ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy Tehtävissä 1, 2, ja 3 tarkastelemme seuraavaa tilannetta:

Koko: px
Aloita esitys sivulta:

Download "ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008. Tehtävissä 1, 2, ja 3 tarkastelemme seuraavaa tilannetta:"

Transkriptio

1 RMS22 Päätöksenteko epävarmuuden vallitessa Syksy 28 Harjoitus 8 Ratkaisuehdotuksia Tehtävissä 1, 2, ja 3 tarkastelemme seuraavaa tilannetta: Pankki harkitsee myöntääkö 5. euron lainan asiakkaalle 12% korolla, vai sijoittaako kyseiset 5. euroa valtion obligaatioihin 6% korolla. Pankki arvioi, että 4%:n todennäköisyydellä asiakas ei pysty maksamaan lainaansa takaisin. Pankki voi teettää tutkimuksen asiakkaan luotettavuudesta 5 eurolla. Todennäköisyys, että tutkimus antaa suotuisan tuloksen asiakkaalle, joka pystyy maksamaan lainansa on 77/96. Todennäköisyys, että tutkimus antaa suotuisan tuloksen asiakkaalle, joka ei pysty maksamaan lainaansa on 1/4. 1. Piirrä pankin tilannetta vastaava päätöspuu (ilman todennäköisyyksiä). Ratkaisuehdotus: (Palkkiot kiloeuroissa) maks. Suotuisa tul. Tutkitaan as. maks. Epas. tul. maks. Ei tutkita as. 1

2 2. Kannattaako pankin teettää tutkimus asiakkaasta? Ratkaisuehdotus: lkoot L = maksetaan, ei L = a ei makseta, S = Raportti on suotuisa, ei S = Raportti ei ole suotuisa, T = Asiakas tutkitaan, ei T = Asiakasta ei tutkita, = stetaan obligaatioita, ei = Annetaan laina. Näillä merkinnöillä abstraktein todennäköisyyksin täytetty päätöspuu on muotoa T P (S) P (ei S) ei ei P (L S) P (ei L S) P (L ei S) P (ei L ei S) ei T ei P (L) P (ei L) Prioritodennäkösyydet L:lle on annettu: P(ei L) =,4 ja P(L) =,96. Lisäksi on annettu uskottavuudet P(S L) = 77/96 ja P(ei S L) = 19/96 sekä P(S ei L) = 1/4 ja P(ei S ei L) = 3/4. 2

3 Laskemme sitten päätöspuuhun tarvitsemamme posterioritodennäköisyydet: P(L S) = P(L)P(S L) P(L)P(S L) + P(ei L)P(S ei L) =,96 77/96,96 77/96 +,4 1/4 =,987, P(ei L S) = 1 P(L S) =,13, P(L ei S) = P(L)P(ei S L) P(L)P(ei S L) + P(ei L)P(ei S ei L) =,96 19/96,96 19/96 +,4 3/4 =,864, P(ei L ei S) = 1 P(L ei S) =,136. Sijoittamalla saadut luvut edellisessä edellä rakennettuun päätöspuuhun ja laskemalla odotusarvot normaaliin tapaan lähtien liikkeelle lehdistä saamme täytetyn päätöspuun BLAH maks. Suotuisa tul. Tutkitaan as. maks. Epas. tul. maks. Ei tutkita as. 3

4 3. (a) Kuinka paljon pankin kannattaa korkeintaan maksaa tutkimuksen teettämisestä? (b) Kuinka paljon kannattaisi pankin maksaa oraakkelitutkijalle, joka ilmoittaa välittömasti pystyykö asiakas maksamaan lainansa vai ei? Ratkaisuehdotus: 4. Öljy-yhtiö y:n pitää päättää poratako öljyä paikasta P. Poraaminen maksaa 1.=C. Jos öljyä löytyy, niin siitä saadaan 6..=C. Öljyyhtiö y arvelee, että öljyn löytymisen todennäköisyys on 45%. Ennen varsinaista poraamista Öljy-yhtiö y voi palkata geologin arvioimaan paikkaa P. Geologin palkkaaminen maksaa 1.=C. Geologista tiedetään, että jos hän antaa suotuisan raportin, niin öljyä löytyy. Toisaalta geologi on antanut kerran epäsuotuisan raportin vaikka öljyä onkin lopulta löytynyt. Geologi on tehnyt uransa aikana 1 tutkimusta. Kannattaako Öljy-yhtiö y:n palkata geologi? Ratkaisuehdotus: lkoot 1 = Paikassa P on öljyä, ei = Paikassa P ei ole öljyä, S = Geologin raportti on suotuisa, ei S = Geologin raportti ei ole suotuisa, G = Palkataan geologi, ei G = Ei palkata geologia. Tällöin, symbolisesti, päätöspuu on BLAH Näemme, että päätöstä varten tarvitsemme numeeriset arvot todennäköisyyksille BLAH 5. lkoon mahdollisia, toistensa poissulkevia, maailmantiloja n kappaletta: s 1, s 2,..., s n ja olkoon mahdollisia, toistensa poissulkevia, havaintoja m kappaletta: o 1, o 2,..., o m. Todista Bayesin kaava (1) P(s i o j ) = P(s i )P(o j s i ) n k=1 P(o j s k )P(s k ) kaikille i n, j m. Vihje: Bayesin kaava seuraa loogisesti ehdollisen todennäköisyyden määritelmästä ja Kolmogorovin aksioomista. 1 Merkinnät ja S menevät ristiin vastaavien merkintöjen o ja s kanssa. Luennoija pahoittelee! 4

5 Ratkaisuehdotus: Tarkastelemme aluksi Bayesin kaavan (1) oikean puolen alakertaa n P(o j s k )P(s k ). Huomaamme, että k=1 P(o j s k )P(s k ) = P(o j s k ). Toisaalta täsmälleen yksi maailmantiloista s k, k n, sattuu. Siten n P(o j s k ) = P(o j ). k=1 Siispä Bayesin kaavan (1) oikean puolen alakerta on itse asiassa todennäköisyys P(o j ) ja kaava (1) on sama, kuin kaava (2) P(s i o j ) = P(s i)p(o j s i ). P(o j ) Mutta nyt, kertomalla kaavan (2) molemmat puolet luvulla P(o j ), huomaamme, että kaava (2) onkin yhtäpitävä triviaalin identiteetin P(o j s i ) = P(s i o j ) kanssa. Koska tämä identiteetti pitää aina paikkansa, niin loogisesti Bayesin kaava (1) pitää myös aina paikkansa. 5

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2010 Harjoitus 3

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2010 Harjoitus 3 ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2010 Harjoitus 3 Ratkaisuehdotuksia 1. (a) Päätöspuu on matala, jos mitään sattumasolmua ei välittömästi seuraa sattumasolmu eikä mitään päätössolmua

Lisätiedot

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008. päätöspuiden avulla tarkastellaan vasta seuraavissa harjoituksissa.

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008. päätöspuiden avulla tarkastellaan vasta seuraavissa harjoituksissa. ORMS00 Päätöksenteko epävarmuuden vallitessa Syksy 008 Harjoitus Ratkaisuehdotuksia Nämä harjoitukset liittyvät päätöspuiden rakentamiseen: varsinaista päätöksentekoa päätöspuiden avulla tarkastellaan

Lisätiedot

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2010 Harjoitus 5 (Koetentti)

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2010 Harjoitus 5 (Koetentti) ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 200 Harjoitus 5 (Koetentti) Ratkaisuehdotuksia. Öljy-Yhtiö Oy on tehnyt herra K.:n maapalasta ostotarjouksen 200kC. Herra K. voi joko myydä maapalan

Lisätiedot

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008 ORMS22 Päätöksenteko epävarmuuden vallitessa Syksy 28 Harjoitus 7 Ratkaisuehdotuksia. Liukuhihnafirma Oy tuottaa jipposensoreita liukuhihnalla. Liukuhihnalla on kuitenkin ylikapasiteettia. Siten Liukuhihnafirma

Lisätiedot

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008 ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008 Harjoitus 4 Ratkaisuehdotuksia 1. Olkoon herra K.:n hyötyfunktio u(x) = ln x. (a) Onko herra K. riskinkaihtaja, riskinrakastaja vai riskineutraali?

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat

Osa 1: Todennäköisyys ja sen laskusäännöt. Kokonaistodennäköisyyden ja Bayesin kaavat Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Kokonaistodennäköisyyden ja Bayesin kaavat TKK (c) Ilkka Mellin (2007) 1 Kokonaistodennäköisyys ja Bayesin kaava >> Kokonaistodennäköisyys

Lisätiedot

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008 ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008 Harjoitus 5 Ratkaisuehdotuksia Näissä harjoituksissa viljellään paljon sanaa paradoksi. Sana tulee ymmärtää laajassa mielessä. Suppeassa mielessähän

Lisätiedot

Aloitamme yksinkertaisella leluesimerkillä. Tarkastelemme yhtä osaketta S. Oletamme että tänään, hetkellä t = 0, osakkeen hinta on S 0 = 100=C.

Aloitamme yksinkertaisella leluesimerkillä. Tarkastelemme yhtä osaketta S. Oletamme että tänään, hetkellä t = 0, osakkeen hinta on S 0 = 100=C. Luku 1 Johdatteleva esimerkki Herra K. tarjoaa osto-option Aloitamme yksinkertaisella leluesimerkillä. Tarkastelemme yhtä osaketta S. Oletamme että tänään, hetkellä t = 0, osakkeen hinta on S 0 = 100=C.

Lisätiedot

Korkolasku ja diskonttaus, L6

Korkolasku ja diskonttaus, L6 Korkolasku ja diskonttaus, L6 1 Merkinnät Tarkastellaan tilannetta, jossa pääomalle maksetaan korkoa. Tulemme seuraavassa systemaattisesti käyttämään seuraavia merkintöjä K 0 = alkupääoma p = korkoprosentti

Lisätiedot

Korkolasku, L6. Koronkorko. Korko-kaavat. Aiheet. Yksinkertainen korkolasku. Koronkorko. Jatkuva korkolasku. Korko-kaavat

Korkolasku, L6. Koronkorko. Korko-kaavat. Aiheet. Yksinkertainen korkolasku. Koronkorko. Jatkuva korkolasku. Korko-kaavat Korkolasku, L6 1 Merkinnät Tarkastellaan tilannetta, jossa pääomalle maksetaan korkoa. Tulemme seuraavassa systemaattisesti käyttämään seuraavia merkintöjä K 0 = alkupääoma p = korkoprosentti i = p 100

Lisätiedot

Nollasummapelit ja bayesilaiset pelit

Nollasummapelit ja bayesilaiset pelit Nollasummapelit ja bayesilaiset pelit Kristian Ovaska HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos Seminaari: Peliteoria Helsinki 18. syyskuuta 2006 Sisältö 1 Johdanto 1 2 Nollasummapelit 1 2.1

Lisätiedot

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008. Jatkossa ratkaisuehdotukset ovat tyypillisesti paljon lakonisempia.

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008. Jatkossa ratkaisuehdotukset ovat tyypillisesti paljon lakonisempia. ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008 Harjoitus 1 Ratkaisuehdotuksia ja selittelyjä Tämänkertaiset ratkaisuehdotukset ovat pitkähköjä, ja ne sisältävät paljon selittelyjä. Jatkossa

Lisätiedot

diskonttaus ja summamerkintä, L6

diskonttaus ja summamerkintä, L6 diskonttaus ja summamerkintä, L6 1 Edellä aina laskettiin kasvanut pääoma alkupääoman ja koron perusteella. Seuraavaksi pohdimme käänteistä ongelmaa: Miten suuri tulee alkupääoman K 0 olla, jotta n jakson

Lisätiedot

T-61.281 Luonnollisen kielen tilastollinen käsittely

T-61.281 Luonnollisen kielen tilastollinen käsittely T-6.8 Luonnollisen kielen tilastollinen käsittely Ratkaisut. Ti 7..4, 8:5-: Palautellaan mieliin todennäköisyyslaskuja Versio.. Todennäköisyyksistä ensimmäinen P( sana=lyhenne sana=kolmikirjaiminen ) =.8

Lisätiedot

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008

ORMS2020 Päätöksenteko epävarmuuden vallitessa Syksy 2008 ORMS00 Päätöksenteko epävarmuuden vallitessa Syksy 008 Harjoitus 3 Ratkaisuehdotuksia 1. Penan Grilli ja Jaskan Grilli ovat kilpailijoita. Molempien täytyy päättää samanaikaisesti ja toisistaan tietämättä

Lisätiedot

A-Osio. Ei saa käyttää laskinta, maksimissaan tunti aikaa. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat:

A-Osio. Ei saa käyttää laskinta, maksimissaan tunti aikaa. Valitse seuraavista kolmesta tehtävästä kaksi, joihin vastaat: MAA6 Loppukoe 26..203 Jussi Tyni Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! Lue ohjeet huolella! A-Osio. Ei saa

Lisätiedot

RAHA- JA PANKKITEORIA 31C00900, Harjoitukset 2/2015

RAHA- JA PANKKITEORIA 31C00900, Harjoitukset 2/2015 RAHA- JA PANKKITEORIA 31C00900, Harjoitukset 2/2015 1. Valuuttakurssien korkopariteettiteoria Seuraavassa on todellista dataa Suomesta 1990-luvun alusta. Saksan 1 kk Suomen rahamarkk 1 kk inakorko korko

Lisätiedot

Jaksolliset suoritukset, L13

Jaksolliset suoritukset, L13 , L13 1 Jaksollinen talletus Tarkastellaan tilannetta, jossa asiakas tallettaa pankkitilille toistuvasti yhtäsuuren rahasumman k aina korkojakson lopussa. Asiakas suorittaa talletuksen n kertaa. Lasketaan

Lisätiedot

VAASAN YLIOPISTO TALOUSMATEMATIIKKA Päätöksenteko epävarmuuden vallitessa Prof. Ilkka Virtanen II UUSINTATENTTI 10.5.1996

VAASAN YLIOPISTO TALOUSMATEMATIIKKA Päätöksenteko epävarmuuden vallitessa Prof. Ilkka Virtanen II UUSINTATENTTI 10.5.1996 1 VAASAN YLIOPISTO TALOUSMATEMATIIKKA Päätöksenteko epävarmuuden vallitessa Prof. Ilkka Virtanen II UUSINTATENTTI 10.5.1996 Tehtävä 1. Tuotantoprosessin käynnistyessä koneille asennetaan tietyt säätöarvot.

Lisätiedot

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden peruslaskusäännöt

Osa 1: Todennäköisyys ja sen laskusäännöt. Todennäköisyyden peruslaskusäännöt Ilkka Mellin Todennäköisyyslaskenta Osa 1: Todennäköisyys ja sen laskusäännöt Todennäköisyyden peruslaskusäännöt TKK (c) Ilkka Mellin (2007) 1 Todennäköisyyden peruslaskusäännöt >> Uusien tapahtumien muodostaminen

Lisätiedot

Johdatus tn-laskentaan perjantai 17.2.2012

Johdatus tn-laskentaan perjantai 17.2.2012 Johdatus tn-laskentaan perjantai 17.2.2012 Kahden diskreetin muuttujan yhteisjakauma On olemassa myös monen muuttujan yhteisjakauma, ja jatkuvien muuttujien yhteisjakauma (jota ei käsitellä tällä kurssilla;

Lisätiedot

Jatkuvat satunnaismuuttujat

Jatkuvat satunnaismuuttujat Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.2012 klo 10 13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 11.6.01 klo 10 13 t ja pisteytysohjeet 1. Ratkaise seuraavat yhtälöt ja epäyhtälöt. (a) 3 x 3 3 x 1 4, (b)

Lisätiedot

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F

Nyt ensimmäisenä periodina (ei makseta kuponkia) odotettu arvo on: 1 (qv (1, 1) + (1 q)v (0, 1)) V (s, T ) = C + F Mat-2.34 Investointiteoria Laskuharjoitus 2/2008, Ratkaisut 29.04.2008 Binomihilan avulla voidaan laskea T vuoden ja tietyn kupongin sisältävän joukkovelkakirjan arvo eli hinta rekursiivisesti vaihtelevan

Lisätiedot

VAASAN YLIOPISTO TALOUSMATEMATIIKKA Päätöksenteko epävarmuuden vallitessa Prof. Ilkka Virtanen TENTTI 5.3.1999

VAASAN YLIOPISTO TALOUSMATEMATIIKKA Päätöksenteko epävarmuuden vallitessa Prof. Ilkka Virtanen TENTTI 5.3.1999 1(5) VAASAN YLIOPISTO TALOUSMATEMATIIKKA Päätöksenteko epävarmuuden vallitessa Prof. Ilkka Virtanen TENTTI 5.3.1999 Tehtävä 1. Liitteessä on kuvattu yksi luentojen perusesimerkeistä, Raiffan pallouurnia

Lisätiedot

Järvitesti Ympäristöteknologia T571SA 7.5.2013

Järvitesti Ympäristöteknologia T571SA 7.5.2013 Hans Laihia Mika Tuukkanen 1 LASKENNALLISET JA TILASTOLLISET MENETELMÄT Järvitesti Ympäristöteknologia T571SA 7.5.2013 Sarkola Eino JÄRVITESTI Johdanto Järvien kuntoa tutkitaan monenlaisilla eri menetelmillä.

Lisätiedot

Nykyarvo ja investoinnit, L14

Nykyarvo ja investoinnit, L14 Nykyarvo ja investoinnit, L14 netto netto 1 Tarkastellaan tulovirtaa, joka kestää n jakson ajana, ja jossa jakson j lopussa kassaan tulee tulo k j. k 1 k 2 k 3 k 4 k 5 k 6... k n netto 0 1 2 3 4 5 6...

Lisätiedot

Laskentaa kirjaimilla

Laskentaa kirjaimilla MAB1 Polynomit Laskentaa kirjaimilla Tähän asti olemme laskeneet luvuilla, jotka on esitetty numeroiden avulla. Matematiikan säännöt, laskentamenetelmät, kaavat samoin kuin fysiikan ja itse asiassa kaikkien

Lisätiedot

10 y 2 3 x D 100; D 30 29 59 6 D 10 5. 100 10 2 3 a: Vastaavasti sadalla kilometrillä kulutettavan polttoaineen E10 energiasisältö on 90 100 x a C 10

10 y 2 3 x D 100; D 30 29 59 6 D 10 5. 100 10 2 3 a: Vastaavasti sadalla kilometrillä kulutettavan polttoaineen E10 energiasisältö on 90 100 x a C 10 Helsingin ylioisto, Itä-Suomen ylioisto, Jyväskylän ylioisto, Oulun ylioisto, Tamereen ylioisto ja Turun ylioisto Matematiikan valintakokeen 3.6.0 ratkaisut. Oletetaan, että litralla (uhdasta) bensiiniä

Lisätiedot

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d.

rm + sn = d. Siispä Proposition 9.5(4) nojalla e d. 9. Renkaat Z ja Z/qZ Tarkastelemme tässä luvussa jaollisuutta kokonaislukujen renkaassa Z ja todistamme tuloksia, joita käytetään jäännösluokkarenkaan Z/qZ ominaisuuksien tarkastelussa. Jos a, b, c Z ovat

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola Luento 6. Swap -sopimukset

Rahoitusriskit ja johdannaiset Matti Estola Luento 6. Swap -sopimukset Rahoitusriskit ja johdannaiset Matti Estola Luento 6 Swap -sopimukset 1. Swapit eli vaihtosopimukset Swap -sopimus on kahden yrityksen välinen sopimus vaihtaa niiden saamat tai maksamat rahavirrat keskenään.

Lisätiedot

Tasapaino epätäydellisen tiedon peleissä

Tasapaino epätäydellisen tiedon peleissä hyväksymispäivä arvosana arvostelija Tasapaino epätäydellisen tiedon peleissä Marja Hassinen Helsinki 9..2006 Peliteoria-seminaarin esitelmä HESINGIN YIOPISTO Tietojenkäsittelytieteen laitos Sisältö Johdanto

Lisätiedot

VAASAN YLIOPISTO TALOUSMATEMATIIKKA Päätöksenteko epävarmuuden vallitessa Prof. Ilkka Virtanen I UUSINTATENTTI 4.3.1996

VAASAN YLIOPISTO TALOUSMATEMATIIKKA Päätöksenteko epävarmuuden vallitessa Prof. Ilkka Virtanen I UUSINTATENTTI 4.3.1996 1 VAASAN YLIOPISTO TALOUSMATEMATIIKKA Päätöksenteko epävarmuuden vallitessa Prof. Ilkka Virtanen I UUSINTATENTTI 4.3.1996 Tehtävä 1. Eräässä diktatuurimaassa on edelleenkin käytössä kuolemanrangaistus

Lisätiedot

Nykyarvo ja investoinnit, L7

Nykyarvo ja investoinnit, L7 Nykyarvo ja investoinnit, L7 netto netto 1 Tarkastellaan tulovirtaa, joka kestää n jakson ajana, ja jossa jakson j lopussa kassaan tulee tulo k j. k n k 1 k 2 k 3 k 4 k 5 k 6... 0 1 2 3 4 5 6... n j netto

Lisätiedot

VAASAN YLIOPISTO TALOUSMATEMATIIKKA Päätöksenteko epävarmuuden vallitessa Prof. Ilkka Virtanen TENTTI 18.12.1998

VAASAN YLIOPISTO TALOUSMATEMATIIKKA Päätöksenteko epävarmuuden vallitessa Prof. Ilkka Virtanen TENTTI 18.12.1998 VAASAN YLIOPISTO TALOUSMATEMATIIKKA Päätöksenteko epävarmuuden vallitessa Prof. Ilkka Virtanen TENTTI 18.12.1998 Tehtävä 1. Vakuutusyhtiön tilaston mukaan erään suurkaupunkialueen autoilijoiden (ajokortin

Lisätiedot

SEKASTRATEGIAT PELITEORIASSA

SEKASTRATEGIAT PELITEORIASSA SEKASTRATEGIAT PELITEORIASSA Matti Estola 8. joulukuuta 2013 Sisältö 1 Johdanto 2 2 Ratkaistaan sukupuolten välinen taistelu sekastrategioiden avulla 5 Teksti on suomennettu kirjasta: Gibbons: A Primer

Lisätiedot

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe 10.6.2013 klo 10-13 Ratkaisut ja pisteytysohjeet Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe.6. klo - Ratkaisut ja pisteytysohjeet. Ratkaise seuraavat epäyhtälöt ja yhtälö: a) x+ x +9, b) log (x) 7,

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola Luento 5. Termiinihinnan määräytyminen

Rahoitusriskit ja johdannaiset Matti Estola Luento 5. Termiinihinnan määräytyminen Rahoitusriskit ja johdannaist Matti Estola Lunto 5 rmiinihinnan määräytyminn 1. rmiinin ylinn hinnoittlukaava Mrkitään trmiinisopimuksn kohd-tuudn spot hintaa sopimuksn tkopäivänä S :lla, kohd-tuudn trmiinihintaa

Lisätiedot

Matemaatikot ja tilastotieteilijät

Matemaatikot ja tilastotieteilijät Matemaatikot ja tilastotieteilijät Matematiikka/tilastotiede ammattina Tilastotiede on matematiikan osa-alue, lähinnä todennäköisyyslaskentaa, mutta se on myös itsenäinen tieteenala. Tilastotieteen tutkijat

Lisätiedot

Todennäköisyys (englanniksi probability)

Todennäköisyys (englanniksi probability) Todennäköisyys (englanniksi probability) Todennäköisyyslaskenta sai alkunsa 1600-luvulla uhkapeleistä Ranskassa (Pascal, Fermat). Nykyisin todennäköisyyslaskentaa käytetään hyväksi mm. vakuutustoiminnassa,

Lisätiedot

Kvanttimekaniikan tulkinta

Kvanttimekaniikan tulkinta Kvanttimekaniikan tulkinta 20.1.2011 1 Klassisen ja kvanttimekaniikan tilastolliset formuloinnit 1.1 Klassinen mekaniikka Klassisen mekaniikan systeemin tilaa kuvaavat kappaleiden koordinaatit ja liikemäärät

Lisätiedot

Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten

Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten Todennäköisyys Kurssilla esitetään lyhyt katsaus niihin todennäköisyyden ja satunnaisprosessien peruskäsitteisiin ja -ominaisuuksiin, joita tarvitaan digitaalisten tietoliikennejärjestelmien ymmärtämisessä

Lisätiedot

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3 Suorat ja tasot Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta. 3.1 Suora Havaitsimme skalaarikertolaskun tulkinnan yhteydessä, että jos on mikä tahansa nollasta

Lisätiedot

Laina: Myönnetty 100 000 eur Nostettu 90 000 eur Jäljellä 90 000 eur Vakuus: Asunto 100 000 eur. Yhtälö voidaan sieventää muotoon:

Laina: Myönnetty 100 000 eur Nostettu 90 000 eur Jäljellä 90 000 eur Vakuus: Asunto 100 000 eur. Yhtälö voidaan sieventää muotoon: Muistio 1 (30) 0BLtV määrittely: Esimerkkilaskelmat ja raportointimallit Case 1a: Yksi laina, yksi vakuus Esimerkin tarkoituksena on käydä läpi yleisin tapaus, jossa yhtä lainaa kohden on ainoastaan yksi

Lisätiedot

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1

= true C = true) θ i2. = true C = false) Näiden arvot löydetään kuten edellä Kun verkko on opetettu, niin havainto [x 1 35 Naiivi Bayes Luokkamuuttua C o Bayes-verko uuri a attribuutit X i ovat se lehtiä Naiivi oletus o, että attribuutit ovat ehdollisesti riippumattomia toisistaa aettua luokka Ku käytössä o Boole muuttuat,

Lisätiedot

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008

Mat-2.3114 Investointiteoria Laskuharjoitus 3/2008, Ratkaisut 05.02.2008 Korko riippuu usein laina-ajan pituudesta ja pitkille talletuksille maksetaan korkeampaa korkoa. Spot-korko s t on se korko, joka kertyy lainatulle pääomalle hetkeen t (=kokonaisluku) mennessä. Spot-korot

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE 4.6.2015 MALLIVASTAUKSET

KANSANTALOUSTIETEEN PÄÄSYKOE 4.6.2015 MALLIVASTAUKSET KANSANTALOUSTIETEEN ÄÄSYKOE 4.6.05 MALLIVASTAUKSET Sivunumerot mallivastauksissa viittaavat pääsykoekirjan [Matti ohjola, Taloustieteen oppikirja,. painos, 04] sivuihin. () (a) Bretton Woods -järjestelmä:

Lisätiedot

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto

Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Probabilistiset mallit (osa 2) Matemaattisen mallinnuksen kurssi Kevät 2002, luento 10, osa 2 Jorma Merikoski Tampereen yliopisto Esimerkki Tarkastelemme ilmiötä I, joka on a) tiettyyn kauppaan tulee asiakkaita

Lisätiedot

Kansainvälinen rahatalous Matti Estola. Termiinikurssit ja swapit valuuttariskien hallinnassa

Kansainvälinen rahatalous Matti Estola. Termiinikurssit ja swapit valuuttariskien hallinnassa Kansainvälinen rahatalous Matti Estola ermiinikurssit ja swapit valuuttariskien hallinnassa 1. Valuuttariskien suojauskeinot Rahoitusalan yritykset tekevät asiakkailleen valuuttojen välisiä termiinisopimuksia

Lisätiedot

Aineistoista. Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin

Aineistoista. Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin Aineistoista 11.2.09 IK Laadulliset menetelmät: miksi tarpeen? Haastattelut, fokusryhmät, havainnointi, historiantutkimus, miksei videointikin Muotoilussa kehittyneet menetelmät, lähinnä luotaimet Havainnointi:

Lisätiedot

Nykyarvo ja investoinnit, L9

Nykyarvo ja investoinnit, L9 Nykyarvo ja investoinnit, L9 netto netto netto netto 1 Tarkastellaan tulovirtaa, joka kestää n jakson ajana, ja jossa jakson j lopussa kassaan tulee tulo k j. k 1 k 2 k 3 k 4 k 5 k 6... k n 0 1 2 3 4 5

Lisätiedot

Tietoa opintotuesta. Opintotukipalvelut

Tietoa opintotuesta. Opintotukipalvelut Tietoa opintotuesta Opintotukipalvelut Opintotukipalvelut Yliopistolla omat opintotukipalvelut, missä hoidetaan kaikki opintotukeen liittyvät asiat, myös päätöksenteko Sijaitsee Luotsi-rakennuksen ensimmäisessä

Lisätiedot

On olemassa eri lainatyyppiä, jotka eroavat juuri sillä, miten lainaa lyhennetään. Tarkastelemme muutaman yleisesti käytössä olevan tyypin.

On olemassa eri lainatyyppiä, jotka eroavat juuri sillä, miten lainaa lyhennetään. Tarkastelemme muutaman yleisesti käytössä olevan tyypin. Rahoitusmuodot HUOM. Tässä esitetään vain teoriaa ja joitakin esimerkkejä. Enemmän esimerkkejä ja laskuja löytyy ratkaistuina EXCEL-tiedostosta "Rahoitusmuodot - laskut ja esimerkit", joka on MOODLESSA

Lisätiedot

Reaalifunktioista 1 / 17. Reaalifunktioista

Reaalifunktioista 1 / 17. Reaalifunktioista säilyy 1 / 17 säilyy Jos A, B R, niin funktiota f : A B sanotaan (yhden muuttujan) reaalifunktioksi. Tällöin karteesinen tulo A B on (aiempia esimerkkejä luonnollisemmalla tavalla) xy-tason osajoukko,

Lisätiedot

Evoluutiopuu. Aluksi. Avainsanat: biomatematiikka, päättely, kombinatoriikka, verkot. Luokkataso: 6.-9. luokka, lukio

Evoluutiopuu. Aluksi. Avainsanat: biomatematiikka, päättely, kombinatoriikka, verkot. Luokkataso: 6.-9. luokka, lukio Evoluutiopuu Avainsanat: biomatematiikka, päättely, kombinatoriikka, verkot Luokkataso: 6.-9. luokka, lukio Välineet: loogiset palat, paperia, kyniä Kuvaus: Tehtävässä tutkitaan bakteerien evoluutiota.

Lisätiedot

KANSANTALOUSTIETEEN PÄÄSYKOE 5.6.2014 MALLIVASTAUKSET

KANSANTALOUSTIETEEN PÄÄSYKOE 5.6.2014 MALLIVASTAUKSET KANSANTALOUSTIETEEN ÄÄSYKOE 5.6.2014 MALLIVASTAUKSET Jokaisen tehtävän perässä on pistemäärä sekä sivunumero (Matti ohjola, Taloustieteen oppikirja, 2012) josta vastaus löytyy. (1) (a) Suppea raha sisältää

Lisätiedot

Miksi kannattaa tehdä ps. Hypo eläkesäästösopimus ennen vuoden vaihdetta?

Miksi kannattaa tehdä ps. Hypo eläkesäästösopimus ennen vuoden vaihdetta? Miksi kannattaa tehdä ps. Hypo eläkesäästösopimus ennen vuoden vaihdetta? Suomen Hypoteekkiyhdistys & Suomen AsuntoHypoPankki Oy Matti Inha, toimitusjohtaja, rahoitusneuvos 1.11.2010 Ikäsi haarukassa n.

Lisätiedot

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2014 HYVÄN VASTAUKSEN PIIRTEITÄ MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 4.9.04 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitysten luonnehdinta ei sido ylioppilastutkintolautakunnan arvostelua. Lopullisessa

Lisätiedot

ORMS 2020 Päätöksenteko epävarmuuden vallitessa. Tommi Sottinen

ORMS 2020 Päätöksenteko epävarmuuden vallitessa. Tommi Sottinen ORMS 2020 Päätöksenteko epävarmuuden vallitessa Tommi Sottinen Sisältö Esipuhe 5 Luku 1. Todennäköisyys 7 Todennäköisyyskäsitteet 7 Todennäköisyyden laskusäännöt 11 Satunnaismuuttujat 21 Harjoitustehtäviä

Lisätiedot

Tarina-tehtävän ratkaisu

Tarina-tehtävän ratkaisu - tämä on esimerkki siitä, kuinka Pähkinä-lehdessä julkaistavia Tarina-tehtäviä ratkaistaan - tarkoitus ei ole esittää kaikkein nokkelinta ratkaisua, vaan vain tapa, jolla tehtävä ratkeaa Tehtävä: Pääsiäiskortit

Lisätiedot

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n Ylioppilastutkintolautakunta S t u d e n t e a m e n s n ä m n d e n MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ..0 HYVÄN VASTAUKSEN PIIRTEITÄ Alla oleva vastausten piirteiden, sisältöjen ja pisteitsten luonnehdinta

Lisätiedot

Osamaksukauppa, vakiotulovirran diskonttaus, L8

Osamaksukauppa, vakiotulovirran diskonttaus, L8 Osamaksukauppa, vakiotulovirran diskonttaus, L8 1 Kerrataan kaavoja s n;i = ((1 + i)n 1) i = prolongointitekijä a n;i = ((1 + i)n 1) i(1 + i) n = diskonttaustekijä c n;i = i(1 + i) n ((1 + i) n 1) = kuoletuskerroin

Lisätiedot

Öljysäiliö maan alla

Öljysäiliö maan alla Kaigasniemen koulu Öljysäiliö maan alla Yläkoulun ketaava ja syventävä matematiikan tehtävä Vesa Maanselkä 009 Ostat talon jossa on öljylämmitys. Takapihalle on kaivettu maahan sylintein muotoinen öljysäiliö

Lisätiedot

Rahoitusriskit ja johdannaiset Matti Estola. luento 7 Swap sopimuksista lisää

Rahoitusriskit ja johdannaiset Matti Estola. luento 7 Swap sopimuksista lisää Rahoitusriskit ja johdannaiset Matti Estola luento 7 Swap sopimuksista lisää 1. Pankki swapin välittäjänä Yleensä 2 eri-rahoitusalan yritystä eivät tee swap sopimusta keskenään vaan pankin tai yleensäkin

Lisätiedot

Diskonttaus. Diskonttaus. Ratkaistaan yhtälöstä (2) K 0,jolloin Virallinen diskonttauskaava. = K t. 1 + it. (3) missä

Diskonttaus. Diskonttaus. Ratkaistaan yhtälöstä (2) K 0,jolloin Virallinen diskonttauskaava. = K t. 1 + it. (3) missä Diskonttaus Ratkaistaan yhtälöstä (2) K 0,jolloin Virallinen diskonttauskaava K t 1 + it. (3) missä pääoman K t diskontattu arvo, eli nykyarvo(t = 0) i = korkokanta jaksosta kulunut aika t = korkojakson

Lisätiedot

Mat-2.3114 Investointiteoria - Kotitehtävät

Mat-2.3114 Investointiteoria - Kotitehtävät Mat-2.3114 Investointiteoria - Kotitehtävät Kotitehtäviä on yhteensä kahdeksan ja ne ratkeavat tavallisilla taulukkolaskentaohjelmistoilla. Jokaisesta kotitehtävistä saa maksimissaan 5 pistettä: 4p/oikea

Lisätiedot

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0. Ääriarvon laatu Jatkuvasti derivoituvan funktion f lokaali ääriarvokohta (x 0, y 0 ) on aina kriittinen piste (ts. f x (x, y) = f y (x, y) = 0, kun x = x 0 ja y = y 0 ), mutta kriittinen piste ei ole aina

Lisätiedot

Toinen muotoilu. {A 1,A 2,...,A n,b } 0, Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin kun 1 / 13

Toinen muotoilu. {A 1,A 2,...,A n,b } 0, Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin kun 1 / 13 2 3 Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin kun {A 1,A 2,...,A n,b } 0, jatkoa jatkoa 1 / 13 2 3 Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin

Lisätiedot

Harjoitus 3 (3.4.2014)

Harjoitus 3 (3.4.2014) Harjoitus 3 (3..) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i, j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

A = B. jos ja vain jos. x A x B

A = B. jos ja vain jos. x A x B Mat-1.2620 Sovellettu todennäköisyyslaskenta B / Ratkaisut Aiheet: Klassinen todennäköisyys ja kombinatoriikka Kokonaistodennäköisyys ja Bayesin kaava Avainsanat: Bayesin kaava, Binomikaava, Binomikerroin,

Lisätiedot

Hieman joukko-oppia. A X(A a A b A a b).

Hieman joukko-oppia. A X(A a A b A a b). Hieman joukko-oppia Seuraavassa esittelen hieman alkeellista joukko-oppia. Päämääränäni on saada käyttöön hyvinjärjestyslause, jota tarvitsemme myöhemmin eräissä todistuksissa. Esitykseni on aika, vaikkei

Lisätiedot

SELIGSON & CO:n RAHASTOVÄLITYS- PALVELUN PÄÄPIIRTEET

SELIGSON & CO:n RAHASTOVÄLITYS- PALVELUN PÄÄPIIRTEET SELIGSON & CO:n RAHASTOVÄLITYS- PALVELUN PÄÄPIIRTEET Syyskuu 2015 MIKSI? Uusia vaihtoehtoja hajautukseen Suurien markkina-alueiden pien- ja arvoyhtiöitä Ruotsalaisia yhtiöitä Kumpienkin rahastotyyppien

Lisätiedot

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0

k=1 b kx k K-kertoimisia polynomeja, P (X)+Q(X) = (a k + b k )X k n+m a i b j X k. i+j=k k=0 1. Polynomit Tässä luvussa tarkastelemme polynomien muodostamia renkaita polynomien ollisuutta käsitteleviä perustuloksia. Teemme luvun alkuun kaksi sopimusta: Tässä luvussa X on muodollinen symboli, jota

Lisätiedot

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21 säilyy Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla c b a 1 2 3 5 1 / 21 säilyy Esimerkkirelaatio R = {(1, b), (3, a), (5, a), (5, c)} c b a 1

Lisätiedot

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on

a) 3500000 (1, 0735) 8 6172831, 68. b) Korkojaksoa vastaava nettokorkokanta on Kotitehtävät 4 Ratkaisuehdotukset. 1. Kuinka suureksi 3500000 euroa kasvaa 8 vuodessa, kun lähdevero on 30% ja vuotuinen korkokanta on 10, 5%, kun korko lisätään a) kerran vuodessa b) kuukausittain c)

Lisätiedot

Todennäköisyyslaskenta 1/7 Sisältö ESITIEDOT: joukko-oppi, lukumäärän laskeminen, funktiokäsite Hakemisto

Todennäköisyyslaskenta 1/7 Sisältö ESITIEDOT: joukko-oppi, lukumäärän laskeminen, funktiokäsite Hakemisto Todennäköisyyslaskenta /7 Sisältö ESITIEDOT: joukko-oppi, n laskeminen, käsite Hakemisto Todennäköisyyslaskennan peruskäsitteet Todennäköisyyslaskennassa tarkastelun kohteena ovat satunnaisilmiöt.esimerkkejä

Lisätiedot

Raja-arvo ja jatkuvuus, L5

Raja-arvo ja jatkuvuus, L5 ja jatkuvuus, L5 1 Wikipedia: (http://fi.wikipedia.org/wiki/ ) 2 Funktion f () = 2 4 2 a ei voi laskea kohdassa = 2. Jos eroaa kahdesta ( 2), niin funktion voidaan laskea ja seuraavasta taulukosta nähdään,

Lisätiedot

) + T (r + ) + T (r. ) Ke rt Φ( log( s σ2. (1.1) sφ( log( s σ2 2 E. VALKEILA 2 )

) + T (r + ) + T (r. ) Ke rt Φ( log( s σ2. (1.1) sφ( log( s σ2 2 E. VALKEILA 2 ) 2 E. VALKEILA 1. Johdanto 1.1. Käytännöt. Kurssin kotisivu löytyy osoitteesta http://www.math.hut.fi/teaching/rahoitus/ Kurssi suoritetaan kahdella välikokeella; luennot ja seuraavan viikon harjoitustehtävät

Lisätiedot

Toimitettaessa verotusta vuodelta 2004 voidaan todeta, että yhtiön kirjanpidon mukainen voitto on 250 000 i. Lisäksi todetaan seuraavaa:

Toimitettaessa verotusta vuodelta 2004 voidaan todeta, että yhtiön kirjanpidon mukainen voitto on 250 000 i. Lisäksi todetaan seuraavaa: OIKEUSTIETEELLINEN TIEDEKUNTA FINANSSIOIKEUS Julkisoikeuden laitos Aineopinnot OTK, ON täydennystentti 2.12.2004 Vastaukset kysymyksiin 1, 2, 3a ja 3b eri arkeille. Kysymykseen 4 vastataan erilliselle

Lisätiedot

Matematiikan tukikurssi

Matematiikan tukikurssi Matematiikan tukikurssi Kurssikerta 8 1 Suunnattu derivaatta Aluksi tarkastelemme vektoreita, koska ymmärrys vektoreista helpottaa alla olevien asioiden omaksumista. Kun liikutaan tasossa eli avaruudessa

Lisätiedot

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x

renkaissa. 0 R x + x =(0 R +1 R )x =1 R x = x 8. Renkaat Tarkastelemme seuraavaksi rakenteita, joissa on määritelty kaksi assosiatiivista laskutoimitusta, joista toinen on kommutatiivinen. Vaadimme näiltä kahdella laskutoimituksella varustetuilta

Lisätiedot

Topologia Syksy 2010 Harjoitus 9

Topologia Syksy 2010 Harjoitus 9 Topologia Syksy 2010 Harjoitus 9 (1) Avaruuden X osajoukko A on G δ -joukko, jos se on numeroituva leikkaus avoimista joukoista ja F σ -joukko, jos se on numeroituva yhdiste suljetuista joukoista. Osoita,

Lisätiedot

Uusi tapa sijoittaa suomalaisiin osakkeisiin

Uusi tapa sijoittaa suomalaisiin osakkeisiin www.handelsbanken.fi/sertifikaatit KUPONKISERTIFIKAATTI SUOMI Uusi tapa sijoittaa suomalaisiin osakkeisiin VIIMEINEN MERKINTÄPÄIVÄ 9 HELMIKUUTA 2010 MARKKINATILANNE Globaalin talouden elpyminen jatkuu.

Lisätiedot

Harjoitus 3 (31.3.2015)

Harjoitus 3 (31.3.2015) Harjoitus (..05) Tehtävä Olkoon kaaren paino c ij suurin sallittu korkeus tieosuudella (i,j). Etsitään reitti solmusta s solmuun t siten, että reitin suurin sallittu korkeus pienimmillään olisi mahdollisimman

Lisätiedot

Viimeinen erä on korot+koko laina eli 666, 67 + 100000 100667, 67AC.

Viimeinen erä on korot+koko laina eli 666, 67 + 100000 100667, 67AC. Kotitehtäviä 6. Aihepiiri Rahoitusmuodot Ratkaisuehdotuksia 1. Pankki lainaa 100000 bullet-luoton. Laina-aika on 4kk ja luoton (vuotuinen) korkokanta 8% Luoton korot maksetaan kuukausittain ja laskutapa

Lisätiedot

10 Liiketaloudellisia algoritmeja

10 Liiketaloudellisia algoritmeja 218 Liiketaloudellisia algoritmeja 10 Liiketaloudellisia algoritmeja Tämä luku sisältää liiketaloudellisia laskelmia. Aiheita voi hyödyntää vaikkapa liiketalouden opetuksessa. 10.1 Investointien kannattavuuden

Lisätiedot

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3.

a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. 8 3 + 4 2 0 = 16 3 = 3 1 3. Integraalilaskenta. a) Mikä on integraalifunktio ja miten derivaatta liittyy siihen? Anna esimerkki. b) Mitä määrätty integraali tietyllä välillä x tarkoittaa? Vihje: * Integraali * Määrätyn integraalin

Lisätiedot

Johdatus todennäköisyyslaskentaan ja tilastotieteeseen. Stefan Emet

Johdatus todennäköisyyslaskentaan ja tilastotieteeseen. Stefan Emet Johdatus todennäköisyyslaskentaan ja tilastotieteeseen Stefan Emet Matematiikan ja tilastotieteen lts Turun yliopisto 24 Sisältö Johdanto. Todennäköisyys..................................2 Peruskäsitteitä.................................

Lisätiedot

Luento 5: Peliteoriaa

Luento 5: Peliteoriaa Luento 5: Peliteoriaa Tässä kappaleessa tutustutaan lyhyesti peliteoriaan. Peliteorian ratkaisukäsite on Nashin tasapaino, jonka jo Augustin Cournot esitti duopolimallinsa ratkaisuna v. 1838. Cournot n

Lisätiedot

Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 2. TODENNÄKÖISYYS...

Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 2. TODENNÄKÖISYYS... Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... 5 SISÄLLYSLUETTELO... 6 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN... 8 1.1 INDUKTIO JA DEDUKTIO... 9 1.2 SYYT JA VAIKUTUKSET... 11 TEHTÄVIÄ... 13

Lisätiedot

Pankkikriisit ja niiden ehkäiseminen

Pankkikriisit ja niiden ehkäiseminen Pankkikriisit ja niiden ehkäiseminen Matti Estola Itä-Suomen yliopisto, Joensuun kampus Luento 8: Pankkikriisien ja -konkurssien torjuntakeinot Pankkikriisien ja konkurssien syyt 1) Luototetaan asiakkaita,

Lisätiedot

****************************************************************** ****************************************************************** 7 Esim.

****************************************************************** ****************************************************************** 7 Esim. 8.3. Kombiaatiot MÄÄRITELMÄ 6 Merkitä k, joka luetaa yli k:, tarkoittaa lause- ketta k = k! ( k)! 6 3 2 1 6 Esim. 1 3 3! = = = = 3! ( 3)! 3 2 1 3 2 1 3 2 1 Laskimesta löydät äppäime, jolla kertomia voi

Lisätiedot

Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4

Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 Sisällysluettelo ESIPUHE KIRJAN 1. PAINOKSEEN...3 ESIPUHE KIRJAN 2. PAINOKSEEN...3 SISÄLLYSLUETTELO...4 1. JOHDANTO TILASTOLLISEEN PÄÄTTELYYN...6 1.1 INDUKTIO JA DEDUKTIO...7 1.2 SYYT JA VAIKUTUKSET...9

Lisätiedot

Kokous todettiin lailliseksi ja päätösvaltaiseksi.

Kokous todettiin lailliseksi ja päätösvaltaiseksi. KINNULAN KUNTA KOKOUSPÖYTÄKIRJA Sivu Nro 34/ 2009 460 Kokousaika 28.12.2009 klo 17.00-18.50 (iltakoulu klo 18.00-18.50) Kokouspaikka Kunnanvirasto, valtuustosali Saapuvilla olleet jäsenet (merkintä, kuka

Lisätiedot

1 2 3 4 5 6 7 A B 8 9 10 11 [Nm] 370 350 330 [kw] [PS] 110 150 100 136 310 90 122 290 270 80 109 250 70 95 230 210 60 82 190 50 68 170 150 40 54 130 110 90 140 PS 125 PS 100 PS 30 20 41 27 70 1000 1500

Lisätiedot

YHTEENVETO LAINATARJOUKSISTA 13.11.2014 (vesi- ja viemärilaitos)

YHTEENVETO LAINATARJOUKSISTA 13.11.2014 (vesi- ja viemärilaitos) YHTEENVETO LAINATARJOUKSISTA 13.11.2014 (vesi- ja viemärilaitos) 1 Danske Bank Oyj Kuntarahoitus Oyj Nordea Pankki Suomi Oyj Lainan määrä 220.000 euroa 220.000 euroa 220.000 euroa Laina-aika 10 vuotta

Lisätiedot

Opintotuki 2.9.2013. Opintotukipalvelut

Opintotuki 2.9.2013. Opintotukipalvelut Opintotuki 2.9.2013 Opintotukipalvelut Opintotukipalvelut Yliopistolla omat opintotukipalvelut, missä hoidetaan kaikki opintotukeen liittyvät asiat, myös päätöksenteko Sijaitsee Luotsi-rakennuksen ensimmäisessä

Lisätiedot

Ratkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta. 1200 b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy

Ratkaisu: a) Koroton takaisinmaksuaika on 9000 = 7,5 vuotta. 1200 b) Kun vuosituotot pysyvät vakiona, korollinen takaisinmaksuaika määräytyy Kotitehtävät 7. Aihepiirinä Investointi Ratkaisuehdotuksia 1. Investoinnin hankintameno on 9000 euroa ja siitä saadaan seuraavina vuosina vuosittain 1200 euron tulot. Määritä a) koroton takaisinmaksuaika

Lisätiedot

MÄÄRÄYS ASIAKASVAROISTA

MÄÄRÄYS ASIAKASVAROISTA lukien toistaiseksi 1 (5) Arvopaperinvälittäjille MÄÄRÄYS ASIAKASVAROISTA Rahoitustarkastus antaa arvopaperimarkkinalain 4 luvun 5 a :n 5 momentin nojalla arvopaperinvälittäjille tämän määräyksen asiakkaan

Lisätiedot

Otanta ilman takaisinpanoa

Otanta ilman takaisinpanoa Otanta ilman takaisinpanoa Populaatio, jossa N alkiota (palloa, ihmistä tms.), kahdenlaisia ( valkoinen, musta ) Poimitaan umpimähkään (= symmetrisesti) n-osajoukko eli otos Merkitään tapahtuma A k = otoksessa

Lisätiedot