Tässä luvussa käsitellään optimaalisten piirteiden valintaa, luokittelijan optimointia ja luokittelijan suorituskyvyn arviointia.

Koko: px
Aloita esitys sivulta:

Download "Tässä luvussa käsitellään optimaalisten piirteiden valintaa, luokittelijan optimointia ja luokittelijan suorituskyvyn arviointia."

Transkriptio

1 1 Luokittelijan suorituskyvyn optimointi Tässä luvussa käsitellään optimaalisten piirteiden valintaa, luokittelijan optimointia ja luokittelijan suorituskyvyn arviointia. A. Piirteen valinnan menetelmiä Erottelukykyisten piirteiden ideoiminen on ratkaisevan tärkeää suorituskykyisen hahmontunnistusjärjestelmän suunnittelussa. Tämä ei kuitenkaan riitä, vaan lisäksi on suoritettava ns. piirteen valinta (feature selection), jossa haetaan annetusta piirrejoukosta luokat parhaitten erilleen saavat piirteet. Kaikkia laskettavissa olevia piirteitä ei yleensä voida valita mukaan piirrevektoriin, koska jokainen niistä lisää uusia parametreja luokittelijaan, mikä puolestaan edellyttää opetusaineiston määrän kasvattamista tilastollisten mallien kiinnittämiseksi. Käytännön sovelluksissa opetusaineistoa on työlästä hankkia suuria määriä, joten kiinnitettävien parametrien lukumäärää on syytä rajoittaa. Tässä yhteydessä voidaan joutua jättämään osa erottelukykyisistäkin piirteistä pois. Tällöin siis joudutaan tekemään kompromissi luokittelijan tarkkuuden ja aineiston hankkimiseen käytettävän työmäärän/hinnan kesken. Seuraavaksi tarkastellaan eräitä suosittuja piirteen valinnan menetelmiä. A.1. Full search Mikäli piirrejoukko on pienehkö, voidaan testata kaikki eri pituiset piirrevektorit ja piirrekombinaatiot sekä valita niistä paras. Piirteenvalinnan aikakompleksisuus on suuri (O(2 n )), joten suurilla piirremäärillä vie epäkäytännöllisen paljon laskentaaikaa. Jokaisella kierroksellahan täytyy opettaa luokittelija ja testata sen suorituskyky. A.2. Sequential forward/backward floating search Seuraavaksi tarkastellaan erästä suosittua piirteen valinnan menetelmää: sequential forward/backward floating search [Pudil et al 1994]. Ajatuksena on, että piirrevektoriin lisätään yksi piirre kerrallaan, mikäli tämä parantaa suorituskykyä; ja piirteitä poistetaan, mikäli tämä parantaa suorituskykyä (forward malli). Prosessia jatketaan lisäten ja poistaen vuoronperään (floating), etsien paras suorituskyky jokaisella piirrevektorin dimensiolla. Käytännössä usein piirrevektorin dimensio rajataan kuitenkin valittuun maksimiarvoon. Menetelmä on alioptimaalinen, sillä se ei takaa parhaan mahdollisenpiirrevektorin löytymistä. Käytännössä menetelmä tuottaa erinomaisen suorituskyvyn luokittelijalle. Algoritmin voi ajaa myös toiseen suuntaan aloittaen kaikki piirteet valittuna ja sitten poistaen ja lisäten piirteitä vuoronperää (backward malli).

2 2 Algoritmi: sequential forward floating search 1. Opeta ja testaa luokittelija jokaisella piirteellä erikseen sisällyttäen piirrevektoriin vain kyseinen piirre. Valitse lopuksi paras piirrevektori; dimensio d = Jatka kunnes ehto d = d max on saavutettu: 2.1. lisäämis-vaihe: - lisää yksi jäljellä oleva piirre kerrallaan piirrevektoriin ja testaa luokittelijan suorituskyky (dimensio = d+1) - valitse testien mukainen paras piirrevektori - sisällytä kyseinen piirre piirrevektoriin; d d+1 - Jos d 2 siirry takaisin vaiheen 2.1. alkuun muutoin mene vaiheeseen poistamis-vaihe - poista yksi piirre kerrallaan piirrevektorista ja testaa luokittelijan suorituskyky (dimensio = d-1) - valitse testien mukainen paras piirrevektori - jos se parantaa suorituskykyä d-1 dimension parhaasen tulokseen nähden, - poista kyseinen piirre piirrevektorista; d d-1 - siirry takaisin vaiheen 2.2. alkuun muutoin mene vaiheeseen 2.1. Huomautus 1: kyseessä on heuristinen hakualgoritmi joka pystyy taaksepäin katsomalla usein näkemään paikallisten maksimien ulkopuolella olevat paremmat piirrevektorit ja siten välttää pesiytymistä. Huomautus 2: mukana oleva piirrejoukko jakautuu kahteen ryhmään piirrevektorissa olevat ja jäljellä olevat käyttämättömät piirteet. Huomautus 3: algoritmi sisältää luokittelijan testaamisen, mikä on kuvattu osiossa B. Huomautus 4: algoritmin voi ajaa myös toiseen suuntaan (sequential backward floating search) aloittaen kaikki piirteet valittuna ja poistaen piirteitä vaiheessa 2.1 ja vastaavasti lisäten vaiheessa 2.2. (Huom. dimensio askeltaa toiseen suuntaan) Lähde: Pudil, P., Novovičová, J. & Kittler J. (1994) Floating search methods in feature selection. Pattern Recognition Letters 15 (11),

3 3 B. Luokittelijan testaaminen Kertauksena aiemmasta: luokittelijan parametrit kiinnitetään opetusaineistolla (training data) ja sen suorituskyky arvioidaan riippumattomasti poimitulla testidatalla (test data). Pääperiaate on, että luokittelijan opetusaineiston tulisi olla mahdollisimman laaja, jotta luokittelijan parametrit saadaan kiinnitettyä mahdollisimman tarkasti ja luokittelijan yleistyskyvystä tulee hyvä. Toisaalta myös testiaineistoa tulisi olla mahdollisimman paljon. Koottu aineisto voidaan jakaa eri tavoin opetus- ja testiaineistoksi ja pyrkiä hyödyntämään se mahdollisimman tarkoin. Seuraavaksi esitellään usein käytettyjä menetelmiä aineiston käsittelemiseksi luokittelijan testaamista ajatellen. B.1. Hold-out test Aineisto jaetaan kahteen osaan, opetusaineisto ja testiaineisto, esimerkiksi suhteissa 2/3 ja 1/3. Opetettu luokittelija testataan ja siitä lasketaan määrätyt suorituskykyä kuvaavat tunnusluvut (katso kohta B.3.). Tämä menetelmä sopii silloin, kun aineistoa on paljon käytettävissä, jolloin opettaminen tuottaa hyvin yleistävän luokittelijan ja testaus antaa tarkan tuloksen. B.2. N-fold cross-validation Aineisto jaetaan N:ään yhtä suureen osaan ja niitä jokaista käytetään kerrallaan luokittelijan testaamiseen ja muita osia sen opettamiseen. Lopuksi lasketaan suorityskykysuureiden keskiarvo. Tällä tavoin jokainen datanäyte on mukana sekä opettamisessa että testaamisessa, mikä johtaa aineiston hyvään hyödyntämisasteeseen. Usein valitaan N=10.

4 4 Algoritmi: N-fold cross-validation 1. Osita data D satunnaispoiminnoilla N yhtä suureen, toisensa poissulkevaan osaan: D 1,...,D N. 2. Suorita kaikilla i-arvoilla: i=1,...,n 2.1. Poimi osa D i testiaineistoksi 2.2. Poimi muut osat D j opetusaineistoksi (j=1,...,n, j i) ja opeta luokittelija 2.3. Testaa luokittelija aineistolla D i ja talleta suorituskykysuure P i 3. Laske keskimääräinen suorituskykysuure P = (P P N )/N B.3. Luokittelijan suorituskykysuureet Usein käytetään sekaannusmatriisia (confusion matrix), joka kuvastaa sitä kuinka paljon eri luokkiin kuuluvat testinäytteet luokitellaan väärin. Vasemman puolisin sarake luettelee testitapausten oikeat luokat, ja ylärivi luettelee luokittelijan tekemät ratkaisut. Matriisin soluihin merkitään luokittelutapauksista lasketut prosenttiluvut. Matriisin avulla saa palautetta siitä kuinka hyvin piirteet erottelevat luokkia toisistaan ja vihjeitä siitä mihin kannattaisi panostaa uusien piirteiden kehittämisessä. Eräässä esimerkkitapauksessa sekaannusmatriisi näyttää seuraavalta kun luokkia on kolme. Luokka 1 Luokka 2 Luokka 3 Luokka Luokka Luokka Esimerkiksi: Luokan 1 tapauksista 92% on luokiteltu oikein luokkaan 1 kuuluviksi, mutta 6% on luokiteltu virheellisesti luokkaan 2 kuuluviksi ja 2% luokkaan 3 kuuluviksi. Paras tulos on sellainen, jossa päädiagonaalilla on mahdollisimman lähellä 100% olevia lukemia. Päädiagonaalin keskiarvo kuvastaa luokittelijan keskimääristä tarkkuutta (average accuracy) ja ilmoitetaan aina.

5 5 C. Luokittelijoiden yhdistäminen: hybridiluokittelijat Yksi mahdollisuus suorituskykyisen hahmontunnistusjärjestelmän kehittämisessä on suunnitella useita erilaisia kantaluokittelijoita samaan ongelmaan ja sitten yhdistää ne hybridiluokittelijaksi. Yksikään kantaluokittelijoista ei ole täydellinen, joten niiden yhdistäminen saattaa parantaa suorituskykyä, jos yhdistämisessä painotetaan niiden vahvuuksia oikealla tavalla. Kukin kantaluokittelijoista voi hyödyntää erilaisia piirteitä; esimerkkinä vaikkapa henkilön biometrinen tunnistaminen kamerakuvasta ja puhenäytteestä yhdistämällä kuva-analyysialgoritmien tuottamien kuvapiirteiden luokittelija äänialyysialgoritmien tuottamien äänipiirteiden luokittelija. Tällöin määrätyn hahmon tunnistamiseksi kantaluokittelijoiden tulokset yhdistetään sopivalla tavalla. Tähän on käytettävissä useita erilaisia menetelmiä. C.1. AdaBoost käyttäen yhtä kantaluokittelijaa AdaBoost (Adaptive Boosting) on koneoppimismenetelmä (machine learning), joka kehitettiin Tässä kurssissa sen periaate esitetään kaksiluokkaisen tunnistusongelman yhteydessä, mutta siitä on kehitetty moniluokkaisiin ongelmiin soveltuvia versioita. Laskennan edetessä algoritmi generoi kantaluokittelijasta (h) annetun määrän uusia luokittelijoita (h t, t=1,...,t) ja jokaiselle painokertoimen (α t ), joista kootaan lopullinen luokittelija H, hybridiluokittelija. Kukin uusi luokittelija muodostetaan eri otoksella opetusaineistoa painottaen virheellisesti luokiteltuja näytteitä, mitä tarkoitusta varten algoritmi laskee datajoukon näytteille (x i, y i ) joka iteraatiolla painokertoimia (D t (i)).

6 6 Algoritmi: AdaBoost kahdelle luokalle, yksi kantaluokittelija 1. Kokoa data (x 1, y 1 ),...,(x N, y N ), jossa x i on datanäyte ja y i sen luokkaleima: -1 tai Alusta datanäytteiden painokertoimet D 1 (i) = 1/N, i= 1,,N 3. Iteroi T kierrosta: t=1,...,t 3.1. Opeta kantaluokittelija h satunnaisotoksella dataa painottaen D t -jakaumalla h t 3.2. Laske luokittelijan h t tekemä virhe 3.3. Laske 3.4. Laske Päivitä 4. Tulosta valmis hybridiluokittelija Huomautus 1: Kohdassa 3.1. kantaluokittelija opetetaan poimimalla aineistosta satunnaisotos (resampling) painottamalla poimintaa D-jakaumalla. D-jakauman alkio D(i) liittyy todennäköisyyteen luokitella datanäyte x i väärin. Alkion D(i) arvo muodostuu korkeaksi, jos usea luokittelija h t luokittelee sen väärin. Tällöin seuraavaa luokittelijaa muodostettaessa kohonnut D(i)-arvo nostaa todennäköisyyttä että kyseinen datanäyte tulee valituksi uuden luokittelijan opetusaineistoon. Siten eniten virheitä tuottavat datanäytteet vaikuttavat eniten uusien luokittelijoiden rakenteeseen, mikä johtaa siihen että uusimmat luokittelijat pyrkivät erikoistumaan hankalien datanäytteiden oikeaan luokitteluun. Alkupään luokittelijoiden opetuksessa painaa enemmän oikein luokittuvat datanäytteet. Hybridiluokittelija pyrkii siis luokittelemaan hyvin sekä helpot (kaukana päätöspinnasta) että vaikeat (lähellä päätöspintaa) sijaitsevat datanäytteet.

7 7 Hybridiluokittelijassa luokittelijoita painotetaan suhteessa niiden opetusaineistolla tekemään virheen määrään kertoimilla α j. Huomautus 2: Kohdassa 3.1. kantaluokittelijan opettamisessa voidaan soveltaa jopa piirteen valintaa jokaiselle luokittelijalle h t erikseen. Täten voi käydä niin, että jokaiselle niistä muodostuu erilainen piirrevektori. Kaikki ne kuitenkin hyödyntävät samaa alkuperäistä piirrejoukkoa. Huomautus 3: Kantaluokittelijaksi käy mikä hyvänsä opetettavissa oleva luokittelija (knn, lineaarinen kone, neuroverkko,...), mutta se luonnollisesti pysyy samana AdaBoost-algoritmissa; vain data vaihtuu iteroidessa. Lähde: Freund Y, Shapire R. A short introduction to boosting. Journal of Japanese Society for Artificial Intelligence, 14(5): , September, C.1. AdaBoost käyttäen useaa kantaluokittelijaa Toinen käyttömahdollisuus tälle meta-algoritmille on yhdistää useita kantaluokittelijoita (h k, k=1,...,l). Perusideana on etsiä kullekin kantaluokittelijalle paras konfiguraatio ja sille painokerroin, jolla kyseisen luokittelijan luokittelutulosta painotetaan lopullisen luokittelutuloksen saamiseksi näytteelle. Samoin kuin aiemmin, laskennan edetessä algoritmi laskee datajoukon näytteille painokertoimia, joiden avulla voidaan painottaa väärin luokiteltavia näytteitä satunnaispoiminnoissa. Alla on esitetty eräs versio.

8 8 Algoritmi: AdaBoost kahdelle luokalle, monta kantaluokittelijaa h k 1. Kokoa data (x 1, y 1 ),...,(x N, y N ), jossa x i on datanäyte ja y i sen luokkaleima: -1 tai Alusta datanäytteiden painokertoimet D 1 (i) = 1/N, i= 1,,N, ja luokittelijoiden painokertoimet α 1 k = 0, k=1,...,l 3. Iteroi T kierrosta: t=1,...,t 3.1. Opeta kantaluokittelijat h k satunnaisotoksella dataa painottaen D t -jakaumalla uudet luokittelijat h k t 3.2. Laske kunkin luokittelijan h k t tekemä virhe 3.3. Valitse paras luokittelija h k t eli jolla pienin ε k t-arvo 3.4. Laske parhaalle luokittelijalle h k t ja talleta myös h k t 3.5. Laske käyttäen parasta luokittelijaa h k t Päivitä 4. Tulosta valmis hybridiluokittelija käyttäen kunkin kantaluokittelijan parasta (talletettua) versiota. Huomautus 1: Algoritmi pyrkii etsimään kullekin kantaluokittelijalle mahdollisimman hyvän konfiguraation siten, että se kompensoi muiden luokittelijoiden virheitä.

9 9 Huomautus 2: Algoritmi pyrkii ohjautumaan kulloinkin parhaan luokittelijan tekemien luokitteluvirheiden mukaisesti ja löytämään niitä paremmin käsittelevän luokittelijan. Huomautus 3: Lopullinen hybridiluokittelija yhdistää parhaat löydetyt kantaluokittelijoiden konfiguraatiot.

Kaksiluokkainen tapaus, lineaarinen päätöspinta, lineaarisesti erottuvat luokat

Kaksiluokkainen tapaus, lineaarinen päätöspinta, lineaarisesti erottuvat luokat 1 Tukivektoriluokittelija Tukivektorikoneeseen (support vector machine) perustuva luoikittelija on tilastollisen koneoppimisen teoriaan perustuva lineaarinen luokittelija. Perusajatus on sovittaa kahden

Lisätiedot

Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun

Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Sami Hokuni 12 Syyskuuta, 2012 1/ 54 Sami Hokuni Neuroverkkojen soveltaminen vakuutusdatojen luokitteluun Turun Yliopisto. Gradu tehty 2012 kevään

Lisätiedot

Laskennallinen data-analyysi II

Laskennallinen data-analyysi II Laskennallinen data-analyysi II Ella Bingham, ella.bingham@cs.helsinki.fi Kevät 2008 Muuttujien valinta Kalvot perustuvat Saara Hyvösen kalvoihin 2007 Laskennallinen data-analyysi II, kevät 2008, Helsingin

Lisätiedot

TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA)

TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA) JOHDATUS TEKOÄLYYN TEEMU ROOS (KALVOT MUOKATTU PATRIK HOYERIN LUENTOMATERIAALISTA) KONEOPPIMISEN LAJIT OHJATTU OPPIMINEN: - ESIMERKIT OVAT PAREJA (X, Y), TAVOITTEENA ON OPPIA ENNUSTAMAAN Y ANNETTUNA X.

Lisätiedot

1. TILASTOLLINEN HAHMONTUNNISTUS

1. TILASTOLLINEN HAHMONTUNNISTUS 1. TILASTOLLINEN HAHMONTUNNISTUS Tilastollisissa hahmontunnistusmenetelmissä piirteitä tarkastellaan tilastollisina muuttujina Luokittelussa käytetään hyväksi seuraavia tietoja: luokkien a priori tn:iä,

Lisätiedot

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1 1.1 Funktion optimointiin perustuvat klusterointialgoritmit Klusteroinnin onnistumista mittaavan funktion J optimointiin perustuvissa klusterointialgoritmeissä

Lisätiedot

Demo 1: Simplex-menetelmä

Demo 1: Simplex-menetelmä MS-C2105 Optimoinnin perusteet Malliratkaisut 3 Ehtamo Demo 1: Simplex-menetelmä Muodosta lineaarisen tehtävän standardimuoto ja ratkaise tehtävä taulukkomuotoisella Simplex-algoritmilla. max 5x 1 + 4x

Lisätiedot

Seuraavassa taulukossa on annettu mittojen määritelmät ja sijoitettu luvut. = 40% = 67% 6 = 0.06% = 99.92% 6+2 = 0.

Seuraavassa taulukossa on annettu mittojen määritelmät ja sijoitettu luvut. = 40% = 67% 6 = 0.06% = 99.92% 6+2 = 0. T-6.28 Luonnollisen kielen tilastollinen käsittely Vastaukset, ti 7.2.200, 8:30-0:00 Tiedon haku, Versio.0. Muutetaan tehtävässä annettu taulukko sellaiseen muotoon, joka paremmin sopii ensimmäisten mittojen

Lisätiedot

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI

1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1. OHJAAMATON OPPIMINEN JA KLUSTEROINTI 1 1.1 Funktion optimointiin perustuvat klusterointialgoritmit Klusteroinnin onnistumista mittaavan funktion J optimointiin perustuvissa klusterointialgoritmeissä

Lisätiedot

SPSS-pikaohje. Jukka Jauhiainen OAMK / Tekniikan yksikkö

SPSS-pikaohje. Jukka Jauhiainen OAMK / Tekniikan yksikkö SPSS-pikaohje Jukka Jauhiainen OAMK / Tekniikan yksikkö SPSS on ohjelmisto tilastollisten aineistojen analysointiin. Hyvinvointiteknologian ATK-luokassa on asennettuna SPSS versio 13.. Huom! Ainakin joissakin

Lisätiedot

¼ ¼ joten tulokset ovat muuttuneet ja nimenomaan huontontuneet eivätkä tulleet paremmiksi.

¼ ¼ joten tulokset ovat muuttuneet ja nimenomaan huontontuneet eivätkä tulleet paremmiksi. 10.11.2006 1. Pituushyppääjä on edellisenä vuonna hypännyt keskimäärin tuloksen. Valmentaja poimii tämän vuoden harjoitusten yhteydessä tehdyistä muistiinpanoista satunnaisesti kymmenen harjoitushypyn

Lisätiedot

Johdatus tekoälyyn. Luento 6.10.2011: Koneoppiminen. Patrik Hoyer. [ Kysykää ja kommentoikaa luennon aikana! ]

Johdatus tekoälyyn. Luento 6.10.2011: Koneoppiminen. Patrik Hoyer. [ Kysykää ja kommentoikaa luennon aikana! ] Johdatus tekoälyyn Luento 6.10.2011: Koneoppiminen Patrik Hoyer [ Kysykää ja kommentoikaa luennon aikana! ] Koneoppiminen? Määritelmä: kone = tietokone, tietokoneohjelma oppiminen = ongelmanratkaisukyvyn

Lisätiedot

Lineaariset luokittelumallit: regressio ja erotteluanalyysi

Lineaariset luokittelumallit: regressio ja erotteluanalyysi Lineaariset luokittelumallit: regressio ja erotteluanalyysi Aira Hast Johdanto Tarkastellaan menetelmiä, joissa luokittelu tehdään lineaaristen menetelmien avulla. Avaruus jaetaan päätösrajojen avulla

Lisätiedot

KÄYTTÖOHJEET Serie RV

KÄYTTÖOHJEET Serie RV KÄYTTÖOHJEET Serie RV Laskentavaakajärjeste1mä 3.2 Virhe laskentapunnituksessa Laskentapunnituksen virhe johtuu pääasiassa kolmesta tekijästä:. detaljien painojen poikkeamista vaaka näyttää väärin inhimillisestä

Lisätiedot

Harjoitus 7: NCSS - Tilastollinen analyysi

Harjoitus 7: NCSS - Tilastollinen analyysi Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen

Lisätiedot

Mat Lineaarinen ohjelmointi

Mat Lineaarinen ohjelmointi Mat-2.34 Lineaarinen ohjelmointi..27 Luento 5 Simplexin implementaatioita (kirja 3.2-3.5) Lineaarinen ohjelmointi - Syksy 27 / Luentorunko (/2) Simplexin implementaatiot Naiivi Revised Full tableau Syklisyys

Lisätiedot

Monitavoiteoptimointi

Monitavoiteoptimointi Monitavoiteoptimointi Useita erilaisia tavoitteita, eli useita objektifunktioita Tavoitteet yleensä ristiriitaisia ja yhteismitattomia Optimaalisuus tarkoittaa yleensä eri asiaa kuin yksitavoitteisessa

Lisätiedot

Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo?

Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo? MTTTP5, kevät 2016 15.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen 1. Valitaan 25 alkion satunnaisotos jakaumasta N(µ, 25). Olkoon H 0 : µ = 12. Hylätään H 0, jos otoskeskiarvo

Lisätiedot

MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu

MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu 10.1.2019/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 10.1.2019 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2018 10.1.2019/2

Lisätiedot

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016

Osakesalkun optimointi. Anni Halkola Turun yliopisto 2016 Osakesalkun optimointi Anni Halkola Turun yliopisto 2016 Artikkeli Gleb Beliakov & Adil Bagirov (2006) Non-smooth optimization methods for computation of the Conditional Value-at-risk and portfolio optimization.

Lisätiedot

805306A Johdatus monimuuttujamenetelmiin, 5 op

805306A Johdatus monimuuttujamenetelmiin, 5 op monimuuttujamenetelmiin, 5 op syksy 2018 Matemaattisten tieteiden laitos Lineaarinen erotteluanalyysi (LDA, Linear discriminant analysis) Erotteluanalyysin avulla pyritään muodostamaan selittävistä muuttujista

Lisätiedot

S09 04 Kohteiden tunnistaminen 3D datasta

S09 04 Kohteiden tunnistaminen 3D datasta AS 0.3200 Automaatio ja systeemitekniikan projektityöt S09 04 Kohteiden tunnistaminen 3D datasta Loppuraportti 22.5.2009 Akseli Korhonen 1. Projektin esittely Projektin tavoitteena oli algoritmin kehittäminen

Lisätiedot

ImageRecognition toteutus

ImageRecognition toteutus ImageRecognition toteutus Simo Korkolainen 27 kesäkuuta 2016 Projektin tarkoituksena on tehdä ohjelma, joka opettaa neuroverkon tunnistamaan kuvia backpropagation-algoritmin avulla Neuroverkon opetuksessa

Lisätiedot

Johdatus verkkoteoriaan 4. luento

Johdatus verkkoteoriaan 4. luento Johdatus verkkoteoriaan 4. luento 28.11.17 Viikolla 46 läpikäydyt käsitteet Viikolla 47 läpikäydyt käsitteet Verkko eli graafi, tasoverkko, solmut, välit, alueet, suunnatut verkot, isomorfiset verkot,

Lisätiedot

Kanta ja dimensio 1 / 23

Kanta ja dimensio 1 / 23 1 / 23 Kuten ollaan huomattu, saman aliavaruuden voi virittää eri määrä vektoreita. Seuraavaksi määritellään mahdollisimman pieni vektorijoukko, joka virittää aliavaruuden. Jokainen aliavaruuden alkio

Lisätiedot

Konsensusongelma hajautetuissa järjestelmissä. Niko Välimäki Hajautetut algoritmit -seminaari

Konsensusongelma hajautetuissa järjestelmissä. Niko Välimäki Hajautetut algoritmit -seminaari Konsensusongelma hajautetuissa järjestelmissä Niko Välimäki 30.11.2007 Hajautetut algoritmit -seminaari Konsensusongelma Päätöksen muodostaminen hajautetussa järjestelmässä Prosessien välinen viestintä

Lisätiedot

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla 16.11.2017/1 MTTTP5, luento 16.11.2017 3.5.5 Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla ~,, ~,,. 16.11.2017/2 Esim. Tutkittiin uuden menetelmän käyttökelpoisuutta

Lisätiedot

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme? TKK (c) Ilkka Mellin (2004) 1 Johdatus tilastotieteeseen TKK (c) Ilkka Mellin (2004) 2 Mitä opimme? 1/4 Tilastollisen tutkimuksen tavoitteena on tehdä johtopäätöksiä prosesseista, jotka generoivat reaalimaailman

Lisätiedot

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.

806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0. 806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ

Lisätiedot

11. Javan toistorakenteet 11.1

11. Javan toistorakenteet 11.1 11. Javan toistorakenteet 11.1 Sisällys Laskuri- ja lippumuuttujat. Sisäkkäiset silmukat. Tyypillisiä ohjelmointivirheitä: Silmukan rajat asetettu kierroksen verran väärin. Ikuinen silmukka. Silmukoinnin

Lisätiedot

Kontrollipolkujen määrä

Kontrollipolkujen määrä Testaus Yleistä Testaus on suunnitelmallista virheiden etsimistä Tuotantoprosessissa ohjelmaan jää aina virheitä, käytettävistä menetelmistä huolimatta Hyvät menetelmät, kuten katselmoinnit pienentävät

Lisätiedot

Oma nimesi Tehtävä (5)

Oma nimesi Tehtävä (5) Oma nimesi Tehtävä 3.1 1 (5) Taulukot ja niiden laatiminen Tilastotaulukko on perinteinen ja monikäyttöisin tapa järjestää numeerinen havaintoaineisto tiiviiseen ja helposti omaksuttavaan muotoon. Tilastoissa

Lisätiedot

riippumattomia ja noudattavat samaa jakaumaa.

riippumattomia ja noudattavat samaa jakaumaa. 12.11.2015/1 MTTTP5, luento 12.11.2015 Luku 4 Satunnaisotos, otossuure ja otosjakauma 4.1. Satunnaisotos X 1, X 2,, X n on satunnaisotos, jos X i :t ovat riippumattomia ja noudattavat samaa jakaumaa. Sanonta

Lisätiedot

Lääkintähelikopterikaluston mallintaminen

Lääkintähelikopterikaluston mallintaminen Mat-2.4177 Operaatiotutkimuksen projektityöseminaari Lääkintähelikopterikaluston mallintaminen Väliraportti 19.3.2010 Pohjalainen Tapio (projektipäällikkö) (29157N) Kuikka Ilmari (58634A) Tyrväinen Tero

Lisätiedot

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010

TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta. Yliassistentti Jussi Hakanen syksy 2010 TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010 Optimaalisuus: objektiavaruus f 2 min Z = f(s) Parhaat arvot alhaalla ja vasemmalla

Lisätiedot

Teema 8: Parametrien estimointi ja luottamusvälit

Teema 8: Parametrien estimointi ja luottamusvälit Teema 8: Parametrien estimointi ja luottamusvälit Todennäköisyyslaskennan perusteet (Teemat 6 ja 7) antavat hyvän pohjan siirtyä kurssin viimeiseen laajempaan kokonaisuuteen, nimittäin tilastolliseen päättelyyn.

Lisätiedot

TUTKIMUSOPAS. SPSS-opas

TUTKIMUSOPAS. SPSS-opas TUTKIMUSOPAS SPSS-opas Johdanto Tässä oppaassa esitetään SPSS-tilasto-ohjelman alkeita, kuten Excel-tiedoston avaaminen, tunnuslukujen laskeminen ja uusien muuttujien muodostaminen. Lisäksi esitetään esimerkkien

Lisätiedot

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1 Johdatus tilastotieteeseen Estimointi TKK (c) Ilkka Mellin (2005) 1 Estimointi Todennäköisyysjakaumien parametrit ja niiden estimointi Hyvän estimaattorin ominaisuudet TKK (c) Ilkka Mellin (2005) 2 Estimointi:

Lisätiedot

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla

/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla 17.11.2016/1 MTTTP5, luento 17.11.2016 3.5.5 Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla likimain Jos X ~ Bin(n, p), niin X ~ N(np, np(1 p)), kun n suuri. 17.11.2016/2

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 15 1 Tilastollisia testejä Z-testi Normaalijakauman odotusarvon testaus, keskihajonta tunnetaan

Lisätiedot

Algoritmit 2. Luento 6 Ke Timo Männikkö

Algoritmit 2. Luento 6 Ke Timo Männikkö Algoritmit 2 Luento 6 Ke 29.3.2017 Timo Männikkö Luento 6 B-puun operaatiot B-puun muunnelmia Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2017 Luento 6 Ke 29.3.2017 2/31 B-puu

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

JOHDATUS TEKOÄLYYN TEEMU ROOS

JOHDATUS TEKOÄLYYN TEEMU ROOS JOHDATUS TEKOÄLYYN TEEMU ROOS NEUROVERKOT TURINGIN KONE (TAI TAVALLINEN OHJELMOINTI) VAIN YKSI LASKENNAN MALLI ELÄINTEN HERMOSTOSSA LASKENTA ERILAISTA: - RINNAKKAISUUS - STOKASTISUUS (SATUNNAISUUS) - MASSIIVINEN

Lisätiedot

MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu

MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu 5.3.2018/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 5.3.2018, osa 1 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2017

Lisätiedot

811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto

811312A Tietorakenteet ja algoritmit 2015-2016. I Johdanto 811312A Tietorakenteet ja algoritmit 2015-2016 I Johdanto Sisältö 1. Algoritmeista ja tietorakenteista 2. Algoritmien analyysistä 811312A TRA, Johdanto 2 I.1. Algoritmeista ja tietorakenteista I.1.1. Algoritmien

Lisätiedot

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Aki Koivu 27.10.2016 HUMAN HEALT H ENVIRONMENTAL HEALT H 2016 PerkinElmer Miten tietokone oppii ennustamaan tai tekemään päätöksiä? Historia tiivistettynä Machine Learning

Lisätiedot

Testaa: Vertaa pinon merkkijono syötteeseen merkki kerrallaan. Jos löytyy ero, hylkää. Jos pino tyhjenee samaan aikaan, kun syöte loppuu, niin

Testaa: Vertaa pinon merkkijono syötteeseen merkki kerrallaan. Jos löytyy ero, hylkää. Jos pino tyhjenee samaan aikaan, kun syöte loppuu, niin Yhteydettömien kielioppien ja pinoautomaattien yhteys [Sipser s. 117 124] Todistamme, että yhteydettömien kielioppien tuottamat kielet ovat tasan samat kuin ne, jotka voidaan tunnistaa pinoautomaatilla.

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 22. marraskuuta 2007 Antti Rasila () TodB 22. marraskuuta 2007 1 / 17 1 Epäparametrisia testejä (jatkoa) χ 2 -riippumattomuustesti 2 Johdatus regressioanalyysiin

Lisätiedot

Valitaan testisuure, jonka jakauma tunnetaan H 0 :n ollessa tosi.

Valitaan testisuure, jonka jakauma tunnetaan H 0 :n ollessa tosi. 9.10.2018/1 MTTTP1, luento 9.10.2018 KERTAUSTA TESTAUKSESTA, p-arvo Asetetaan H 0 H 1 Valitaan testisuure, jonka jakauma tunnetaan H 0 :n ollessa tosi. Lasketaan otoksesta testisuureelle arvo. 9.10.2018/2

Lisätiedot

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä

3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä 1 3 Lineaariset yhtälöryhmät ja Gaussin eliminointimenetelmä Lineaarinen m:n yhtälön yhtälöryhmä, jossa on n tuntematonta x 1,, x n on joukko yhtälöitä, jotka ovat muotoa a 11 x 1 + + a 1n x n = b 1 a

Lisätiedot

Lineaarinen optimointitehtävä

Lineaarinen optimointitehtävä Lineaarinen optimointitehtävä Minimointitehtävä yhtälörajoittein: min kun n j=1 n j=1 c j x j a ij x j = b i x j 0 j = 1,..., n i = 1,..., m Merkitään: z = alkuperäisen objektifunktion arvo käsiteltävänä

Lisätiedot

Puumenetelmät. Topi Sikanen. S ysteemianalyysin. Laboratorio Aalto-yliopiston teknillinen korkeakoulu

Puumenetelmät. Topi Sikanen. S ysteemianalyysin. Laboratorio Aalto-yliopiston teknillinen korkeakoulu Puumenetelmät Topi Sikanen Puumenetelmät Periaate: Hajota ja hallitse Jaetaan havaintoavaruus alueisiin. Sovitetaan kuhunkin alueeseen yksinkertainen malli (esim. vakio) Tarkastellaan kolmea mallia Luokittelu-

Lisätiedot

Algoritmit 2. Luento 6 To Timo Männikkö

Algoritmit 2. Luento 6 To Timo Männikkö Algoritmit 2 Luento 6 To 28.3.2019 Timo Männikkö Luento 6 B-puun operaatiot Nelipuu Trie-rakenteet Standarditrie Pakattu trie Algoritmit 2 Kevät 2019 Luento 6 To 28.3.2019 2/30 B-puu 40 60 80 130 90 100

Lisätiedot

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1 Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää

Lisätiedot

Menetelmät tietosuojan toteutumisen tukena - käytännön esimerkkejä. Tilastoaineistot tutkijan työvälineenä - mahdollisuudet ja rajat 2.3.

Menetelmät tietosuojan toteutumisen tukena - käytännön esimerkkejä. Tilastoaineistot tutkijan työvälineenä - mahdollisuudet ja rajat 2.3. Menetelmät tietosuojan toteutumisen tukena - käytännön esimerkkejä Tilastoaineistot tutkijan työvälineenä - mahdollisuudet ja rajat 2.3.2009 Tietosuoja - lähtökohdat! Periaatteena on estää yksiköiden suora

Lisätiedot

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1 Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset

Lisätiedot

2. TILASTOLLINEN TESTAAMINEN...

2. TILASTOLLINEN TESTAAMINEN... !" # 1. 1. JOHDANTO... 3 2. 2. TILASTOLLINEN TESTAAMINEN... 4 2.1. T-TESTI... 4 2.2. RANDOMISAATIOTESTI... 5 3. SIMULOINTI... 6 3.1. OTOSTEN POIMINTA... 6 3.2. TESTAUS... 7 3.3. TESTIEN TULOSTEN VERTAILU...

Lisätiedot

Aki Taanila LINEAARINEN OPTIMOINTI

Aki Taanila LINEAARINEN OPTIMOINTI Aki Taanila LINEAARINEN OPTIMOINTI 26.4.2011 JOHDANTO Tässä monisteessa esitetään lineaarisen optimoinnin alkeet. Moniste sisältää tarvittavat Excel ohjeet. Viimeisin versio tästä monisteesta ja siihen

Lisätiedot

Satunnaisalgoritmit. Topi Paavilainen. Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos

Satunnaisalgoritmit. Topi Paavilainen. Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Satunnaisalgoritmit Topi Paavilainen Laskennan teorian opintopiiri HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Helsinki, 23. helmikuuta 2014 1 Johdanto Satunnaisalgoritmit ovat algoritmeja, joiden

Lisätiedot

Numeeriset menetelmät

Numeeriset menetelmät Numeeriset menetelmät Luento 10 To 6.10.2011 Timo Männikkö Numeeriset menetelmät Syksy 2011 Luento 10 To 6.10.2011 p. 1/35 p. 1/35 Numeerinen integrointi Puolisuunnikassääntö b a f(x)dx = h 2 (f 0 + f

Lisätiedot

Osittaistuenta Gaussin algoritmissa: Etsitään 1. sarakkeen itseisarvoltaan suurin alkio ja vaihdetaan tämä tukialkioiksi (eli ko. rivi 1. riviksi).

Osittaistuenta Gaussin algoritmissa: Etsitään 1. sarakkeen itseisarvoltaan suurin alkio ja vaihdetaan tämä tukialkioiksi (eli ko. rivi 1. riviksi). Liukuluvut Tietokonelaskuissa käytetään liukulukuja: mikä esittää lukua ± α α α M β k ± ( M α i β i )β k, i= β on järjestelmän kantaluku, α α M liukuluvun mantissa, α,, α M lukuja,,,, β, siten että α Esimerkki

Lisätiedot

Tekoäly muuttaa arvoketjuja

Tekoäly muuttaa arvoketjuja Tekoäly muuttaa arvoketjuja Näin kartoitat tekoälyn mahdollisuuksia projektissasi Harri Puolitaival Harri Puolitaival Diplomi-insinööri ja yrittäjä Terveysteknologia-alan start-up: Likelle - lämpötilaherkkien

Lisätiedot

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 6A Tilastolliset luottamusvälit Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto Syksy 2016,

Lisätiedot

Johdatus verkkoteoriaan luento Netspace

Johdatus verkkoteoriaan luento Netspace Johdatus verkkoteoriaan luento 3.4.18 Netspace Matriisioperaatio suunnatuissa verkoissa Taustoitusta verkkoteorian ulkopuolelta ennen kuljetusalgoritmia LP-ongelma yleisesti LP = linear programming =

Lisätiedot

8 KANNAT JA ORTOGONAALISUUS. 8.1 Lineaarinen riippumattomuus. Vaasan yliopiston julkaisuja 151

8 KANNAT JA ORTOGONAALISUUS. 8.1 Lineaarinen riippumattomuus. Vaasan yliopiston julkaisuja 151 Vaasan yliopiston julkaisuja 151 8 KANNAT JA ORTOGONAALISUUS KantaOrthogon Sec:LinIndep 8.1 Lineaarinen riippumattomuus Lineaarinen riippumattomuus on oikeastaan jo määritelty, mutta kirjoitamme määritelmät

Lisätiedot

10. Esitys ja kuvaus

10. Esitys ja kuvaus 10. Esitys ja kuvaus Kun kuva on ensin segmentoitu alueisiin edellisen luvun menetelmin, segmentoidut pikselit kootaan esittämään ja kuvaamaan kohteita muodossa, joka sopii hyvin jatkokäsittelyä varten.

Lisätiedot

Harha mallin arvioinnissa

Harha mallin arvioinnissa Esitelmä 12 Antti Toppila sivu 1/18 Optimointiopin seminaari Syksy 2010 Harha mallin arvioinnissa Antti Toppila 13.10.2010 Esitelmä 12 Antti Toppila sivu 2/18 Optimointiopin seminaari Syksy 2010 Sisältö

Lisätiedot

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä.

A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Esimerkki otteluvoiton todennäköisyys A ja B pelaavat sarjan pelejä. Sarjan voittaja on se, joka ensin voittaa n peliä. Yksittäisessä pelissä A voittaa todennäköisyydellä p ja B todennäköisyydellä q =

Lisätiedot

6.1.2 Yhdessä populaatiossa tietyn tyyppisten alkioiden prosentuaalista osuutta koskeva päättely

6.1.2 Yhdessä populaatiossa tietyn tyyppisten alkioiden prosentuaalista osuutta koskeva päättely 3.12.2018/1 MTTTP5, luento 3.12.2018 6.1.2 Yhdessä populaatiossa tietyn tyyppisten alkioiden prosentuaalista osuutta koskeva päättely H 0 : = 0 Oletetaan, että populaatiossa viallisia %. Olkoon X 1, X

Lisätiedot

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)

MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu) 21.11.2017/1 MTTTP5, luento 21.11.2017 Otossuureita ja niiden jakaumia (jatkuu) 4) Olkoot X 1, X 2,..., X n satunnaisotos (, ):sta ja Y 1, Y 2,..., Y m satunnaisotos (, ):sta sekä otokset riippumattomia.

Lisätiedot

4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä

4. Luennon sisältö. Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä JYVÄSKYLÄN YLIOPISTO 4. Luennon sisältö Lineaarisen optimointitehtävän ratkaiseminen Simplex-menetelmä kevät 2012 TIEA382 Lineaarinen ja diskreetti optimointi Lineaarinen optimointitehtävä Minimointitehtävä

Lisätiedot

12. Javan toistorakenteet 12.1

12. Javan toistorakenteet 12.1 12. Javan toistorakenteet 12.1 Sisällys Yleistä toistorakenteista. Laskurimuuttujat. While-, do-while- ja for-lauseet. Laskuri- ja lippumuuttujat. Tyypillisiä ohjelmointivirheitä. Silmukan rajat asetettu

Lisätiedot

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n))

f(n) = Ω(g(n)) jos ja vain jos g(n) = O(f(n)) Määritelmä: on O(g(n)), jos on olemassa vakioarvot n 0 > 0 ja c > 0 siten, että c g(n) kun n > n 0 O eli iso-o tai ordo ilmaisee asymptoottisen ylärajan resurssivaatimusten kasvun suuruusluokalle Samankaltaisia

Lisätiedot

805306A Johdatus monimuuttujamenetelmiin, 5 op

805306A Johdatus monimuuttujamenetelmiin, 5 op monimuuttujamenetelmiin, 5 op syksy 2018 Matemaattisten tieteiden laitos K:n lähimmän naapurin menetelmä (K-Nearest neighbours) Tarkastellaan aluksi pientä (n = 9) kurjenmiekka-aineistoa, joka on seuraava:

Lisätiedot

1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet

1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: 1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka

Lisätiedot

Sovellettu todennäköisyyslaskenta B

Sovellettu todennäköisyyslaskenta B Sovellettu todennäköisyyslaskenta B Antti Rasila 16. marraskuuta 2007 Antti Rasila () TodB 16. marraskuuta 2007 1 / 15 1 Epäparametrisia testejä χ 2 -yhteensopivuustesti Homogeenisuuden testaaminen Antti

Lisätiedot

Avainsanojen poimiminen Eeva Ahonen

Avainsanojen poimiminen Eeva Ahonen Avainsanojen poimiminen 5.10.2004 Eeva Ahonen Sisältö Avainsanat Menetelmät C4.5 päätöspuut GenEx algoritmi Bayes malli Testit Tulokset Avainsanat Tiivistä tietoa dokumentin sisällöstä ihmislukijalle hakukoneelle

Lisätiedot

805306A Johdatus monimuuttujamenetelmiin, 5 op

805306A Johdatus monimuuttujamenetelmiin, 5 op monimuuttujamenetelmiin, 5 op syksy 2018 Matemaattisten tieteiden laitos Lineaarinen erotteluanalyysi (LDA, Linear discriminant analysis) Erotteluanalyysin avulla pyritään muodostamaan selittävistä muuttujista

Lisätiedot

OMQ 30-90D digitaalisen ulkoyksikön säätimen EC2-551 käyttöohje

OMQ 30-90D digitaalisen ulkoyksikön säätimen EC2-551 käyttöohje OMQ 30-90D digitaalisen ulkoyksikön säätimen EC2-551 käyttöohje SÄÄTIMEN OHJELMOINTI Salasana ja parametreihin pääsy Paina PRG näppäintä yli 5 sekuntia. Näytöllä vilkkuu 0. Parametrit on suojattu tunnusluvulla

Lisätiedot

Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin

Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin Pikalajittelu: valitaan ns. pivot-alkio esim. pivot = oikeanpuoleisin jaetaan muut alkiot kahteen ryhmään: L: alkiot, jotka eivät suurempia kuin pivot G : alkiot, jotka suurempia kuin pivot 6 1 4 3 7 2

Lisätiedot

Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=6909&idx=4&ui Lang=fi&lang=fi&lvv=2014

Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=6909&idx=4&ui Lang=fi&lang=fi&lvv=2014 1 MTTTP2 Tilastollisen päättelyn perusteet 1 1. luento 28.10.2014 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=6909&idx=4&ui Lang=fi&lang=fi&lvv=2014 2 Osaamistavoitteet

Lisätiedot

M =(K, Σ, Γ,, s, F ) Σ ={a, b} Γ ={c, d} = {( (s, a, e), (s, cd) ), ( (s, e, e), (f, e) ), (f, e, d), (f, e)

M =(K, Σ, Γ,, s, F ) Σ ={a, b} Γ ={c, d} = {( (s, a, e), (s, cd) ), ( (s, e, e), (f, e) ), (f, e, d), (f, e) Tik-79.148 Kevät 2001 Tietojenkäsittelyteorian perusteet Laskuharjoitus 7 Demonstraatiotehtävien ratkaisut 1. Pinoautomaatti M = K Σ Γ s F missä K Σ s ja F on määritelty samalla tavalla kuin tilakoneellekin.

Lisätiedot

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet

1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet VAASAN YLIOPISTO/AVOIN YLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia 1 KURSSIKYSELYAINEISTO: 1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka

Lisätiedot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos: 8 Kanta Tässä luvussa tarkastellaan aliavaruuden virittäjävektoreita, jotka muodostavat lineaarisesti riippumattoman jonon. Merkintöjen helpottamiseksi oletetaan luvussa koko ajan, että W on vektoreiden

Lisätiedot

Kognitiivinen mallintaminen Neuraalimallinnus, luento 1

Kognitiivinen mallintaminen Neuraalimallinnus, luento 1 Kognitiivinen mallintaminen Neuraalimallinnus, luento 1 Nelli Salminen nelli.salminen@helsinki.fi D433 Neuraalimallinnuksen osuus neljä luentokertaa, muutokset alla olevaan suunnitelmaan todennäköisiä

Lisätiedot

Mistä on kyse? Pilvien luokittelu satelliittikuvissa. Sisältö. Satelliittikartoitus. Rami Rautkorpi 25.1.2006. Satelliittikartoitus

Mistä on kyse? Pilvien luokittelu satelliittikuvissa. Sisältö. Satelliittikartoitus. Rami Rautkorpi 25.1.2006. Satelliittikartoitus Pilvien luokittelu satelliittikuvissa Mistä on kyse? Rami Rautkorpi 25.1.2006 25.1.2006 Pilvien luokittelu satelliittikuvissa 2 Sisältö Satelliittikartoitus Satelliittikartoitus Pilvien luokittelu Ensimmäinen

Lisätiedot

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt

Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt. Latinalaiset neliöt: Mitä opimme? Latinalaiset neliöt TKK (c) Ilkka Mellin (005) Koesuunnittelu TKK (c) Ilkka Mellin (005) : Mitä opimme? Tarkastelemme tässä luvussa seuraavaa kysymystä: Miten varianssianalyysissa tutkitaan yhden tekijän vaikutusta vastemuuttujaan,

Lisätiedot

Tietotekniikan valintakoe

Tietotekniikan valintakoe Jyväskylän yliopisto Tietotekniikan laitos Tietotekniikan valintakoe 2..22 Vastaa kahteen seuraavista kolmesta tehtävästä. Kukin tehtävä arvostellaan kokonaislukuasteikolla - 25. Jos vastaat useampaan

Lisätiedot

Kuljetustehtävä. Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan. Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij

Kuljetustehtävä. Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan. Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij Kuljetustehtävä Materiaalia kuljetetaan m:stä lähtöpaikasta n:ään tarvepaikkaan Kuljetuskustannukset lähtöpaikasta i tarvepaikkaan j ovat c ij Lähtöpaikan i kapasiteetti on a i (oletetaan, että a i > 0

Lisätiedot

Ratkaisuehdotukset LH 8 / vko 47

Ratkaisuehdotukset LH 8 / vko 47 Ratkaisuehdotukset LH 8 / vko 47 Tehtävä 1: Olkoot A R n n matriisi, jonka singulaariarvohajotelma on A [ ] [ ] Σ U 1 U r 0 [V1 ] T 2 V 0 0 2 Jossa Σ r on kääntyvä matriisi, [ U 1 U 2 ] ja [ V1 V 2 ] ovat

Lisätiedot

Väliestimointi (jatkoa) Heliövaara 1

Väliestimointi (jatkoa) Heliövaara 1 Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).

Lisätiedot

Inversio-ongelmien laskennallinen peruskurssi Luento 7 8

Inversio-ongelmien laskennallinen peruskurssi Luento 7 8 Inversio-ongelmien laskennallinen peruskurssi Luento 7 8 Kevät 2011 1 Iteratiivisista menetelmistä Tähän mennessä on tarkasteltu niin sanottuja suoria menetelmiä, joissa (likimääräinen) ratkaisu saadaan

Lisätiedot

Testausraportti. Orava. Helsinki Ohjelmistotuotantoprojekti HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos

Testausraportti. Orava. Helsinki Ohjelmistotuotantoprojekti HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Testausraportti Orava Helsinki 5.5.2005 Ohjelmistotuotantoprojekti HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Kurssi 581260 Ohjelmistotuotantoprojekti (6 ov) Projektiryhmä Juhani Bergström Peter

Lisätiedot

Algoritmit 1. Luento 3 Ti Timo Männikkö

Algoritmit 1. Luento 3 Ti Timo Männikkö Algoritmit 1 Luento 3 Ti 17.1.2017 Timo Männikkö Luento 3 Algoritmin analysointi Rekursio Lomituslajittelu Aikavaativuus Tietorakenteet Pino Algoritmit 1 Kevät 2017 Luento 3 Ti 17.1.2017 2/27 Algoritmien

Lisätiedot

7.4 Sormenjälkitekniikka

7.4 Sormenjälkitekniikka 7.4 Sormenjälkitekniikka Tarkastellaan ensimmäisenä esimerkkinä pitkien merkkijonojen vertailua. Ongelma: Ajatellaan, että kaksi n-bittistä (n 1) tiedostoa x ja y sijaitsee eri tietokoneilla. Halutaan

Lisätiedot

Menetelmä Markowitzin mallin parametrien estimointiin (valmiin työn esittely)

Menetelmä Markowitzin mallin parametrien estimointiin (valmiin työn esittely) Menetelmä Markowitzin mallin parametrien estimointiin (valmiin työn esittely) Lauri Nyman 17.9.2015 Ohjaaja: Eeva Vilkkumaa Valvoja: Harri Ehtamo Työn saa tallentaa ja julkistaa Aalto-yliopiston avoimilla

Lisätiedot

Älykäs datan tuonti kuljetusongelman optimoinnissa. Antoine Kalmbach

Älykäs datan tuonti kuljetusongelman optimoinnissa. Antoine Kalmbach Älykäs datan tuonti kuljetusongelman optimoinnissa Antoine Kalmbach ane@iki.fi Sisällys Taustaa Kuljetusongelma Datan tuominen vaikeaa Teoriaa Tiedostojen väliset linkit Mikä sarake on mikäkin? Ratkaisutoteutus

Lisätiedot

Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen

Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Lineaarisen kokonaislukuoptimointitehtävän ratkaiseminen Jos sallittuja kokonaislukuratkaisuja ei ole kovin paljon, ne voidaan käydä kaikki läpi yksitellen Käytännössä tämä ei kuitenkaan ole yleensä mahdollista

Lisätiedot

Koodausteoria, Kesä 2014

Koodausteoria, Kesä 2014 Koodausteoria, Kesä 2014 Topi Törmä Matemaattisten tieteiden laitos 3.3 Lineaarisen koodin dekoodaus Oletetaan, että lähetettäessä kanavaan sana c saadaan sana r = c + e, missä e on häiriön aiheuttama

Lisätiedot

Osakesalkun optimointi

Osakesalkun optimointi Osakesalkun optimointi Anni Halkola Epäsileä optimointi Turun yliopisto Huhtikuu 2016 Sisältö 1 Johdanto 1 2 Taustatietoja 2 3 Laskumetodit 3 3.1 Optimointiongelmat........................ 4 4 Epäsileän

Lisätiedot