follow(a) first(α j ) x

Save this PDF as:
Koko: px
Aloita esitys sivulta:

Download "follow(a) first(α j ) x"

Transkriptio

1 Tästä ensimmäisestä LL(1)-ehdosta (14) seuraa erityisesti, että korkeintaan yksi välikkeen A säännöistä voi tuottaa tyhjän merkkijonon ε eli tehdä välikkeestä A tyhjentyvän (eli nollautuvan). Toinen osa LL(1)-ehtoa koskee vain tyhjentyviä välikkeitä: Olkoon välike A N tyhjentyvä ja sen säännöistä viimeinen eli A α k se ainoa, joka voi tuottaa tyhjän merkkijonon ε. Silloin ehto vaatii, että follow(a) first(α j ) = (15) kaikilla muilla sen säännöillä 1 j < k. Nimittäin jos olisi jokin follow(a) first(α j ) x niin kumpaa säännöistä j vaiko k pitäisi käyttää tällä x? Kielioppi G on yleisessä LL(1)-muodossa, jos sen kaikki välikkeet ja säännöt täyttävät molemmat ehdot (14) ja (15). LL(1)-kielioppi ei voi olla moniselitteinen. LL(1)-kielioppi ei voi sisältää vasenta rekursiota. Kun kielioppi G on tätä yleistä LL(1)-muotoa, niin sille voidaan laatia rekursiivisesti etenevä jäsentäjä seuraavin periaattein: Pidetään yllä muuttujassa next seuraavaa syötemerkkiä. error(...) tarkoittaa lopeta koko rekursiivinen jäsennys virheilmoitukseen... Käytännön ohjelmoinnissa se voisi vaikkapa nostaa poikkeuksen (exception). Tehdään tässä esimerkissä sellainen jäsentäjä, joka palauttaa arvonaan vastaavan jäsennyspuun. Tätä kusutaan ennustavaksi (englanniksi predictive ) jäsentämiseksi, koska jäsentäjä osaa ennustaa oikein, mitä produktiota seuraavaksi pitää soveltaa, lukematta syötettä enempää kuin nextin verran eteenpäin. Jokaiselle päätesymbolille a Σ kirjoitetaan oma aliohjelma: a: 1 if next = a 2 then next lue seuraava syötemerkki 3 return uusi lapseton solmu nimeltään a 4 else error(tässä kohdasta olisi pitänyt olla a) Jokaiselle välikkeelle A N kirjoitetaan oma aliohjelma. Jos A ei ole tyhjentyvä, niin tämä aliohjelma on: 144

2 A: 1 if next first(α 1 ) then haara(α 1 ) 2 elseif next first(α 2 ) then haara(α 2 ) 3 elseif next first(α 3 ) then haara(α 3 ). elseif next first(α k ) then haara(α k ) else error(tästä kohdasta olisi pitänyt alkaa A) Huomaa, että nämä first-joukot ovat vakioita, jäsentäjä ei siis laske niitä. Niiden arvothan on jo laskettu LL(1)-ehtoa (14) testattaessa. Jokainen haara(x 1 X 2 X 3...X m ) on oma ohjelmanpätkänsä 1 y 1 X 1 2 y 2 X 2 3 y 3 X 3. y m X m return uusi solmu nimeltään A lapsinaan y 1, y 2, y 3,...,y m joka siis 1. ensin kutsuu rekursiivisesti muita jäsentäjän aliohjelmia X 1, X 2, X 3,...,X m oikeassa järjestyksessä 2. sitten palauttaa tuloksenaan jäsennyspuun, jonka juurena on nykyinen välike A ja sen lapsina näiden kutsujen palauttamat puut. (Tai jos jäsentimen halutaan tekevän jotakin muuta kuin jäsennyspuun, niin sitten tekee mitä halutaan pohjautuen siihen, mitä rekursiokutsut ovat ensin tehneet ja palauttaneet.) Jos välike A on tyhjentyvä niin vain sen viimeinen sääntö A α k tuottaa tyhjän merkkijonon ε. Silloin sen aliohjelma päättyykin. elseif next first(α k 1 ) then haara(α k 1 ) else haara(α k ) eli tämä tyhjentyvä viimeinen haara siirtyykin elseen errorin tilalle. Toisin sanoen, jos nextin mukaan kyseessä ei ollut mikään tyhjentymättömistä haaroista A α 1 α 2 α 3... α k 1 niin sitten ainoa mahdollisuus on tyhjentyvä haara A α k. Koko jäsentäjän pääohjelmaksi tulee 145

3 1 next lue syötteen ensimmäinen merkki 2 τ S eli kutsutaan lähtösymbolia vastaavaa aliohjelmaa 3 if next = EOF 4 then return näin rakennettu koko syötteen jäsennyspuu τ 5 else error(syötteen olisi pitänyt loppua tähän kohtaan) Usein halutaan sellainen jäsennysohjelma, joka ei pysähdy heti ensimmäiseen erroriin, vaan jatkaa eteenpäin, ja raportoi muitakin syötteessä olevia virheitä. Silloin kirjoitetaan kunkin tyhjentymättömän välikkeen A aliohjelman päättävän errorin tilalle tulosta(tästä kohdasta olisi pitänyt alkaa A); while next follow(a) do next lue seuraava syötemerkki; return uusi lapseton virhesolmu nimeltään A joka siis selaa ohi tämän virheellisen A, ja jatkaa jäsennystä sitä seuraavasta merkistä. Jokaiselle välikkeelle A N määritellään first(a) = first(α 1 ) first(α 2 ) first(α 3 )... first(α k ) (16) eli sen first-joukko koostuu kaikista sen sääntöjen oikeiden puolten α i firstjoukoista. Tällaisen oikean puolen α V first-joukko lasketaan puolestaan seuraavasti: Jos α = ε, niin first(α) = {ε. Jos α on muotoa b... jollakin päätemerkillä b Σ, niin first(α) = {b. Jos α on muotoa Bβ, jossa välike B ei ole tyhjentyvä, niin first(α) = first(b) joka taas lasketaan kuten yhtälössä (16). Jos α on muotoa Bβ, jossa välike B on tyhjentyvä, niin eli edetään eteenpäin jonossa α. first(α) = first(b) \ {ε first(β) Kaiken vasemman rekursion poisto takaa, ettei tämä ole kehämääritelmä. Välikkeiden follow-joukot voidaan puolestaan laskea toistamalla seuraavia sääntöjä, kunnes mikään joukko ei enää kasva: Lisää EOF lähtösymbolin S joukkoon follow(s). 146

4 Jos kieliopissa on jokin sääntö muotoa A αbβ, niin lisää joukkoon follow(b) kaikki joukon first(β) päätesymbolit. (Eli kaikki muut sen alkiot, mutta ei mahdollista tyhjää merkkijonoa ε). Jos kieliopissa on jokin sääntö muotoa A αbβ jossa ε first(β) niin lisää joukkoon follow(b) kaikki joukon follow(a) alkiot. Esimerkki 62. Esimerkin 59 tekijöidyssä kieliopissa tarvitaan LL(1)-jäsentäjää varten seuraavat joukot: first(t) = {a, ( first(e ) = {+,, ε first(e) = first(t) follow(e ) = follow(e) = {EOF, ). Näiden perusteella voidaan kirjoittaa jäsentäjä edellä kuvattuun tapaan. Lyhennetään koodia kirjoittamalla yksi yhteinen aliohjelma kaikille päätemerkeille b { +,, (, ),a: Terminaali(b): 1 if next = b 2 then next lue seuraava syötemerkki 3 return uusi lapseton solmu nimeltään b 4 else error(tässä kohdassa olisi pitänyt olla b) Pääohjelmaksi tulee: 1 next lue ensimmäinen syötemerkki 2 τ E 3 if next = EOF 4 then return τ 5 else error(syötteen olisi pitänyt loppua tähän kohtaan) Välikkeen E aliohjelmaksi tulee: E: 1 if next { (, a then y 1 T y 2 E return uusi solmu nimeltään E ja lapsinaan y 1, y 2 2 else error(tästä kohdasta olisi pitänyt alkaa E) Välikkeen E aliohjelmaksi tulee: 147

5 E : 1 if next { + then y 1 Terminaali( + ) y 2 E return uusi solmu nimeltään E ja lapsinaan y 1, y 2 2 elseif next { then y 1 Terminaali( ) y 2 E return uusi solmu nimeltään E ja lapsinaan y 1, y 2 3 else return uusi lapseton solmu nimeltään E (Tässä siis on haara säännölle E ε.) Välikkeen T aliohjelmaksi tulee: T: 1 if next {a then y 1 Terminaali(a) return uusi solmu nimeltään T ja lapsenaan y 1 2 elseif next { ( then y 1 Terminaali( ( ) y 2 E y 3 Terminaali( ) ) return uusi solmu nimeltään T ja lapsinaan y 1, y 2, y 3 3 else error(tästä kohdasta olisi pitänyt alkaa T) Tätä systemaattisesti kirjoitettua jäsennintä voi selvästi vielä parannella paikallisin muutoksin: esimerkiksi aliohjelman T rivillä 2 tarkastetaan kahdesti, että next on (. Tehdään siis parempi C-pseudokoodilla. void E() { tulosta(e TE ) T(); E (); void E () { if (next == + ) { tulosta(e +E) E(); else if (next == - ) { tulosta(e -E) E(); else tulosta(e ε) 148

6 void T() { if (next == a ) { tulosta(t a) else if (next == ( ) { tulosta(t (E)) E(); if (next ) ) error(sulkeva sulku puuttuu); else error(t ei voi alkaa merkillä next); Pääohjelma käynnistää ja päättää jäsennyksen: E(); if (next EOF) error(tässä piti olla EOF). Katsotaan esimerkki 63 sen toiminnasta. Sitten korvataan sen tulosteet yksinkertaisella koodingeneroinnilla. Esimerkki 63. Syötejonon a-(a+a) jäsennys tulostaa: E TE T a E -E E TE T (E) E TE T a E +E E TE T a E ε E ε Tulostus vastaa vasenta johtoa: E TE ae a E a TE a (E)E a (TE )E a (ae )E a (a + E)E a (a + TE )E a (a + ae )E a (a + a)e a (a + a). Oikeassa ohjelmassa tulosta-komennot voivat tehdä jotain hyödyllisempää (kuten laskea lausekkeen arvoa, generoida koodia,...). 149

7 // Lelukääntäjä: tuottaa konekoodia edellisen kieliopin // mukaisten lausekkeiden arvon laskemiseksi; tulos rekisteriin // r1... EI ole testattu, vastuu lukijalla: void Ep() { if(next == + ) { T(); printf("pop r1\npop r2\nadd r1, r2\npush r1\n"); Ep(); else if(next == - ) { T(); printf("pop r2\npop r1\nsub r1, r2\npush r1\n"); Ep(); void T() { if(numero_tai_muuttuja(next)) { printf("push % else if(next == ( ) { T(); Ep(); if(next!= ) ) printf("virhe: piti olla loppusulku\n"); else printf("virhe: T ei voi alkaa merkillä % int main() { T(); Ep(); printf("pop r1\n"); return 0; Edellisessä koodissa välike E on oleellisesti poistettu, ja se on korvattu sääntöjen oikealla puolella suoraan johdolla TE. Kielioppi generoi edelleen saman kielen: S TE E +TE TE ε T a (TE ) Lähtömuuttujasymboli S vastaa siis pääohjelmaa (main). 150

8 Konekielikäskymme: push x laita x pinoon pop x poista pinon päällimmäinen, Tulos ja laita x:ään add r1,r2r1 r1 + r2 sub r1,r2r1 r1 r2 on siis lopuksi rekisterissä r1. Generoitu konekieli ei tosin ole kovin tehokasta... Tätä ei kysytä tentissä! Se on esimerkkinä oikeasta jäsentämisestä ja kääntämisestä tosin ilman sellaisia käytännön kysymyksiä kuin jäsennysvirheiden käsittely, jne. Lelu-ohjelmamme tulostus syötteellä (x + y) (a + b) : push x push y pop r1 pop r2 add r1, r2 push r1 push a push b pop r1 pop r2 add r1, r2 push r1 pop r2 pop r1 sub r1, r2 push r1 pop r1 Peruuttavasta jäsentämisestä Voimme ryhtyä ohjelmoimaan tämän kaltaista rekursiivisesti etenevää jäsentäjää myös sellaiselle kieliopille G joka ei olekaan LL(1). Silloin tehdäänkin peruuttava (englanniksi backtracking ) jäsentäjä ennustavan sijaan. 1. Jäsentäjä arvaa (ennustamisen sijaan) mikä voisi olla seuraava produktio. 2. Jos jäsentäjä joutuu myöhemmin umpikujaan, eli huomaa arvanneensa väärin, niin se peruuttaa rekursiossaan viimeisimmän arvauksensa, ja arvaakin sen sijaan jonkin muun produktion. Intuitiivisesti, otamme aiemman kuvan 21 generoi-ja-testaa -algoritmin, ja toteutamme sen epädeterminismin tällä peruuttavalla etsinnällä. Tämän menetelmän hankaluuksia ovat edestakaisin vaeltelu syötemerkkijonossa: Jäsennin kulkee eteenpäin arvattuaan produktion jota se kokeilee seuraavaksi, ja taaksepäin peruuttaessaan vääräksi osoittautuneen arvauksensa. tehottomuus jos kieliopissa on paljon kokeiltavia vaihtoehtoja: Jäsennin joutuu kokeilemaan ne kaikki rekursiivisesti. pysähtyminen jos kielioppiin on jäänyt vasenta rekursiota: Jäsennin voi juuttua arvailemaan loputtomiin liikkumatta syötemerkkijonossa. Tällaisten peruuttavien etsintämenetelmien ohjelmointi yksinkertaistuu huomattavasti, jos otetaan käyttöön laiskat listat. 151

9 Laiskaa listaa ylläpidetään keskeneräisenä : Kun siltä kysytään Mikä on seuraava alkiosi? niin se laskee seuraavan alkionsa vasta silloin ja vain sen seuraavan alkionsa, eikä vielä muita. Peruuttavassa jäsennyksessä välikettä A vastaava jäsennysfunktio ottaa parametrinaan syötemerkkijonosta sen loppuosan u, joka on yhä jäsentämättä antaa tuloksenaan laiskan listan päätemerkkijonoja w, jossa w on se loppuosa merkkijonosta u, joka jää jäljelle kun sen alkuosasta jäsennetään tämä välike A. Siis u = vw jossa A v. Tuloslista koostuu kaikista tällaisista w, eli kaikista eri vaihtoehdoista jatkaa jäsennystä, kun ensin on jäsennetty tämä A. Silloin välikkeen A säännöistä A α 1... α k muodostetaan aliohjelma A(u) koodinaan 1 return Laiska(α 1, u)... Laiska(α k, u) jossa operaatio X Y yhdistää kaksi laiskaa listaa Y ja Y yhdeksi laiskaksi listaksi: 1 if lista X osoittautuu tyhjäksi 2 then return Y 3 else Z listan X ensimmäinen alkio; 4 L listan X loput alkiot; 5 return lista jonka ensimmäinen alkio on Z ja loput Y L. Laiskuuden ideana on laskea listaa X vain sen verran, että if-lausessa tiedetään kumpi haaroista then vaiko else pitää valita. Rivillä 5 kuljetaan listoja X ja Y vuorotahtiin; silloin jäsennys antaa reilun tilaisuuden jokaiselle eri kokeiltavalle vaihtoehdolle. Nämä Laiskat haarat voidaan puolestaan määritellä rekursiolla sääntöjen oikeiden puolten α i rakenteen suhteen: Laiska(ε, u) = return se laiska lista, jonka ainoa alkio on u itse koska tyhjän merkkijonon jäsentäminen ei kuluta yhtään syötemerkkiä. Päätemerkillä b Σ on Laiska(bβ, u) ehto 1 if merkkijono u on muotoa bw 2 then return Laiska(β, w) 3 else return tyhjä laiska lista koska tyhjä tuloslista tarkoittaa että ei jäsenny mitenkään. Välikkeellä B saa Laiska(Bβ,u) muodon 1 return Laiska(β, w 1 ) Laiska(β, w 2 ) Laiska(β, w 3 )... jossa w 1, w 2, w 3,... on laiskan listan B(u) sisältö 152

10 koska se tarkoittaa että jatketaan jäsentämällä β jokaisesta sellaisesta merkkijonosta w j joka jää jäljelle kun merkkijonon u alusta on jäsennetty välike B. Pääohjelmaksi alkusymbolille S tulee 1 return löytyykö ε laiskasta listasta S(koko syöte)? koska se tarkoittaa että voiko koko syötteen alusta jäsentää välikkeen S niin, ettei mitään jää jäljelle? Jos halutaan tämän kyllä/ei-vastauksen sijasta tuottaa jäsennyspuut, niin laajennetaan jokaisessa jäsennysfunktiossa A(u) jokainen tuloslistan alkio pelkästä merkkijonosta w pariksi (τ, w) jossa τ on sellainen jäsennyspuu, jonka juuri on nykyinen välike A ja tuotos on se merkkijono v jolla u = vw ja A v. Näin saa laiskan listan koko syötteen kaikista jäsennyspuista. Tällaista laiskoilla listoilla toteutettua peruttavaa jäsennintä voi onneksi tehostaa, jos kielioppisäännöt ovat sopivia. Esimerkiksi jos välikkeen säännöistä A α 1... α k tiedetään, että ne ovatkin muotoa joko α 1 tai α 2 tai α 3 tai...tai α k jos ne esimerkiksi täyttävät LL(1)- ehdot, vaikka koko kielioppi ei täytäkään niin silloin vastaavaksi aliohjelmaksi A(u) voidaankin ottaa 1 return Laiska(α 1, u)... Laiska(α k, u) jossa X Y sanookin että käytä listaa Y vain jos lista X osoittautuukin tyhjäksi : 1 if lista X osoittautuu tyhjäksi 2 then return Y 3 else return X LR-kieliopeista Simuloidaankin merkkijonon oikeaa johtoa rekursiivisesti. Saadaan LR(1)-kieliopit ja -kielet: Left to right scan, producing Right parse with 1 symbol lookahead. Yleisemmin, LR(k)-kielissä seuraavat k merkkiä määrittävät seuraavan johtoaskeleen. LR(0) = ns. yksinkertainen LR (Simple LR, SLR). LR(1) = deterministiset kielet, joten tasot k > 1 ovat enää teoreettisesti kiinnostavia. LR-jäsennys sisältää LL-jäsennyksen sillä lim LL(k) = LR(1). k Intutiivisesti, odotamme jäsentäessämme mahdollisimman pitkään emmekä heti kokeile sääntöä, eli teemmekin oikean emmekä vasenta johtoa. 153

Esimerkki 47. Kieli {a i b j c k : i = j tai j = k} on luonnostaan moniselitteinen.

Esimerkki 47. Kieli {a i b j c k : i = j tai j = k} on luonnostaan moniselitteinen. Aritmeettisen lausekkeen jäsennyspuun avulla voidaan helposti laskea lausekkeen arvo, kun muuttujien arvot tunnetaan. Yleisemmin, kääntäjä voi jäsennyspuun avulla generoida koodia lausekkeen evaluoimiseksi.

Lisätiedot

Vasen johto S AB ab ab esittää jäsennyspuun kasvattamista vasemmalta alkaen:

Vasen johto S AB ab ab esittää jäsennyspuun kasvattamista vasemmalta alkaen: Vasen johto S AB ab ab esittää jäsennyspuun kasvattamista vasemmalta alkaen: S A S B Samaan jäsennyspuuhun päästään myös johdolla S AB Ab ab: S A S B Yhteen jäsennyspuuhun liittyy aina tasan yksi vasen

Lisätiedot

jäsentämisestä TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho 27. marraskuuta 2015 TIETOTEKNIIKAN LAITOS

jäsentämisestä TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho 27. marraskuuta 2015 TIETOTEKNIIKAN LAITOS TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 27. marraskuuta 2015 Sisällys Rekursiivisesti etenevä engl. recursive descent parsing Tehdään kustakin välikesymbolista

Lisätiedot

Jäsennysalgoritmeja. TIE448 Kääntäjätekniikka, syksy Antti-Juhani Kaijanaho. 29. syyskuuta 2009 TIETOTEKNIIKAN LAITOS. Jäsennysalgoritmeja

Jäsennysalgoritmeja. TIE448 Kääntäjätekniikka, syksy Antti-Juhani Kaijanaho. 29. syyskuuta 2009 TIETOTEKNIIKAN LAITOS. Jäsennysalgoritmeja TIE448 Kääntäjätekniikka, syksy 2009 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 29. syyskuuta 2009 Sisällys Sisällys Seuraava deadline Vaihe B tiistai 6.10. klo 10 selaaja ja jäsentäjä toimivat Kääntäjän

Lisätiedot

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 10. kesäkuuta 2013

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 10. kesäkuuta 2013 TIEA241 Automaatit ja kieliopit, kesä 2013 etenevä Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 10. kesäkuuta 2013 Sisällys etenevä etenevä Chomskyn hierarkia (ja muutakin) kieli säännöllinen LL(k) LR(1)

Lisätiedot

jäsennyksestä TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho 29. syyskuuta 2016 TIETOTEKNIIKAN LAITOS Kontekstittomien kielioppien

jäsennyksestä TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho 29. syyskuuta 2016 TIETOTEKNIIKAN LAITOS Kontekstittomien kielioppien TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 29. syyskuuta 2016 Sisällys Harjoitustehtävätilastoa Tilanne 29.9.2016 klo 8:41 (lähes kaikki kommentoitu) passed

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 29. huhtikuuta 2011

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 29. huhtikuuta 2011 TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 29. huhtikuuta 2011 Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti

Lisätiedot

Laskennan mallit (syksy 2010) Harjoitus 8, ratkaisuja

Laskennan mallit (syksy 2010) Harjoitus 8, ratkaisuja 582206 Laskennan mallit (syksy 2010) Harjoitus 8, ratkaisuja 1. Tarkastellaan yhteydetöntä kielioppia S SAB ε A aa a B bb ε Esitä merkkijonolle aa kaksi erilaista jäsennyspuuta ja kummallekin siitä vastaava

Lisätiedot

jäsentäminen TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho 26. marraskuuta 2015 TIETOTEKNIIKAN LAITOS

jäsentäminen TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho 26. marraskuuta 2015 TIETOTEKNIIKAN LAITOS TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 26. marraskuuta 2015 Sisällys Tunnistamis- ja jäsennysongelma Olkoon G = (N, Σ, P, S) kontekstiton kielioppi ja

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria

ICS-C2000 Tietojenkäsittelyteoria ICS-C2000 Tietojenkäsittelyteoria Luento 6: Jäsennyspuut, LL(1)-kielioppien jäsennys Aalto-yliopisto Perustieteiden korkeakoulu Tietotekniikan laitos Alue ja aiheet: Orposen prujun luvut 3.3 3.5 Kielioppien

Lisätiedot

Yhteydettömät kieliopit [Sipser luku 2.1]

Yhteydettömät kieliopit [Sipser luku 2.1] Yhteydettömät kieliopit [ipser luku 2.1] Johdantoesimerkkinä tarkastelemme kieltä L = { a n b m a n n > 0, m > 0 }, joka on yhteydetön (mutta ei säännöllinen). Vastaavan kieliopin ytimenä on säännöt eli

Lisätiedot

815338A Ohjelmointikielten periaatteet Harjoitus 2 vastaukset

815338A Ohjelmointikielten periaatteet Harjoitus 2 vastaukset 815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 2 vastaukset Harjoituksen aiheena on BNF-merkinnän käyttö ja yhteys rekursiivisesti etenevään jäsentäjään. Tehtävä 1. Mitkä ilmaukset seuraava

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 12. kesäkuuta 2013

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 12. kesäkuuta 2013 TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. kesäkuuta 2013 Sisällys t Chomskyn hierarkia (ja vähän muutakin) kieli säännöllinen LL(k) LR(1) kontekstiton

Lisätiedot

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut

T Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut T-79.148 Syksy 2002 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut 4. Tehtävä: Laadi algoritmi, joka testaa onko annetun yhteydettömän kieliopin G = V, Σ, P, S tuottama

Lisätiedot

S BAB ABA A aas bba B bbs c

S BAB ABA A aas bba B bbs c T-79.148 Kevät 2003 Tietojenkäsittelyteorian perusteet Harjoitus 8 Demonstraatiotehtävien ratkaisut 4. Tehtävä: Laadi algoritmi, joka testaa onko annetun yhteydettömän kieliopin G = V, Σ, P, S) tuottama

Lisätiedot

Testaa: Vertaa pinon merkkijono syötteeseen merkki kerrallaan. Jos löytyy ero, hylkää. Jos pino tyhjenee samaan aikaan, kun syöte loppuu, niin

Testaa: Vertaa pinon merkkijono syötteeseen merkki kerrallaan. Jos löytyy ero, hylkää. Jos pino tyhjenee samaan aikaan, kun syöte loppuu, niin Yhteydettömien kielioppien ja pinoautomaattien yhteys [Sipser s. 117 124] Todistamme, että yhteydettömien kielioppien tuottamat kielet ovat tasan samat kuin ne, jotka voidaan tunnistaa pinoautomaatilla.

Lisätiedot

Täydentäviä muistiinpanoja jäsennysalgoritmeista

Täydentäviä muistiinpanoja jäsennysalgoritmeista äydentäviä muistiinpanoja jäsennysalgoritmeista Antti-Juhani Kaijanaho 7. helmikuuta 2012 1 simerkki arleyn algoritmin soveltamisesta arkastellaan kielioppia G : + () c ja sovelletaan arleyn algoritmia

Lisätiedot

Yhteydettömän kieliopin jäsennysongelma

Yhteydettömän kieliopin jäsennysongelma Yhteydettömän kieliopin jäsennysongelma Yhteydettömän kieliopin jäsennysongelmalla tarkoitetaan laskentaongelmaa Annettu: yhteydetön kielioppi G, merkkijono w Kysymys: päteekö w L(G). Ongelma voidaan periaatteessa

Lisätiedot

Attribuuttikieliopit

Attribuuttikieliopit TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 3. toukokuuta 2011 Sisällys t Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 Kierros 6, 22. 26. helmikuuta Huom: arviointiviikolla 15. 19.2. ei ole laskuharjoituksia! Demonstraatiotehtävien ratkaisut D1: (a) Osoita, että seuraava yhteydetön

Lisätiedot

LR-jäsennys. Antti-Juhani Kaijanaho. 3. lokakuuta 2016

LR-jäsennys. Antti-Juhani Kaijanaho. 3. lokakuuta 2016 LR-jäsennys Antti-Juhani Kaijanaho 3. lokakuuta 2016 Tämä lisämoniste esittelee Yaccin, CUPin ja muiden vastaavien ohjelmien käyttämän LR-jäsennysmenetelmäperheen. Se ei kuulu kurssin koealueeseen. Tehtävänä

Lisätiedot

Rajoittamattomat kieliopit (Unrestricted Grammars)

Rajoittamattomat kieliopit (Unrestricted Grammars) Rajoittamattomat kieliopit (Unrestricted Grammars) Laura Pesola Laskennanteorian opintopiiri 13.2.2013 Formaalit kieliopit Sisältävät aina Säännöt (esim. A -> B C abc) Muuttujat (A, B, C, S) Aloitussymboli

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 16. helmikuuta 2012

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 16. helmikuuta 2012 TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 16. helmikuuta 2012 Sisällys t Sisällys t Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 2 7.-8.2.2018 Timo Männikkö Tehtävä 1 (a) Ei-rekursiivinen algoritmi: etsipienin(t, n) { pnn = t[0]; for (i = 1; i < n; i++) { pnn = min(pnn, t[i]); return pnn; Silmukka suoritetaan

Lisätiedot

Algoritmit 1. Demot Timo Männikkö

Algoritmit 1. Demot Timo Männikkö Algoritmit 1 Demot 2 1.-2.2.2017 Timo Männikkö Tehtävä 1 (a) Ei-rekursiivinen algoritmi: laskesumma(t, n) sum = t[0]; for (i = 1; i < n; i++) sum = sum + t[i]; return sum; Silmukka suoritetaan n 1 kertaa

Lisätiedot

Jäsennys. TIEA341 Funktio ohjelmointi 1 Syksy 2005

Jäsennys. TIEA341 Funktio ohjelmointi 1 Syksy 2005 Jäsennys TIEA341 Funktio ohjelmointi 1 Syksy 2005 Muistutus: Laskutehtävä ja tulos data Laskutehtava = Luku Double Yhteen Laskutehtava Laskutehtava Vahennys Laskutehtava Laskutehtava Tulo Laskutehtava

Lisätiedot

815338A Ohjelmointikielten periaatteet Harjoitus 6 Vastaukset

815338A Ohjelmointikielten periaatteet Harjoitus 6 Vastaukset 815338A Ohjelmointikielten periaatteet 2015-2016. Harjoitus 6 Vastaukset Harjoituksen aiheena on funktionaalinen ohjelmointi Scheme- ja Haskell-kielillä. Voit suorittaa ohjelmat osoitteessa https://ideone.com/

Lisätiedot

2. Yhteydettömät kielet

2. Yhteydettömät kielet 2. Yhteydettömät kielet Yhteydettömät eli kontekstittomat kielet (context-free language, CFL) ovat säännöllisiä kieliä laajempi luokka formaaleja kieliä. Ne voidaan esittää yhteydettömillä kieliopeilla

Lisätiedot

Esimerkki 2.28: Tarkastellaan edellisen sivun ehdot (1) (3) toteuttavaa pinoautomaattia, jossa päätemerkit ovat a, b ja c ja pinoaakkoset d, e ja $:

Esimerkki 2.28: Tarkastellaan edellisen sivun ehdot (1) (3) toteuttavaa pinoautomaattia, jossa päätemerkit ovat a, b ja c ja pinoaakkoset d, e ja $: Esimerkki 2.28: Tarkastellaan edellisen sivun ehdot (1) (3) toteuttavaa pinoautomaattia, jossa päätemerkit ovat a, b ja c ja pinoaakkoset d, e ja $: a, ε d b, d ε ε, ε $ b, d ε 1 2 3 6 c, ε e c, ε e c,

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 3. lokakuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 3. lokakuuta 2016 TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 3. lokakuuta 2016 Sisällys n tunnistin Jay : An Efficient Context-Free Parsing Algorithm. Communications of the

Lisätiedot

TIE448 Kääntäjätekniikka, syksy Antti-Juhani Kaijanaho. 29. syyskuuta 2009

TIE448 Kääntäjätekniikka, syksy Antti-Juhani Kaijanaho. 29. syyskuuta 2009 TIE448 Kääntäjätekniikka, syksy 2009 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 29. syyskuuta 2009 Sisällys Sisällys Seuraava deadline Vaihe B tiistai 6.10. klo 10 selaaja ja jäsentäjä toimivat Sisällys

Lisätiedot

Ei-yhteydettömät kielet [Sipser luku 2.3]

Ei-yhteydettömät kielet [Sipser luku 2.3] Ei-yhteydettömät kielet [Sipser luku 2.3] Yhteydettömille kielille pätee samantapainen pumppauslemma kuin säännöllisille kielille. Siinä kuitenkin pumpataan kahta osamerkkijonoa samaan tahtiin. Lause 2.25

Lisätiedot

815338A Ohjelmointikielten periaatteet 2014-2015. Harjoitus 7 Vastaukset

815338A Ohjelmointikielten periaatteet 2014-2015. Harjoitus 7 Vastaukset 815338A Ohjelmointikielten periaatteet 2014-2015. Harjoitus 7 Vastaukset Harjoituksen aiheena on funktionaalinen ohjelmointi Scheme- ja Haskell-kielillä. Voit suorittaa ohjelmat osoitteessa https://ideone.com/

Lisätiedot

ITKP102 Ohjelmointi 1 (6 op)

ITKP102 Ohjelmointi 1 (6 op) ITKP102 Ohjelmointi 1 (6 op) Tentaattori: Antti-Jussi Lakanen 7. huhtikuuta 2017 Vastaa kaikkiin tehtäviin. Tee jokainen tehtävä erilliselle konseptiarkille. Kirjoittamasi luokat, funktiot ja aliohjelmat

Lisätiedot

Rekursiivinen Derives on periaatteessa aivan toimiva algoritmi, mutta erittäin tehoton. Jos tarkastellaan esim. kieliopinpätkää

Rekursiivinen Derives on periaatteessa aivan toimiva algoritmi, mutta erittäin tehoton. Jos tarkastellaan esim. kieliopinpätkää Rekursiivinen Derives on periaatteessa aivan toimiva algoritmi, mutta erittäin tehoton. Jos tarkastellaan esim. kieliopinpätkää S AB CA... A CB...... ja kutsua Derives(S, abcde), niin kutsu Derives(B,

Lisätiedot

T Syksy 2006 Tietojenkäsittelyteorian perusteet T Harjoitus 7 Demonstraatiotehtävien ratkaisut

T Syksy 2006 Tietojenkäsittelyteorian perusteet T Harjoitus 7 Demonstraatiotehtävien ratkaisut T-79.1001 Syksy 2006 Tietojenkäsittelyteorian perusteet T Harjoitus 7 Demonstraatiotehtävien ratkaisut Lemma (Säännöllisten kielten pumppauslemma). Olkoon A säännöllinen kieli. Tällöin on olemassa n 1

Lisätiedot

Olkoon G = (V,Σ,P,S) yhteydetön kielioppi. Välike A V Σ on tyhjentyvä, jos A. NULL := {A V Σ A ε on G:n produktio};

Olkoon G = (V,Σ,P,S) yhteydetön kielioppi. Välike A V Σ on tyhjentyvä, jos A. NULL := {A V Σ A ε on G:n produktio}; 3.6 Cocke-Younger-Kasami -jäsennysalgoritmi Osittava jäsentäminen on selkeä ja tehokas jäsennysmenetelmä LL(1)-kieliopeille: n merkin mittaisen syötemerkkijonon käsittely sujuu ajassa O(n). LL(1)-kieliopit

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 24.1.2011 T-106.1208 Ohjelmoinnin perusteet Y 24.1.2011 1 / 36 Luentopalaute kännykällä alkaa tänään! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti Vast

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 30. marraskuuta 2015

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 30. marraskuuta 2015 TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 30. marraskuuta 2015 Sisällys t Väitöstilaisuus 4.12.2015 kello 12 vanhassa juhlasalissa S212 saa tulla 2 demoruksia

Lisätiedot

TAMPEREEN TEKNILLINEN YLIOPISTO

TAMPEREEN TEKNILLINEN YLIOPISTO TAMPEREEN TEKNILLINEN YLIOPISTO Digitaali- ja Tietokonetekniikan laitos TKT-3200 Tietokonetekniikka ASSEMBLER: QSORT 11.08.2010 Ryhmä 00 nimi1 email1 opnro1 nimi2 email2 opnro2 nimi3 email3 opnro3 1. TEHTÄVÄ

Lisätiedot

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012

ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 ALGORITMIT 1 DEMOVASTAUKSET KEVÄT 2012 1.1. (a) Jaettava m, jakaja n. Vähennetään luku n luvusta m niin kauan kuin m pysyy ei-negatiivisena. Jos jäljelle jää nolla, jaettava oli tasan jaollinen. int m,

Lisätiedot

Täydentäviä muistiinpanoja Turingin koneiden vaihtoehdoista

Täydentäviä muistiinpanoja Turingin koneiden vaihtoehdoista Täydentäviä muistiinpanoja Turingin koneiden vaihtoehdoista Antti-Juhani Kaijanaho 15. maaliskuuta 2012 1 Apumääritelmä Määritelmä 1. Olkoon Σ merkistö, jolla on olemassa täydellinen järjestys ( ) Σ 2.

Lisätiedot

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 29. toukokuuta 2013

TIEA241 Automaatit ja kieliopit, kesä Antti-Juhani Kaijanaho. 29. toukokuuta 2013 TIEA241 Automaatit ja kieliopit, kesä 2013 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 29. toukokuuta 2013 Sisällys Chomskyn hierarkia (ja muutakin) kieli LL(k) LR(1) kontekstiton kontekstinen rekursiivisesti

Lisätiedot

4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi:

4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi: T-79.148 Kevät 2004 Tietojenkäsittelyteorian perusteet Harjoitus 12 Demonstraatiotehtävien ratkaisut 4. Tehtävässä halutaan todistaa seuraava ongelma ratkeamattomaksi: Hyväksyykö annettu Turingin kone

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 26.1.2009 T-106.1208 Ohjelmoinnin perusteet Y 26.1.2009 1 / 33 Valintakäsky if syote = raw_input("kerro tenttipisteesi.\n") pisteet = int(syote) if pisteet >=

Lisätiedot

TIEA341 Funktio-ohjelmointi 1, kevät 2008

TIEA341 Funktio-ohjelmointi 1, kevät 2008 TIEA341 Funktio-ohjelmointi 1, kevät 2008 Luento 9 Kombinaattoreista Antti-Juhani Kaijanaho Jyväskylän yliopisto Tietotekniikan laitos 21. tammikuuta 2008 Currying Haskell-funktio ottaa aina vain yhden

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 2. helmikuuta 2012

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 2. helmikuuta 2012 TIEA241 Automaatit ja, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 2. helmikuuta 2012 Sisällys Sisällys Chomskyn hierarkia kieli säännöllinen kontekstiton kontekstinen rekursiivisesti lueteltava

Lisätiedot

uv n, v 1, ja uv i w A kaikilla

uv n, v 1, ja uv i w A kaikilla 2.8 Säännöllisten kielten rajoituksista Kardinaliteettisyistä on oltava olemassa (paljon) ei-säännöllisiä kieliä: kieliä on ylinumeroituva määrä, säännöllisiä lausekkeita vain numeroituvasti. Voidaanko

Lisätiedot

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta

811312A Tietorakenteet ja algoritmit Kertausta kurssin alkuosasta 811312A Tietorakenteet ja algoritmit 2017-2018 Kertausta kurssin alkuosasta II Perustietorakenteet Pino, jono ja listat tunnettava Osattava soveltaa rakenteita algoritmeissa Osattava päätellä operaatioiden

Lisätiedot

Tietorakenteet ja algoritmit

Tietorakenteet ja algoritmit Tietorakenteet ja algoritmit Rekursio Rekursion käyttötapauksia Rekursio määritelmissä Rekursio ongelmanratkaisussa ja ohjelmointitekniikkana Esimerkkejä taulukolla Esimerkkejä linkatulla listalla Hanoin

Lisätiedot

TAMPEREEN TEKNILLINEN YLIOPISTO

TAMPEREEN TEKNILLINEN YLIOPISTO TAMPEREEN TEKNILLINEN YLIOPISTO Digitaali- ja Tietokonetekniikan laitos TKT-3200 Tietokonetekniikka ASSEMBLER: QSORT 06.09.2005 Ryhmä 00 nimi1 email1 opnro1 nimi2 email2 opnro2 nimi3 email3 opnro3 1. TEHTÄVÄ

Lisätiedot

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016

ICS-C2000 Tietojenkäsittelyteoria Kevät 2016 ICS-C2000 Tietojenkäsittelyteoria Kevät 206 Kierros 0, 2. 24. maaliskuuta Huom! Perjantaina 25. maaliskuuta ei ole laskareita (pitkäperjantai), käykää vapaasti valitsemassanne ryhmässä aiemmin viikolla.

Lisätiedot

Algoritmit 1. Luento 4 Ke Timo Männikkö

Algoritmit 1. Luento 4 Ke Timo Männikkö Algoritmit 1 Luento 4 Ke 18.1.2017 Timo Männikkö Luento 4 Tietorakenteet Pino Pinon toteutus Jono Jonon toteutus Lista Listaoperaatiot Algoritmit 1 Kevät 2017 Luento 4 Ke 18.1.2017 2/29 Pino Pino, stack,

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 25.1.2010 T-106.1208 Ohjelmoinnin perusteet Y 25.1.2010 1 / 41 Valintakäsky if Tähänastiset ohjelmat ovat toimineen aina samalla tavalla. Usein ohjelman pitäisi

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 16. marraskuuta 2015

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 16. marraskuuta 2015 ja ja TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho NFA:ksi TIETOTEKNIIKAN LAITOS 16. marraskuuta 2015 Sisällys ja NFA:ksi NFA:ksi Kohti säännöllisiä lausekkeita ja Nämä tiedetään:

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 12. tammikuuta 2012

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 12. tammikuuta 2012 TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 12. tammikuuta 2012 Sisällys Sisällys Äärellisiä automaatteja PUSH ON PUSH OFF Q T Q J C C H S C,Q C,Q 0 50s 1e

Lisätiedot

Rajoittamattomat kieliopit

Rajoittamattomat kieliopit Rajoittamattomat kieliopit Ohjelmoinnin ja laskennan perusmalleista muistetaan, että kieli voidaan kuvata (esim.) kieliopilla joka tuottaa sen, tai automaatilla joka tunnistaa sen. säännölliset lausekkeet

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 5. marraskuuta 2015

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 5. marraskuuta 2015 TIEA24 Automaatit ja kieliopit, syksy 205 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 5. marraskuuta 205 Sisällys Käsiteanalyysiä Tarkastellaan koodilukkoa äärellisenä automaattina. Deterministinen äärellinen

Lisätiedot

δ : (Q {q acc, q rej }) (Γ k {, }) Q (Γ k {, }) {L, R}.

δ : (Q {q acc, q rej }) (Γ k {, }) Q (Γ k {, }) {L, R}. 42 Turingin koneiden laajennuksia 1 oniuraiset koneet Sallitaan, että Turingin koneen nauha koostuu k:sta rinnakkaisesta urasta, jotka kaikki kone lukee ja kirjoittaa yhdessä laskenta-askelessa: Koneen

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 27.1.2010 T-106.1208 Ohjelmoinnin perusteet Y 27.1.2010 1 / 37 If-käsky toistokäskyn sisällä def main(): HELLERAJA = 25.0 print "Anna lampotiloja, lopeta -300:lla."

Lisätiedot

ITKP102 Ohjelmointi 1 (6 op)

ITKP102 Ohjelmointi 1 (6 op) ITKP102 Ohjelmointi 1 (6 op) Tentaattori: Antti-Jussi Lakanen 22. huhtikuuta 2016 Vastaa kaikkiin tehtäviin. Tee jokainen tehtävä erilliselle konseptiarkille! Kirjoittamasi luokat, funktiot ja aliohjelmat

Lisätiedot

Lisää pysähtymisaiheisia ongelmia

Lisää pysähtymisaiheisia ongelmia Lisää pysähtymisaiheisia ongelmia Lause: Pysähtymättömyysongelma H missä H = { w111x w validi koodi, M w ei pysähdy syötteellä x } ei ole rekursiivisesti lueteltava. Todistus: Pysähtymisongelman komplementti

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 1.4.2009 T-106.1208 Ohjelmoinnin perusteet Y 1.4.2009 1 / 56 Tentti Ensimmäinen tenttimahdollisuus on pe 8.5. klo 13:00 17:00 päärakennuksessa. Tämän jälkeen

Lisätiedot

Algoritmit 2. Luento 7 Ti Timo Männikkö

Algoritmit 2. Luento 7 Ti Timo Männikkö Algoritmit 2 Luento 7 Ti 4.4.2017 Timo Männikkö Luento 7 Joukot Joukko-operaatioita Joukkojen esitystapoja Alkiovieraat osajoukot Toteutus puurakenteena Algoritmit 2 Kevät 2017 Luento 7 Ti 4.4.2017 2/26

Lisätiedot

Monipuolinen esimerkki

Monipuolinen esimerkki Monipuolinen esimerkki Lopuksi monipuolinen esimerkki, jossa ohjelmisto koostuu pääohjelmasta ja kahdesta aliohjelmasta, joista toinen on proseduuri ja toinen funktio. Funktio Sqrt(int n): int Sqrt(int

Lisätiedot

Kontekstittomien kielten jäsentäminen Täydentäviä muistiinpanoja TIEA241 Automaatit ja kieliopit, syksy 2016

Kontekstittomien kielten jäsentäminen Täydentäviä muistiinpanoja TIEA241 Automaatit ja kieliopit, syksy 2016 Kontekstittomien kielten jäsentäminen äydentäviä muistiinpanoja IA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho 19. lokakuuta 2016 1 Yksiselitteiset operaattorikieliopit 1.1 Aritmeettiset

Lisätiedot

M =(K, Σ, Γ,, s, F ) Σ ={a, b} Γ ={c, d} = {( (s, a, e), (s, cd) ), ( (s, e, e), (f, e) ), (f, e, d), (f, e)

M =(K, Σ, Γ,, s, F ) Σ ={a, b} Γ ={c, d} = {( (s, a, e), (s, cd) ), ( (s, e, e), (f, e) ), (f, e, d), (f, e) Tik-79.148 Kevät 2001 Tietojenkäsittelyteorian perusteet Laskuharjoitus 7 Demonstraatiotehtävien ratkaisut 1. Pinoautomaatti M = K Σ Γ s F missä K Σ s ja F on määritelty samalla tavalla kuin tilakoneellekin.

Lisätiedot

Vaihtoehtoinen tapa määritellä funktioita f : N R on

Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: 1 (Alkuarvot) Ilmoitetaan funktion arvot

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2016-2017 1. Algoritmeista 1.1 Algoritmin käsite Algoritmi keskeinen laskennassa Määrittelee prosessin, joka suorittaa annetun tehtävän Esimerkiksi Nimien järjestäminen aakkosjärjestykseen

Lisätiedot

7.4 Sormenjälkitekniikka

7.4 Sormenjälkitekniikka 7.4 Sormenjälkitekniikka Tarkastellaan ensimmäisenä esimerkkinä pitkien merkkijonojen vertailua. Ongelma: Ajatellaan, että kaksi n-bittistä (n 1) tiedostoa x ja y sijaitsee eri tietokoneilla. Halutaan

Lisätiedot

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on Rekursio Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on käyttää rekursiota: Rekursio Funktio f : N R määritellään yleensä

Lisätiedot

Se mistä tilasta aloitetaan, merkitään tyhjästä tulevalla nuolella. Yllä olevassa esimerkissä aloitustila on A.

Se mistä tilasta aloitetaan, merkitään tyhjästä tulevalla nuolella. Yllä olevassa esimerkissä aloitustila on A. Tehtävä. Tämä tehtävä on aineistotehtävä, jossa esitetään ensin tehtävän teoria. Sen jälkeen esitetään neljä kysymystä, joissa tätä teoriaa pitää soveltaa. Mitään aikaisempaa tehtävän aihepiirin tuntemusta

Lisätiedot

Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003

Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Tehtävän V.1 ratkaisuehdotus Tietorakenteet, syksy 2003 Matti Nykänen 5. joulukuuta 2003 1 Satelliitit Muunnetaan luennoilla luonnosteltua toteutusta seuraavaksi: Korvataan puusolmun p kentät p. key ja

Lisätiedot

5.5 Jäsenninkombinaattoreista

5.5 Jäsenninkombinaattoreista 5.5. JÄSENNINKOMBINAATTOREISTA 67 type Env α = FiniteMap String α data EnvT m α = MkE (Env Integer m (Env Integer, α)) instance Transformer EnvT where promote mp = MkE $ λenv mp λr return $(env, r) instance

Lisätiedot

Algoritmit 1. Luento 3 Ti Timo Männikkö

Algoritmit 1. Luento 3 Ti Timo Männikkö Algoritmit 1 Luento 3 Ti 17.1.2017 Timo Männikkö Luento 3 Algoritmin analysointi Rekursio Lomituslajittelu Aikavaativuus Tietorakenteet Pino Algoritmit 1 Kevät 2017 Luento 3 Ti 17.1.2017 2/27 Algoritmien

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 2.3.2009 T-106.1208 Ohjelmoinnin perusteet Y 2.3.2009 1 / 28 Puhelinluettelo, koodi def lue_puhelinnumerot(): print "Anna lisattavat nimet ja numerot." print

Lisätiedot

Ohjelmoinnin perusteet Y Python

Ohjelmoinnin perusteet Y Python Ohjelmoinnin perusteet Y Python T-106.1208 7.2.2011 T-106.1208 Ohjelmoinnin perusteet Y 7.2.2011 1 / 39 Kännykkäpalautetteen antajia kaivataan edelleen! Ilmoittaudu mukaan lähettämällä ilmainen tekstiviesti

Lisätiedot

LOAD R1, =2 Sijoitetaan rekisteriin R1 arvo 2. LOAD R1, 100

LOAD R1, =2 Sijoitetaan rekisteriin R1 arvo 2. LOAD R1, 100 Tiedonsiirtokäskyt LOAD LOAD-käsky toimii jälkimmäisestä operandista ensimmäiseen. Ensimmäisen operandin pitää olla rekisteri, toinen voi olla rekisteri, vakio tai muistiosoite (myös muuttujat ovat muistiosoitteita).

Lisätiedot

Algoritmit 2. Luento 14 Ke Timo Männikkö

Algoritmit 2. Luento 14 Ke Timo Männikkö Algoritmit 2 Luento 14 Ke 3.5.2017 Timo Männikkö Luento 14 Ositus ja rekursio Rekursion toteutus Kertaus ja tenttivinkit Algoritmit 2 Kevät 2017 Luento 14 Ke 3.5.2017 2/30 Ositus Tehtävän esiintymä ositetaan

Lisätiedot

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet 811120P Diskreetit rakenteet 2018-2019 1. Algoritmeista 1.1 Algoritmin käsite Algoritmi keskeinen laskennassa Määrittelee prosessin, joka suorittaa annetun tehtävän Esimerkiksi Nimien järjestäminen aakkosjärjestykseen

Lisätiedot

IDL - proseduurit. ATK tähtitieteessä. IDL - proseduurit

IDL - proseduurit. ATK tähtitieteessä. IDL - proseduurit IDL - proseduurit 25. huhtikuuta 2017 Viimeksi käsiteltiin IDL:n interaktiivista käyttöä, mutta tämä on hyvin kömpelöä monimutkaisempia asioita tehtäessä. IDL:llä on mahdollista tehdä ns. proseduuri-tiedostoja,

Lisätiedot

Ohjelmoinnin peruskurssien laaja oppimäärä

Ohjelmoinnin peruskurssien laaja oppimäärä Ohjelmoinnin peruskurssien laaja oppimäärä Keskeneräinen luento 3: Listat (mm. SICP 22.2.3) Riku Saikkonen 31. 10. 2011 Sisältö 1 Linkitetyt listat 2 Linkitetyt listat (SICP 2.1.1, 2.2.1) funktionaalinen

Lisätiedot

ATK tähtitieteessä. Osa 3 - IDL proseduurit ja rakenteet. 18. syyskuuta 2014

ATK tähtitieteessä. Osa 3 - IDL proseduurit ja rakenteet. 18. syyskuuta 2014 18. syyskuuta 2014 IDL - proseduurit Viimeksi käsiteltiin IDL:n interaktiivista käyttöä, mutta tämä on hyvin kömpelöä monimutkaisempia asioita tehtäessä. IDL:llä on mahdollista tehdä ns. proseduuri-tiedostoja,

Lisätiedot

3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin.

3. Hakupuut. B-puu on hakupuun laji, joka sopii mm. tietokantasovelluksiin, joissa rakenne on talletettu kiintolevylle eikä keskusmuistiin. 3. Hakupuut Hakupuu on listaa tehokkaampi dynaamisen joukon toteutus. Erityisesti suurilla tietomäärillä hakupuu kannattaa tasapainottaa, jolloin päivitysoperaatioista tulee hankalampia toteuttaa mutta

Lisätiedot

Pinoautomaatit. Pois kontekstittomuudesta

Pinoautomaatit. Pois kontekstittomuudesta TIEA241 Automaatit ja kieliopit, syksy 2015 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 3. joulukuuta 2015 Sisällys Pinoautomaatti NFA:n yleistys automaatilla on käytössään LIFO-muisti 1 eli pino Pino

Lisätiedot

Ohjelmointi 1 C#, kevät 2014, 2. uusintatentti NIMI:

Ohjelmointi 1 C#, kevät 2014, 2. uusintatentti NIMI: ITKP102 Ohjelmointi 1 C# 13.6.2014 1 / 5 Ohjelmointi 1 C#, kevät 2014, 2. uusintatentti Tentaattori Antti-Jussi Lakanen Valitse neljä tehtävää ja vastaa niihin. Keväällä 2014 kurssin tehneille lasketaan

Lisätiedot

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti

Luku 6. Dynaaminen ohjelmointi. 6.1 Funktion muisti Luku 6 Dynaaminen ohjelmointi Dynaamisessa ohjelmoinnissa on ideana jakaa ongelman ratkaisu pienempiin osaongelmiin, jotka voidaan ratkaista toisistaan riippumattomasti. Jokaisen osaongelman ratkaisu tallennetaan

Lisätiedot

tään painetussa ja käsin kirjoitetussa materiaalissa usein pienillä kreikkalaisilla

tään painetussa ja käsin kirjoitetussa materiaalissa usein pienillä kreikkalaisilla 2.5. YDIN-HASKELL 19 tään painetussa ja käsin kirjoitetussa materiaalissa usein pienillä kreikkalaisilla kirjaimilla. Jos Γ ja ovat tyyppilausekkeita, niin Γ on tyyppilauseke. Nuoli kirjoitetaan koneella

Lisätiedot

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 26. tammikuuta 2012

TIEA241 Automaatit ja kieliopit, kevät Antti-Juhani Kaijanaho. 26. tammikuuta 2012 TIEA241 Automaatit ja kieliopit, kevät 2012 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 26. tammikuuta 2012 Sisällys Luennon pähkinä Millä tavalla voidaan rakentaa tietokoneohjelma (tai kirjasto), joka

Lisätiedot

Täydentäviä muistiinpanoja kontekstittomien kielioppien jäsentämisestä

Täydentäviä muistiinpanoja kontekstittomien kielioppien jäsentämisestä Täydentäviä muistiinpanoja kontekstittomien kielioppien jäsentämisestä Antti-Juhani Kaijanaho 30. marraskuuta 2015 1 Yksiselitteiset operaattorikieliopit 1.1 Aritmeettiset lausekkeet Tällä kurssilla on

Lisätiedot

Ohjelmoinnin peruskurssi Y1

Ohjelmoinnin peruskurssi Y1 Ohjelmoinnin peruskurssi Y1 CSE-A1111 21.9.2016 CSE-A1111 Ohjelmoinnin peruskurssi Y1 21.9.2016 1 / 22 Mahdollisuus antaa luentopalautetta Goblinissa vasemmassa reunassa olevassa valikossa on valinta Luentopalaute.

Lisätiedot

Imperatiivisen ohjelmoinnin peruskäsitteet. Meidän käyttämän pseudokielen lauseiden syntaksi

Imperatiivisen ohjelmoinnin peruskäsitteet. Meidän käyttämän pseudokielen lauseiden syntaksi Imperatiivisen ohjelmoinnin peruskäsitteet muuttuja muuttujissa oleva data voi olla yksinkertaista eli primitiivistä (esim. luvut ja merkit) tai rakenteista jolloin puhutaan tietorakenteista. puhuttaessa

Lisätiedot

Opiskelijan pikaopas STACK-tehtäviin. Lassi Korhonen, Oulun yliopisto

Opiskelijan pikaopas STACK-tehtäviin. Lassi Korhonen, Oulun yliopisto Opiskelijan pikaopas STACK-tehtäviin Lassi Korhonen, Oulun yliopisto 21.3.2016 SISÄLLYSLUETTELO Oppaan käyttäminen... 2 Vastauksen syöttämisen perusteet... 2 Operaatiot... 2 Luvut ja vakiot... 3 Funktiot...

Lisätiedot

13. Loogiset operaatiot 13.1

13. Loogiset operaatiot 13.1 13. Loogiset operaatiot 13.1 Sisällys Loogiset operaatiot AND, OR, XOR ja NOT. Operaatioiden ehdollisuus. Bittioperaatiot. Loogiset operaatiot ohjausrakenteissa. Loogiset operaatiot ja laskentajärjestys.

Lisätiedot

Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja

Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja 581336 Laskennan teoria (kevät 2006) Harjoitus 3, ratkaisuja 1. S! axc X! axc X! by c Y! by c Y! " 2. (a) Tehtävänä on konstruoida rajoittamaton kielioppi, joka tuottaa kielen f0 n 1 n jn 1g. Vaihe1: alkutilanteen

Lisätiedot

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 9. lokakuuta 2016

TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 9. lokakuuta 2016 TIEA241 Automaatit ja, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 9. lokakuuta 2016 Sisällys Kontekstiton kielioppi Kontekstiton kielioppi koostuu joukosta päätemerkkejä (engl. terminal symbols),

Lisätiedot

Datatähti 2019 alku. task type time limit memory limit. A Kolikot standard 1.00 s 512 MB. B Leimasin standard 1.00 s 512 MB

Datatähti 2019 alku. task type time limit memory limit. A Kolikot standard 1.00 s 512 MB. B Leimasin standard 1.00 s 512 MB Datatähti 2019 alku task type time limit memory limit A Kolikot standard 1.00 s 512 MB B Leimasin standard 1.00 s 512 MB C Taulukko standard 1.00 s 512 MB D Ruudukko standard 1.00 s 512 MB E Sanalista

Lisätiedot

Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia, niin A on rekursiivinen.

Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia, niin A on rekursiivinen. Lause: Tyhjyysongelma ei ole osittain ratkeava; ts. kieli ei ole rekursiivisesti lueteltava. L e = { w { 0, 1 } L(M w ) = } Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia,

Lisätiedot

Ongelma(t): Miten jollakin korkeamman tason ohjelmointikielellä esitetty algoritmi saadaan suoritettua mikro-ohjelmoitavalla tietokoneella ja siinä

Ongelma(t): Miten jollakin korkeamman tason ohjelmointikielellä esitetty algoritmi saadaan suoritettua mikro-ohjelmoitavalla tietokoneella ja siinä Ongelma(t): Miten jollakin korkeamman tason ohjelmointikielellä esitetty algoritmi saadaan suoritettua mikro-ohjelmoitavalla tietokoneella ja siinä olevilla komponenteilla? Voisiko jollakin ohjelmointikielellä

Lisätiedot

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2

ja λ 2 = 2x 1r 0 x 2 + 2x 1r 0 x 2 Johdatus diskreettiin matematiikkaan Harjoitus 4, 7.10.2015 1. Olkoot c 0, c 1 R siten, että polynomilla r 2 c 1 r c 0 on kaksinkertainen juuri. Määritä rekursioyhtälön x n+2 = c 1 x n+1 + c 0 x n, n N,

Lisätiedot