki piste fi Kieliteknologia Helsingin yliopisto Avoimen lähdekoodin kaksitasokielioppikääntäjä p.1/23

Lisätiedot

jäsentämisestä TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho 27. marraskuuta 2015 TIETOTEKNIIKAN LAITOS

jäsentämisestä TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho 27. marraskuuta 2015 TIETOTEKNIIKAN LAITOS TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 27. marraskuuta 2015 Sisällys Rekursiivisesti etenevä engl. recursive descent parsing Tehdään kustakin välikesymbolista

Lisätiedot

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:

Lisätiedot

Liikenneteorian tehtävä

Liikenneteorian tehtävä J. Virtamo 38.3141Teleliikenneteoria / Johdanto 1 Liikenneteorian tehtävä Määrää kolmen eri tekijän väliset riippuvuudet palvelun laatu järjestelmä liikenne Millainen käyttäjän kokema palvelun laatu on

Lisätiedot

T Luonnollisen kielen tilastollinen käsittely Vastaukset 8, ti , 8:30-10:00 Tilastolliset yhteydettömät kieliopit, Versio 1.

T Luonnollisen kielen tilastollinen käsittely Vastaukset 8, ti , 8:30-10:00 Tilastolliset yhteydettömät kieliopit, Versio 1. T-61.281 Luonnollisen kielen tilastollinen käsittely astaukset 8, ti 16.3.2004, 8:30-10:00 Tilastolliset yhteydettömät kielioit, ersio 1.0 1. Jäsennysuun todennäköisyys lasketaan aloittelemalla se säännöstön

Lisätiedot

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. 6.10.2015/1 MTTTP1, luento 6.10.2015 KERTAUSTA JA TÄYDENNYSTÄ Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS KUINKA RIKASTUA NAIVI BAYES FROM: "MARGARETTA NITA" SUBJECT: SPECIAL OFFER : VIAGRA ON SALE AT $1.38!!! X-BOGOSITY: YES, TESTS=BOGOFILTER, SPAMICITY=0.99993752,

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon ongelma p. 1/18 Puuttuvan tiedon ongelma pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto mtl.uta.fi/tilasto/sekamallit/puupitkit.pdf

Lisätiedot

jens 1 matti Etäisyydet 1: 1.1 2: 1.4 3: 1.8 4: 2.0 5: 3.0 6: 3.6 7: 4.0 zetor

jens 1 matti Etäisyydet 1: 1.1 2: 1.4 3: 1.8 4: 2.0 5: 3.0 6: 3.6 7: 4.0 zetor T-1.81 Luonnollisten kielten tilastollinen käsittely Vastaukset 11, ti 8.4., 1:1-18: Klusterointi, Konekääntäminen. Versio 1. 1. Kuvaan 1 on piirretty klusteroinnit käyttäen annettuja algoritmeja. Sanojen

Lisätiedot

811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto

811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto 811312A Tietorakenteet ja algoritmit 2015-2016 I Johdanto Sisältö 1. Algoritmeista ja tietorakenteista 2. Algoritmien analyysistä 811312A TRA, Johdanto 2 I.1. Algoritmeista ja tietorakenteista I.1.1. Algoritmien

Lisätiedot

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.

Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. 6.10.2016/1 MTTTP1, luento 6.10.2016 KERTAUSTA JA TÄYDENNYSTÄ Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla

Lisätiedot

Matemaatikot ja tilastotieteilijät

Matemaatikot ja tilastotieteilijät Matemaatikot ja tilastotieteilijät Matematiikka/tilastotiede ammattina Tilastotiede on matematiikan osa-alue, lähinnä todennäköisyyslaskentaa, mutta se on myös itsenäinen tieteenala. Tilastotieteen tutkijat

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 14. syyskuuta 2007 Antti Rasila () TodB 14. syyskuuta 2007 1 / 21 1 Kokonaistodennäköisyys ja Bayesin kaava Otosavaruuden ositus Kokonaistodennäköisyyden

Lisätiedot

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin

Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin lukuun 7 eli vapauden käsitteeseen ja homogeenisiin HY / Avoin yliopisto Lineaarialgebra ja matriisilaskenta I, kesä 2015 Harjoitus 4 Ratkaisut palautettava viimeistään maanantaina 862015 klo 1615 Tehtäväsarja I Seuraavat tehtävät liittyvät kurssimateriaalin

Lisätiedot

Esimerkkejä vaativuusluokista

Esimerkkejä vaativuusluokista Esimerkkejä vaativuusluokista Seuraaville kalvoille on poimittu joitain esimerkkejä havainnollistamaan algoritmien aikavaativuusluokkia. Esimerkit on valittu melko mielivaltaisesti laitoksella tehtävään

Lisätiedot

Tilastollinen päättely II, kevät 2017 Harjoitus 1A

Tilastollinen päättely II, kevät 2017 Harjoitus 1A Tilastollinen päättely II, kevät 207 Harjoitus A Heikki Korpela 23. tammikuuta 207 Tehtävä. Kertausta todennäköisyyslaskennasta. Ilmoita satunnaismuuttujan Y jakauman nimi ja pistetodennäköisyys- tai tiheysfunktio

Lisätiedot

pitkittäisaineistoissa

pitkittäisaineistoissa Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon

Lisätiedot

Seuraavassa taulukossa on annettu mittojen määritelmät ja sijoitettu luvut. = 40% = 67% 6 = 0.06% = 99.92% 6+2 = 0.

Seuraavassa taulukossa on annettu mittojen määritelmät ja sijoitettu luvut. = 40% = 67% 6 = 0.06% = 99.92% 6+2 = 0. T-6.28 Luonnollisen kielen tilastollinen käsittely Vastaukset, ti 7.2.200, 8:30-0:00 Tiedon haku, Versio.0. Muutetaan tehtävässä annettu taulukko sellaiseen muotoon, joka paremmin sopii ensimmäisten mittojen

Lisätiedot

Lukumummit ja -vaarit Sanavaraston kartuttamista kaunokirjallisuuden avulla

Lukumummit ja -vaarit Sanavaraston kartuttamista kaunokirjallisuuden avulla Kuka lukisi minut seminaari, Tampere 10.11.2017 Hanna Pöyliö, Niilo Mäki Instituutti Lukumummit ja -vaarit Sanavaraston kartuttamista kaunokirjallisuuden avulla @lukumummit 1 Hyvä sanastoharjoitus Sanasto

Lisätiedot

GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus

GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus Mitä jäi mieleen viime viikosta? Mitä mieltä olet tehtävistä, joissa GeoGebralla työskentely yhdistetään paperilla jaettaviin ohjeisiin

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

Lukemisvaikeuden arvioinnista kuntoutukseen. HYVÄ ALKU- messut Jyväskylä, Elisa Poskiparta, Turun yliopisto, Oppimistutkimuksen keskus

Lukemisvaikeuden arvioinnista kuntoutukseen. HYVÄ ALKU- messut Jyväskylä, Elisa Poskiparta, Turun yliopisto, Oppimistutkimuksen keskus Lukemisvaikeuden arvioinnista kuntoutukseen HYVÄ ALKU- messut Jyväskylä, 2.- 3.9. 2004 Elisa Poskiparta, Turun yliopisto, Oppimistutkimuksen keskus Tapa tunnistaa sanoja vaihtelee lukutaidon kehittymisen

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS KUINKA RIKASTUA NAIVI BAYES FROM: "MARGARETTA NITA" SUBJECT: SPECIAL OFFER : VIAGRA ON SALE AT $1.38!!! X-BOGOSITY: YES, TESTS=BOGOFILTER, SPAMICITY=0.99993752,

Lisätiedot

b) Määritä myös seuraavat joukot ja anna kussakin tapauksessa lyhyt sanallinen perustelu.

b) Määritä myös seuraavat joukot ja anna kussakin tapauksessa lyhyt sanallinen perustelu. Johdatus yliopistomatematiikkaan Helsingin yliopisto, matematiikan ja tilastotieteen laitos Kurssikoe 23.10.2017 Ohjeita: Vastaa kaikkiin tehtäviin. Ratkaisut voi kirjoittaa samalle konseptiarkille, jos

Lisätiedot

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen)

Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen) 1 MTTTP3 Luento 29.1.2015 Luku 6 Hypoteesien testaus Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? H 0 : µ = µ 0 H 1 : µ < µ 0 Nollahypoteesi Vaihtoehtoinen hypoteesi

Lisätiedot

Mat Sovellettu todennäköisyyslasku A

Mat Sovellettu todennäköisyyslasku A Mat-2.090 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Klassinen todennäköisyys ja kombinatoriikka Todennäköisyyden aksioomat Kokonaistodennäköisyys ja Bayesin kaava Bayesin kaava,

Lisätiedot

NÄYTÖN ARVIOINTI: SYSTEMAATTINEN KIRJALLISUUSKATSAUS JA META-ANALYYSI. EHL Starck Susanna & EHL Palo Katri Vaasan kaupunki 22.9.

NÄYTÖN ARVIOINTI: SYSTEMAATTINEN KIRJALLISUUSKATSAUS JA META-ANALYYSI. EHL Starck Susanna & EHL Palo Katri Vaasan kaupunki 22.9. NÄYTÖN ARVIOINTI: SYSTEMAATTINEN KIRJALLISUUSKATSAUS JA META-ANALYYSI EHL Starck Susanna & EHL Palo Katri Vaasan kaupunki 22.9.2016 Näytön arvioinnista Monissa yksittäisissä tieteellisissä tutkimuksissa

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

Digitalisoitu harjoitustehtävien ratkaisujen palautus sekä arviointi matematiikan ja tilastotieteen yliopisto-opinnoissa

Digitalisoitu harjoitustehtävien ratkaisujen palautus sekä arviointi matematiikan ja tilastotieteen yliopisto-opinnoissa Digitalisoitu harjoitustehtävien ratkaisujen palautus sekä arviointi matematiikan ja tilastotieteen yliopisto-opinnoissa Peda-forum -päivät, Vaasan yliopisto, 16. 17.8.2017 Joonas Nuutinen, Nea Rantanen

Lisätiedot

9 Yhteenlaskusääntö ja komplementtitapahtuma

9 Yhteenlaskusääntö ja komplementtitapahtuma 9 Yhteenlaskusääntö ja komplementtitapahtuma Kahta joukkoa sanotaan erillisiksi, jos niillä ei ole yhtään yhteistä alkiota. Jos pysytellään edelleen korttipakassa, niin voidaan ilman muuta sanoa, että

Lisätiedot

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly

Bayesin pelit. Kalle Siukola. MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly Bayesin pelit Kalle Siukola MS-E2142 Optimointiopin seminaari: Peliteoria ja tekoäly 12.10.2016 Toistetun pelin esittäminen automaatin avulla Ekstensiivisen muodon puu on tehoton esitystapa, jos peliä

Lisätiedot

Yhteistyötä sisältämätön peliteoria jatkuu

Yhteistyötä sisältämätön peliteoria jatkuu Yhteistyötä sisältämätön peliteoria jatkuu Tommi Lehtonen Optimointiopin seminaari - Syksy 2000 / 1 Bayesilainen tasapaino Täysi informaatio Vajaa informaatio Staattinen Nash Bayes Dynaaminen Täydellinen

Lisätiedot

Say it again, kid! - peli ja puheteknologia lasten vieraan kielen oppimisessa

Say it again, kid! - peli ja puheteknologia lasten vieraan kielen oppimisessa Say it again, kid! - peli ja puheteknologia lasten vieraan kielen oppimisessa Sari Ylinen, Kognitiivisen aivotutkimuksen yksikkö, käyttäytymistieteiden laitos, Helsingin yliopisto & Mikko Kurimo, signaalinkäsittelyn

Lisätiedot

Teema 8: Parametrien estimointi ja luottamusvälit

Teema 8: Parametrien estimointi ja luottamusvälit Teema 8: Parametrien estimointi ja luottamusvälit Todennäköisyyslaskennan perusteet (Teemat 6 ja 7) antavat hyvän pohjan siirtyä kurssin viimeiseen laajempaan kokonaisuuteen, nimittäin tilastolliseen päättelyyn.

Lisätiedot

Tilastollisen tutkimuksen vaiheet

Tilastollisen tutkimuksen vaiheet Tilastollisen tutkimuksen vaiheet Jari Päkkilä Johdatus tilastotieteeseen Matemaattisten tieteiden laitos TILASTOLLISEN TUTKIMUKSEN TARKOITUS Muodostaa mahdollisimman hyvä mielikuva havaintoaineistosta,

Lisätiedot

Aineistoista. Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin

Aineistoista. Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin Aineistoista 11.2.09 IK Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin Muotoilussa kehittyneet menetelmät, lähinnä luotaimet Havainnointi:

Lisätiedot

Todennäköisyyden ominaisuuksia

Todennäköisyyden ominaisuuksia Todennäköisyyden ominaisuuksia 0 P(A) 1 (1) P(S) = 1 (2) A B = P(A B) = P(A) + P(B) (3) P(A) = 1 P(A) (4) P(A B) = P(A) + P(B) P(A B) (5) Tapahtuman todennäköisyys S = {e 1,..., e N }. N A = A. Kun alkeistapaukset

Lisätiedot

Tässä luvussa käsitellään optimaalisten piirteiden valintaa, luokittelijan optimointia ja luokittelijan suorituskyvyn arviointia.

Tässä luvussa käsitellään optimaalisten piirteiden valintaa, luokittelijan optimointia ja luokittelijan suorituskyvyn arviointia. 1 Luokittelijan suorituskyvyn optimointi Tässä luvussa käsitellään optimaalisten piirteiden valintaa, luokittelijan optimointia ja luokittelijan suorituskyvyn arviointia. A. Piirteen valinnan menetelmiä

Lisätiedot

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 EB-TUTKINTO 2009 MATEMATIIKKA 5 VIIKKOTUNTIA PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009 KOKEEN KESTO: 4 tuntia (240 minuuttia) SALLITUT APUVÄLINEET: Eurooppa-koulun antama taulukkovihkonen Funktiolaskin, joka ei saa

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 3.3 Lineaarisen koodin dekoodaus Oletetaan, että lähetettäessä kanavaan sana c saadaan sana r = c + e, missä e on häiriön aiheuttama

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Tilastollisen merkitsevyyden testaus Osa II Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto

Lisätiedot

CUDA. Moniydinohjelmointi 17.4.2012 Mikko Honkonen

CUDA. Moniydinohjelmointi 17.4.2012 Mikko Honkonen CUDA Moniydinohjelmointi 17.4.2012 Mikko Honkonen Yleisesti Compute Unified Device Architecture Ideana GPGPU eli grafiikkaprosessorin käyttö yleiseen laskentaan. Nvidian täysin suljetusti kehittämä. Vuoden

Lisätiedot

OPS-MUUTOSINFO

OPS-MUUTOSINFO 1 OPS-MUUTOSINFO 3.9.201 Matemaattisten tieteiden tutkinto-ohjelma MUUTOKSEN TAUSTALLA 2 Oulun yliopiston strategia- ja rakennemuutokset Oulun yliopiston opetussuunnitelmatyön periaatteet o Opintojaksojen

Lisätiedot

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 4A Parametrien estimointi Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016, periodi

Lisätiedot

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen MAT-25 Todennäköisyyslaskenta Tentti 12.4.216 / Kimmo Vattulainen Funktiolaskin sallittu. Palauta kaavakokoelma 1. a) Pelaajat A ja B heittävät noppaa vuorotellen ja pelin voittaa se, joka saa ensimmäiseksi

Lisätiedot

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2010 Harjoitus Mitkä todennäköisyystulkinnat sopivat seuraaviin väitteisiin?

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2010 Harjoitus Mitkä todennäköisyystulkinnat sopivat seuraaviin väitteisiin? ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 200 Harjoitus Ratkaisuehdotuksia. Mitkä todennäköisyystulkinnat sopivat seuraaviin väitteisiin? (a) Todennäköisyys että kolikonheitossa saadaan lopulta

Lisätiedot

P (X B) = f X (x)dx. xf X (x)dx. g(x)f X (x)dx.

P (X B) = f X (x)dx. xf X (x)dx. g(x)f X (x)dx. Yhteenveto: Satunnaisvektorit ovat kuvauksia tn-avaruudelta seillaiselle avaruudelle, johon sisältyy satunnaisvektorin kaikki mahdolliset reaalisaatiot. Satunnaisvektorin realisaatio eli otos on jokin

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS NAIVI BAYES SPAM/HAM SANA 1 SANA 2 SANA 3 SANA 4 SANA 6 SANA 7 NAIVI BAYES SPAM/HAM SANA 1 P(SANA i =VIAGRA HAM) = 0.0001 P(SANA i =VIAGRA SPAM) = 0.002 TN, ETTÄ YKSITTÄINEN

Lisätiedot

Edistyksen päivät, Helsinki. Voiko tutkija muuttaa maailmaa? Humanistista meta-analyysiä merkitysneuvottelevien koneiden avulla.

Edistyksen päivät, Helsinki. Voiko tutkija muuttaa maailmaa? Humanistista meta-analyysiä merkitysneuvottelevien koneiden avulla. Edistyksen päivät, Helsinki Voiko tutkija muuttaa maailmaa? Humanistista meta-analyysiä merkitysneuvottelevien koneiden avulla Timo Honkela timo.honkela@helsinki.fi 5.10.2017 Taustaa: Rauhankone-konsepti

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

Tekstinlouhinnan mahdollisuudet Digin historiallisessa sanomalehtiaineistossa. Kimmo Kettunen Dimiko (Digra-projekti)

Tekstinlouhinnan mahdollisuudet Digin historiallisessa sanomalehtiaineistossa. Kimmo Kettunen Dimiko (Digra-projekti) Tekstinlouhinnan mahdollisuudet Digin historiallisessa sanomalehtiaineistossa Kimmo Kettunen Dimiko (Digra-projekti) Tekstinlouhinta Tekstinlouhinnassa pyritään saamaan tekstimassoista automaattisesti

Lisätiedot

Tässä lehdessä pääset kertaamaan Lohdutus-jakson asioita.

Tässä lehdessä pääset kertaamaan Lohdutus-jakson asioita. Tässä lehdessä pääset kertaamaan Lohdutus-jakson asioita. Turun kaupunginteatteri ja Hämeenlinnan teatteri. LOHDUTUS 2 KIELIOPIT ja TEATTERIT (virke, päälause, sivulause, päälauseiden yhdistäminen, päälauseen

Lisätiedot

Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Verkot ja todennäköisyyslaskenta

Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Verkot ja todennäköisyyslaskenta Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Verkot ja todennäköisyyslaskenta TKK (c) Ilkka Mellin (2005) 1 Verkot ja todennäköisyyslaskenta >> Puudiagrammit todennäköisyyslaskennassa:

Lisätiedot

Matematiikka ja teknologia, kevät 2011

Matematiikka ja teknologia, kevät 2011 Matematiikka ja teknologia, kevät 2011 Peter Hästö 13. tammikuuta 2011 Matemaattisten tieteiden laitos Tarkoitus Kurssin tarkoituksena on tutustuttaa ja käydä läpi eräisiin teknologisiin sovelluksiin liittyvää

Lisätiedot

Tieverkon kunnon stokastinen ennustemalli ja sen soveltaminen riskienhallintaan

Tieverkon kunnon stokastinen ennustemalli ja sen soveltaminen riskienhallintaan Mat 2.4177Operaatiotutkimuksenprojektityöseminaari Tieverkonkunnonstokastinenennustemallija sensoveltaminenriskienhallintaan Väliraportti 3/4/2009 Toimeksiantajat: PöyryInfraOy(PekkaMild) Tiehallinto(VesaMännistö)

Lisätiedot

Puhesynteesin perusteet: Lingvistinen esikäsittely

Puhesynteesin perusteet: Lingvistinen esikäsittely Puhesynteesin perusteet: Lingvistinen esikäsittely Nicholas Volk 24.1.2008 Käyttäytymistieteellinen tiedekunta Tekstin esikäsittely Jaetaan syöteen luettaviin saneisiin ja äännevastineettomiin välimerkkeihin

Lisätiedot

8.1. Tuloperiaate. Antti (miettien):

8.1. Tuloperiaate. Antti (miettien): 8.1. Tuloperiaate Katseltaessa klassisen todennäköisyyden määritelmää selviää välittömästi, että sen soveltamiseksi on kyettävä määräämään erilaisten joukkojen alkioiden lukumääriä. Jo todettiin, ettei

Lisätiedot

815338A Ohjelmointikielten periaatteet Harjoitus 2 vastaukset

815338A Ohjelmointikielten periaatteet Harjoitus 2 vastaukset 815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 2 vastaukset Harjoituksen aiheena on BNF-merkinnän käyttö ja yhteys rekursiivisesti etenevään jäsentäjään. Tehtävä 1. Mitkä ilmaukset seuraava

Lisätiedot

P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu

P(X = x T (X ) = t, θ) = p(x = x T (X ) = t) ei riipu tuntemattomasta θ:sta. Silloin uskottavuusfunktio faktorisoituu 1. Tyhjentävä tunnusluku (sucient statistics ) Olkoon (P(X = x θ) : θ Θ) todennäköisyysmalli havainnolle X. Datan funktio T (X ) on Tyhjentävä tunnusluku jos ehdollinen todennäköisyys (ehdollinen tiheysfunktio)

Lisätiedot

Sisällys. 3. Muuttujat ja operaatiot. Muuttujat ja operaatiot. Muuttujat. Operaatiot. Imperatiivinen laskenta. Muuttujat. Esimerkkejä: Operaattorit.

Sisällys. 3. Muuttujat ja operaatiot. Muuttujat ja operaatiot. Muuttujat. Operaatiot. Imperatiivinen laskenta. Muuttujat. Esimerkkejä: Operaattorit. 3. Muuttujat ja operaatiot Sisällys Imperatiivinen laskenta. Muuttujat. Nimi ja arvo. Muuttujan nimeäminen. Muuttujan tyyppi.. Operandit. Arvon sijoitus muuttujaan. Aritmeettiset operaattorit. Arvojen

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila Kalvoissa käytetään materiaalia P. Palon vuoden 2005 kurssista. 07.09.2007 Antti Rasila () SovTodB 07.09.2007 07.09.2007 1 / 24 1 Todennäköisyyslaskennan

Lisätiedot

X k+1 X k X k+1 X k 1 1

X k+1 X k X k+1 X k 1 1 Matematiikan ja tilastotieteen laitos Stokastiset differentiaaliyhtälöt Ratkaisuehdotelma Harjoitukseen 4 1. Oletetaan, että X n toteuttaa toisen kertaluvun differenssiyhtälön X k+2 2X k+1 + 2X k = ξ k,

Lisätiedot

Satunnaisalgoritmit. Topi Paavilainen. Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos

Satunnaisalgoritmit. Topi Paavilainen. Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Satunnaisalgoritmit Topi Paavilainen Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Helsinki, 23. helmikuuta 2014 1 Johdanto Satunnaisalgoritmit ovat algoritmeja, joiden

Lisätiedot

T Luonnollisten kielten tilastollinen käsittely Vastaukset 11, ke , 12:15 14:00 Puheentunnistus ja kielimallien evaluointi Versio 1.

T Luonnollisten kielten tilastollinen käsittely Vastaukset 11, ke , 12:15 14:00 Puheentunnistus ja kielimallien evaluointi Versio 1. T-61.020 Luonnollisten kielten tilastollinen käsittely Vastaukset 11, ke 18.4.2007, 12:1 14:00 Puheentunnistus ja kielimallien evaluointi Versio 1.0 1. Käytämme siis jälleen viterbi-algoritmia todennäköisimmän

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 18 1 Kertausta: momenttimenetelmä ja suurimman uskottavuuden menetelmä 2 Tilastollinen

Lisätiedot

Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat:

Mat Sovellettu todennäköisyyslasku. Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Mat-2.091 Sovellettu todennäköisyyslasku Aiheet: Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennan peruslaskusäännöt Avainsanat: Alkeistapahtuma, Ehdollinen todennäköisyys, Erotustapahtuma,

Lisätiedot

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Tilastollisten aineistojen kerääminen ja mittaaminen TKK (c) Ilkka Mellin (2005) 1 ja mittaaminen Tilastollisten aineistojen kerääminen Mittaaminen ja mitta-asteikot TKK (c)

Lisätiedot

Bayesilainen päätöksenteko / Bayesian decision theory

Bayesilainen päätöksenteko / Bayesian decision theory Bayesilainen päätöksenteko / Bayesian decision theory Todennäköisyysteoria voidaan perustella ilman päätösteoriaa, mutta vasta päätösteorian avulla siitä on oikeasti hyötyä Todennäköisyyteoriassa tavoitteena

Lisätiedot

MatTaFi projektin HAKA-pilotti

MatTaFi projektin HAKA-pilotti projektin HAKA-pilotti Matti Harjula matti.harjula@hut.fi Matematiikan ja systeemianalyysin laitos Teknillinen korkeakoulu 15. tammikuuta 2008 1 2 Materiaalin tuottajat ongelmana 3 Uusien sovellusten yksinkertaisempi

Lisätiedot

- Kummalla on vaaleammat hiukset? - Villellä on vaaleammat hiukset.

- Kummalla on vaaleammat hiukset? - Villellä on vaaleammat hiukset. MAI FRICK KOMPARAATIO ELI VERTAILU 1. Komparatiivi -mpi -mpa, -mma monikko: -mpi, -mmi - Kumpi on vanhempi, Joni vai Ville? - Joni on vanhempi kuin Ville. - Kummalla on vaaleammat hiukset? - Villellä on

Lisätiedot

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3 Mat-.9 Sovellettu todennäköisyyslasku A / Ratkaisut Aiheet: Avainsanat: Verkot todennäköisyyslaskennassa Satunnaismuuttujat ja todennäköisyysjakaumat Jakaumien tunnusluvut Kertymäfunktio, Momentit, Odotusarvo,

Lisätiedot

Asialista. CLT131: Tekstityökalut 2012, kymmenes luento. 2. frekvenssien muunnos todennäköisyyksiksi. 1. taulukkohaut

Asialista. CLT131: Tekstityökalut 2012, kymmenes luento. 2. frekvenssien muunnos todennäköisyyksiksi. 1. taulukkohaut Asialista CLT131: Tekstityökalut 2012, kymmenes luento Tommi A Pirinen tommi.pirinen+clt131@helsinki.fi Helsingin yliopisto Kieliteknologian oppiaine, Nykykielten laitos 1. helmikuuta 2012 tommi.pirinen+clt131@helsinki.fi

Lisätiedot

CLT131: Tekstityökalut 2012, kymmenes luento

CLT131: Tekstityökalut 2012, kymmenes luento CLT131: Tekstityökalut 2012, kymmenes luento Tommi A Pirinen tommi.pirinen+clt131@helsinki.fi Helsingin yliopisto Kieliteknologian oppiaine, Nykykielten laitos 1. helmikuuta 2012 tommi.pirinen+clt131@helsinki.fi

Lisätiedot