Tilastollinen laadunvalvonta
|
|
- Tapani Lahtinen
- 6 vuotta sitten
- Katselukertoja:
Transkriptio
1 L u e n t o Miten valvonta liittyy laatujohtamiseen? Tilastollinen laadunvalvonta Laatujohtaminen Luennon sisältö Laadunvalvonta Prosessin kyvykkyys Acceptance sampling Laadun suunnittelu Tuotesuunnittelu Prosessisuunnittelu Hankintatoiminta Laadunvalvonta Tuotanto Tarkastus/Pakkaus Jakelu Kenttäorganisaatio TUTA 18 Luento 11 3 Laadunvalvonta käytännössä välttämätöntä Valvonnan tavoitteena varmistaa, että prosessit toimivat suunnitelmien mukaan peruskysymyksinä millä tavoilla valvotaan?, missä kohdin prosessia valvotaan? ja kuinka usein valvontaa tehdään? Valvonta ennen ja jälkeen tuotannon Acceptance sampling Perinteisin Valvonta prosessin aikana Prosessin kontrolli Prosessiin sisään rakennettu laatu Jatkuva kehittäminen Modernein Laadunvalvonnan työkalujen käyttöprosessi 1. Ongelman identifiointi asiakasvalitukset, kontrollikartat ym. lähtösykäyksenä 2. Datan kerääminen tarkistuslistat, graafit, histogrammit jne. apuvälineinä 3. Tietomassan analysointi ja jaottelu pareto-analyysi hyvä lähtökohta 4. Ongelmien syiden selvittäminen esim. syy-seuraus analyysi prosessin pohjana 5. Ratkaisun kehittäminen ja toteutus 6. Toiminnan jatkuva valvonta ja kehittäminen TUTA 18 Luento 11 5 TUTA 18 Luento 11 8
2 Kannattaako odottaa asiakasvalituksiin asti? - prosessin aikaisella valvonnalla monia hyviä puolia - Laadunvalvonnan menetelmät - prosessin kontrollikartat - statistical process control (SPC) Control process rather than product/service TUTA 18 Luento Prosessinaikaista laatua valvotaan tilastollisesti prosessista otettujen otosten perusteella Prosessi on kontrollissa kun siinä on ainoastaan satunnaista vaihtelua (vaihtelua on aina!) ei-satunnaiselle vaihtelulla löytyy yleensä joku syy mikä tulee eliminoida - SPC ei paljasta vaihtelun syytä; se on johdon ja työntekijöiden tehtävä! Satunnainen vaihtelu ilmenee otoksien arvojen osumisena kontrollikarttojen rajojen sisäpuolelle kontrollirajat asetetaan yleensä ±3 keskihajonnan päähän keskiarvosta (saadaan johtopäätöksille sopiva luottamustaso) - jos arvoja rajojen ulkopuolella, niin prosessi todennäköisesti ei ole kontrollissa Johdon vaikeimpia päätöksiä on päättää tarvitseeko prosessi muutosta vai ei (sekä ei-satunnainen että satunnainen vaihtelu) satunnaista vaihtelua voidaan vähentää ainoastaan suunnittelemalla prosessi/tuote/palvelu uudelleen TUTA 18 Luento Kontrollissa on siis kyse vaihtelun laadusta Kontrollikarttojen ajatus yksinkertainen - vaihtelusta osa satunnaista ja osa ei-satunnaista - ka. 86,65 std. 3,11 ±3σŁ77-96m 70m 80m 90m TUTA 18 Luento TUTA 18 Luento 11 13
3 Normaalijakauma laadunvalvonnan pohjana Suurin osa arvoista keskiarvon ympärillä 99,74 % arvoista ±3 keskihajonnan sisällä Satunnainen ja ei-satunnainen vaihtelu ka. Kaikissa prosesseissa on tietty määrä satunnaista vaihtelua ka. ka. ka. ka. 3s 2s 1s +1s +2s +3s 68.26% 95.44% 99.74% TUTA 18 Luento Keskiarvo siirtynyt Hajonta kasvanut Jakauma vinoutunut Ei-satunnaisen vaihtelun kolme perustyyppiä TUTA 18 Luento Prosessin kontrollikarttojen käyttö Prosessin kontrollikarttojen käyttö Merkki siitä, että prosessissa saattaa olla jotain ongelmia (epätodennäköistä, että otoksen arvo ylittäisi kontrollirajan jos prosessi olisi täysin kunnossa) x + 3s Ylempi kontrolliraja Selvitä syy! Hypoteettinen prosessin keskiarvo x 99.74% t x -3s Alempi kontrolliraja Yhden otoksen arvo (esim. keskiarvo) Satunnaista vaihtelua = prosessi on kontrollissa TUTA 18 Luento TUTA 18 Luento 11 18
4 Prosessin kontrollikarttojen käyttö Prosessia pidetään ei-kontrollisissa olevaksi kun yksi piste menee kontrollirajojen ulkopuolelle kaksi peräkkäistä pistettä on lähellä samaa kontrollirajaa 5 peräkkäistä pistettä on keskiarvon samalla puolella 5 peräkkäistä pistettä muodostaa trendin ylös- tai alaspäin raju muutos pisteiden tasossa muu epäsatunnainen käyttäytyminen Kolmen standardipoikkeaman käyttö on suositeltavaa mutta harkintaa voi käyttää jos kontrollirajat asetetaan liian tiukalle (esim. ka.± 2s) normaalivariaatio tulkitaan liian usein ei-kontrollissa tilanteeksi (virhetyyppi I) jos kontrollirajat asetetaan liian löysiksi (esim. ka.± 4s) ei-kontrollissa tilanne tulkitaan liian usein normaaliksi variaatioksi (virhetyyppi II) kolmen standardipoikkeaman kontrollirajojen käyttö tasapainottaa virhetyypit I ja II TUTA 18 Luento Jatkuvien muuttujien mittaaminen X-kartta (otosten keskiarvo) käytetään analysoimaan jatkuvien muuttujien (= mittaasteikollinen) otosten keskiarvon kehitystä koska harvoin tiedetään prosessin todellista keskiarvoa X-kartan keskiarvo lasketaan otoksien keskiarvoista koska harvoin tiedetään prosessin todellista hajontaa X-kartan kontrollirajat lasketaan otoksien vaihteluvälien keskiarvon avulla - vaihteluväli (R); otoksen suurimman ja pienimmän arvon erotus otoksien koko huomioidaan myös kontrollikarttoja laskiessa, melko pienet otoskoot suositeltuja aikaviiveen minimoimiseksi R-kartta (otosten sisäinen hajonta) käytetään analysoimaan jatkuvien muuttujien (=mittaasteikollinen) otosten sisäisen hajonnan kehitystä koska harvoin tiedetään prosessin todellista hajontaa R-kartan kontrollirajat lasketaan otoksien vaihteluvälien keskiarvon avulla - antaa melko yhtäläiset tulokset todelliseen hajontaan verrattaessa TUTA 18 Luento Miksi tarvitaan sekä X- että R-kartta? X- ja R-kartta esimerkki UCL (prosessin keskiarvo siirtyy) Otoksien jakaumat (prosessin hajonta kasvaa) UCL Finnish Washer Oy valmistaa sarjatuotantona aluslevyjä, joita käytetään erilaisien koneiden komponentteina. Tuotannossa olevan aluslevyn reikä on kriittinen mitta, jotta se sopisi aiottuun tarkoitukseen. Laadunvalvonta on ottanut kymmenen päivän kuluessa kymmenen otosta, joissa kussakin on viisi aluslevyä (alla mittaustulokset). Tutki tilastollisen laadunvalvonnan menetelmin onko prosessi kontrollissa eli toimiiko laite kunnolla. Piirrä kontrollikartat koneen toiminnasta. Perustele vastauksesi lyhyesti. R-kartta X-kartta LCL Siirtyminen paljastuu Hajonta ei paljastu LCL UCL UCL LCL Siirtyminen ei paljastu Hajonta paljastuu LCL TUTA 18 Luento TUTA 18 Luento 11 23
5 X- ja R-kartta esimerkki X- ja R-kartta esimerkki 1. Laske otoskeskiarvo, -vaihteluväli, keskiarvojen keskiarvo ja vaihteluvälien keskiarvo 2. Laske kontrollirajat X- ja R-kartoille Arvoja X- ja R-karttoihin Kun joudutaan käyttämään hajontana otoksien vaihteluvälien keskiarvoa R on jokaisella kontrollirajalla oma kaavansa jotka vain pitää osata HUOM! n = otoskoko Kun joudutaan käyttämään hajontana otoksien vaihteluvälien keskiarvoa R käytetään kontrollirajojen laskemisessa apuna taulukoituja arvoja TUTA 18 Luento TUTA 18 Luento X- ja R-kartta esimerkki Kontrollikarttojen analysointia 3. Taulukoi yksittäiset otosarvot, kaikkien otosten keskiarvot ja kontrollirajat Kuvio Kuvaus Mahdolliset syyt Normaali Satunnaista vaihtelua 4. Tulkitse tulokset ja tee johtopäätökset/suositukset Keskiarvo ei ole kontrollissa; yksi rajan ylitys, nouseva trendi jne. Hajonta hyvin kontrollissa Epätasaisuus Trendi Sykli Kohdennettavat syyt (esim. työkalut, materiaalit, ihmiset, ylireagointi, kahvitauot) Esim. koneen kuluminen, työntekijän väsyminen, paremmat työmetodit Eri työvuorot, sähkön vaihtelu, kausivaihtelu jne. TUTA 18 Luento TUTA 18 Luento 11 27
6 Ominaisuuksien mittaaminen p-kartta (virheellisten osuus per otos) aina kaikkia muuttujia ei voida/haluta mitata tasaisesti. P-karttaa käytetään kun havainnot voidaan jakaa kahteen kategoriaan - toimii vs. ei toimi, hyvä vs. huono, läpi vs. ei läpi jne. ilmoitetaan usein prosenteissa p-kartta esimerkki Jotkut aktivistit olivat valittaneet kaupunginvaltuustolle, että kaupungin asukkailla tulisi olla samanveroinen oikeus turvallisuuteen. Heidän mielestään poliisivoimia ja rikoksia ehkäiseviä investointeja (esim. valaistus, korjaukset) tulisi tehdä suhteellisin perustein eli ns. ongelma-alueiden tulisi saada enemmän huomiota kuin turvallisten asuinalueiden. Valituksia tutkiakseen kaupunginviranomaiset keräsivät tiedot asukkaiden kokemista rikoksista viimeisen 30 päivän aikana. Jokaisella alueella otoskoko oli 1000 henkilöä. Mitä ohjeita antaisit kerätyn tiedon pohjalta resurssien allokoinnista? Perusta analyysisi laadunvalvontaoppeihin. c-kartta (virheiden määrä per yksikkö) käytetään kun ainoastaan havainnot per mitattava yksikkö voidaan laskea (eli kun ei-havaintoja ei pystytä laskemaan) - puhelinsoittoja, valituksia, hajoamisia per aikayksikkö - naarmuja, lommoja, virheitä per kappale ei voida ilmoittaa prosenteissa TUTA 18 Luento TUTA 18 Luento p-kartta esimerkki 1. Laske otoskohtainen todennäköisyys p 2. Laske kaikkien otosten virheellisten keskiarvo p 5. Taulukoi otososuudet, kaikkien otosten keskiarvo ja kontrollirajat p-kartta esimerkki 3. Laske otosten keskihajonta 4. Laske kontrollirajat HUOM! n = otoskoko HUOM! z:n arvo riippuu halutusta luottamustasosta, perusoletus z=3 (99,74%) 6. Tulkitse tulokset ja tee johtopäätökset/suositukset Investointeja tulisi lisätä alueille F, P ja T Investointeja tulisi vähentää alueilta B ja J TUTA 18 Luento TUTA 18 Luento 11 32
7 c-kartta esimerkki Kauppias on saanut valituksia kassahenkilökunnan tylystä käyttäytymisestä. Mitä johtopäätöksiä tekisit kerätyn datan perusteella? Laadunvalvonnan menetelmät - tarkastuslistat - Tukkimiehen kirjanpidolla seurataan eri virhekohtien ja -lajien tapahtumatiheyttä huonon laadun syiden selvittämisen lähtökohta - tiedon keruulla oltava joku syy, muuten turhaa käytetään myös varmistamaan, että ihmiset keräävät tietoa oikein Nostovirheet Maanantaiaamu Maanantaiilta Väärä tili 13 Väärä summa 7 Talletusvirheet Valitusten määrä ei näytä selittyvän pelkästään satunnaisuudella (prosessi ei siis ole kontrollissa): kuuden päivän laskeva trendi lopussa, tiettyä syklisyyttä viikon sisällä Väärä tili Väärä summa TUTA 18 Luento TUTA 18 Luento Laadunvalvonnan menetelmät - histogrammit ja graafit - Laadunvalvonnan menetelmät - pareto-analyysi - Frekvenssi Tiedon visualisoinnilla suora vaikutus tiedon hallitsemiseen ja ymmärtämiseen histogrammit auttavat laatuongelmien laajuuden ja tyypin selvittämisessä graafeilla pystytään seuraamaan mm. prosessin laatumuuttujien kehittymistä Muuttujat Halkaisija Aika (tuntia) Käytetään identifioimaan tavallisimmat ongelmien syyt pieni määrä syitä aiheuttaa yleensä suurimman osan ongelmista - Juran: vital few and trivial many, 80/20 -sääntö - voidaan tehdä myös painottaen Muuta laakerien materiaalia ja voiteluöljyä Suunnittele uudelleen oven sulkemismekanismi jne. TUTA 18 Luento TUTA 18 Luento 11 39
8 Laadunvalvonnan menetelmät - syy-seuraus -diagrammi - (Ishikawa/Fishbone/kalanruotodiagrammi) Laadunvalvonnan menetelmät - korrelaatiodiagrammit - Toimiva graafinen esitystapa kun selvä syy-seuraus yhteys Huom! Ei ratkaisuja, vaan mahdollisia syitä, syiden syitä jne. Ongelmien määrä Koulutustunteja TUTA 18 Luento TUTA 18 Luento Jatkuva kehittäminen menestyksen avaimena Prosessin kehittäminen näkyy myös kartoissa Toimintaa pitää kehittää katkeamattomasti suorituskyvyn seuraaminen ja kyseenalaistaminen keskeistä Laatukysymyksissä työntekijöillä keskeinen rooli toiminnan kehittämisessä johdolla monia keinoja sitouttaa työntekijät (ei silti helppoa) - kulttuurimuutos, asiakaskeskeisyys, ryhmätyö, valtaistaminen, koulutus, palkinnot, kannusteet Kontrolli Prosessin parannus Laatu Suunnittelu Korjaa Deming cycle Tarkkaile Tee ihmiset koneet materiaali prosessi Aika TUTA 18 Luento TUTA 18 Luento 11 44
9 Prosessin kyvykkyys - process capability - Kyvykkyydellä tarkoitetaan prosessin kykyä vastata haluttuihin tuote-/prosessispesifikaatioihin tyyliin vastaako 99% munkeistanne meidän vaatimuksia - analyysin kohteena jok'ikinen valmistettu nimike! Asiakas useimmiten määrittelee halutut toleranssi-/spesifikaatiorajat esim. haluamme, että munkit painavat 100±12g/kpl (eli g) - asiakkaiden välillä eroja, jollekin toiselle voi riittää 100±20g/kpl UTL = upper tolerance limit / USL = upper specification limit LTL= lower tolerance limit / LSL = lower specification limit Huomio siis satunnaisen vaihtelun määrässä ei-satunnainen vaihtelu oletetaan eliminoiduiksi TUTA 18 Luento Kontrolli ja kyvykkyys ovat siis eri asioita! eli vaikka kummassakin puhutaan keskiarvoista, keskihajonnoista, sigmoista, ylä-/alarajoista ym. kyse eri asioista TUTA 18 Luento Kyvykkyyden mittaaminen ja ilmaiseminen Kyvykkyyttä mitataan kyvykkyysindekseillä C pk kertoo prosessin tämän hetkisen kyvykkyyden C p kertoo kyvykkyyden jos prosessi olisi täysin keskitetty Sigma-taso on käytännössä etäisyys lähimpään toleranssirajaan Kyvykkyyttä ilmaistaan hyvien osuuden prosenttimäärän sijaan ns. sigma-tasoilla minimitavoite kyvykkyysindeksi 0,67Łkahden sigman laatua (väh. 95,45 hyviä) kyvykkyysindeksi 1,00Łkolmen sigman laatua (väh. 99,73 hyviä) kyvykkyysindeksi 1,33Łneljän sigman laatua (väh. 99,99 hyviä) kyvykkyysindeksi 1,67Łviiden sigman laatua (väh. 99,9999 hyviä) kyvykkyysindeksi 2,00Łkuuden sigman laatua (väh. 99, hyviä) TUTA 18 Luento TUTA 18 Luento 11 50
10 Kyvykkyys esimerkki Huom! Kaavoissa olevat 3 ja 6 ovat vakioitaj Kyvykkyys nousee prosessia parantamalla - case keskitetään ja pienennetään hajontaa - Tiukan ostajan maineessa oleva tukkukaupan leivosvastaava on määrittänyt yksittäin myytävien hillomunkkien toleranssi-/spesifikaatiorajoiksi 88g ja 112g. Kun tehtaan munkkilinjasto tuottaa tällä hetkellä keskimäärin 104g painoisia munkkeja ja painojen keskihajonta on 4g, niin miten kommentoisit tehtaan kykyä vastata ostajan 5-sigman laatutavoitteeseen (eli C pk vähintään 1,67 ja vähintään 99,9999% hyviä)? Miten tilanne muuttuisi, jos keskihajonta onnistuttaisiin pudottamaan 2 grammaan? LTL 4s C pk =0,67 (2-sigman laatua) s = 4 97,72 % UTL 2s LTL 3s C pk =1,00 (3-sigman laatua) s = 4 99,73 % UTL 3s case s = 4 (3-sigman laatua) (2-sigman laatua) Prosessi ei ole kyvykäs (C pk ), eikä olisi sitä edes keskitettynä (C p )! LTL C pk =1,33 (4-sigman laatua) UTL LTL C pk =2,00 (6-sigman laatua) UTL case s = 2 (6-sigman laatua) (4-sigman laatua) Prosessi ei ole kyvykäs (C pk ), mutta keskitettynä (C p ) olisi (eli pystyisi vastaamaan ostajan vaatimuksiin!) TUTA 18 Luento s s = 2 4s 6s s = 2 6s 99,99 % 99, % TUTA 18 Luento Kuinka hyvä prosessin oikein tulisi olla? Prosessin hyvyys ja ongelmien määrää Yleisesti korkealta kuulostava 99% (2,6 s) toimintataso ei monessa tilanteessa riitä 3,5 vuorokautta ilman sähköä vuodessa 15 minuuttia juomakelvotonta vettä joka päivä 15 minuuttia ilman puhelinta ja televisiota joka päivä väärää reseptiä vuodessa (USA) hukattua kirjettä joka tunti (USA) yli lääkärien pudottamaa vastasyntynyttä vuodessa (USA) väärin tehtyä leikkausta per viikko (USA) 3 epäonnistunutta laskua Heathrowssa joka päivä yrityksen www-sivut alhaalla 7 tuntia joka kuukausi 4 sigman taso eli 99,9937% hyviä 2 sigman taso eli 95,45% hyviä 6 sigman taso eli keskiarvosta on toleranssirajaan matkaa kuusi keskihajontaa ja hyviä 99,999999% LTL ka. UTL TUTA 18 Luento TUTA 18 Luento 11 56
11 Sigmatasojen suhde ei ole lineaarinen Miksi 6 sigman laatutaso olisi toivottavaa? Todennäköisyys että tuote/prosessi täyttää spesifikaatiot? TUTA 18 Luento TUTA 18 Luento Kuusi sigmaa johtamisfilosofiana TQM:n tapaiseksi paisunut tilastollisorientoitunut toiminnan kehittämiskonsepti työntekijät pyrkivät kehittämään prosesseja, keskitytään suunnittelussa asiakkaaseen, päätökset tehdään faktatiedon pohjalta, laatua valvotaan tilastollisin menetelmin jne. Painopiste alunperin enemmän virheiden eliminoinnissa zero defects, kerralla kuntoon, kustannukset alas, saanto ylös... Prosesseilta vaadittava kyvykkyysindeksi 1,50 ei ole 2,00 koska prosessien keskiarvon tyypillistä siirtymistä vaikea todeta otosten perusteella ennen kuin merkittävä - perustuu laskennallisesti keskitetyn 6-sigman prosessin 1,5s siirtymiseen eli toiseen laitaan 7,5s ja toiseen 4,5s jolloin indeksistä tulee 4,5s / 3s = 1,50 ja huonoja kappalemääräisesti 3,4 per miljoona TUTA 18 Luento Six-sigma Quality ja 1,5 std. siirtyminen 3,4 per miljoona huonoja TUTA 18 Luento 11 61
12 Laadunvalvonnan menetelmät - acceptance sampling - Perinteinen laadunvarmistamismenetelmä tuote-erän laatutaso varmistetaan tutkimalla erästä otos Kyseinen tuote-erä hyväksytään jos otoksessa on tarpeeksi vähän virheellisiä hylätyt erät korjattaviksi tai tuhottaviksi Menetelmässä monia haittapuoli lähtökohtana oletus, että tietty määrä virheellisiä on hyväksyttävää otosmenetelmä saattaa johtaa virhepäätöksiin (tieto rajoittunutta) kokonaiskustannuksiltaan (elinkaari) kallis menetelmä Käytössä kuitenkin monissa yrityksissä prosessina helppo ja suorat kustannukset alhaiset (halvempi kuin tutkia kaikki), tutkimuksessa rikkoutuville tuotteille ainoa tapa - päätöksinä otoksen koko ja sallittujen virheellisten lukumäärä motivoi tuottajaa tekemään hyvää laatua TUTA 18 Luento Acceptance samplingin keskeiset luvut Hyväksyttävä laatutaso (AQL) asiakkaan määrittelemä hyväksyttävä virheellisten osuus - esim. 2% tuote-erästä Maksimaalinen virheellisten määrä (LTPD) asiakkaan määrittelemä maksimaalinen virheellisten osuus huonoimmassa tapauksessa (=hylkäämispiste) - esim. asiakkaalle jolla AQL on 2% niin LTPD voi olla 8% Tuottajan riski (a) hyväksyttävän tuote-erän hylkäystodennäköisyys - esim. jos a=0,05 niin tarkastajalla on 5% todennäköisyys hylätä 10,000 kpl tuote-erä jossa on virheitä vähemmän kuin 2% Asiakkaan riski (B ) huonon tuote-erän hyväksymistodennäköisyys - esim. jos B =0,10 niin tarkastajalla on 10% todennäköisyys hyväksyä 10,000 kpl tuote-erä jossa on virheitä enemmän kuin 8% TUTA 18 Luento Acceptance sampling käytännössä - otoskoon ja maksimaalinen virheiden määrä - Laske ensin LTPD/AQL eli esim. 0,08/0,02=4 Etsi taulukosta maksimaalinen virheellisten määrä c joka on ylöspäin pyöristäen lähimpänä LTPD/AQL tulosta eli c=4 (4,057) Selvitä otoskoko etsimällä taulukosta kyseisen rivin n*aql arvo ja jaa se AQL:llä eli 1,970/0,02=98,5 eli otoskoko 99...eli jos 99 kappaleen otoksessa on maksimissaan 4 kpl viallisia hyväksy koko toimitus TUTA 18 Luento a B Otoksiin perustuva päätös sisältää riskiä - operating characteristic curve - Hyväksymisen todennäköisyys a =.05 (tuottajan riski) n = 99 c = 4 B =.10 (asiakkaan riski) AQL LTPD Huonojen prosentuaalinen osuus TUTA 18 Luento 11 66
Tilastollinen laadunvalvonta
L u e n t o Laadunvalvonta käytännössä välttämätöntä Tilastollinen laadunvalvonta Valvonnan tavoitteena varmistaa, että prosessit toimivat suunnitelmien mukaan peruskysymyksinä millä tavoilla valvotaan?,
Tilastollinen laadunvalvonta
L u e n t o Tilastollinen laadunvalvonta Luennon sisältö Laadunvalvonta Prosessin kyvykkyys Acceptance sampling Laadunvalvonta Miten valvonta liittyy laatujohtamiseen? Laatujohtaminen Laadun suunnittelu
Specification range USL ja LSL. Mittaustulokset ja normaalijakauma. Six Sigma filosofia: Käytännössä. Pitkäaikainen suorituskyky
Mittaustulokset ja normaalijakauma Specification range USL ja LSL Keskiarvo Tavoitearvo Ylä- ja alaraja hyväksynnälle s tai sigma, σ 1σ, 2σ ja 3σ Määrittelyalue Määritellään millä laatutasolla prosessi
Luottamusvälit. Normaalijakauma johnkin kohtaan
Luottamusvälit Normaalijakauma johnkin kohtaan Perusjoukko ja otanta Jos halutaan tutkia esimerkiksi Suomessa elävien naarashirvien painoa, se voidaan (periaatteessa) tehdä kahdella tavalla: 1. tutkimalla
MTTTP1, luento KERTAUSTA
26.9.2017/1 MTTTP1, luento 26.9.2017 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2017/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen
r = 0.221 n = 121 Tilastollista testausta varten määritetään aluksi hypoteesit.
A. r = 0. n = Tilastollista testausta varten määritetään aluksi hypoteesit. H 0 : Korrelaatiokerroin on nolla. H : Korrelaatiokerroin on nollasta poikkeava. Tarkastetaan oletukset: - Kirjoittavat väittävät
Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.
5.10.2017/1 MTTTP1, luento 5.10.2017 KERTAUSTA Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla todennäköisyydellä,
riippumattomia ja noudattavat samaa jakaumaa.
12.11.2015/1 MTTTP5, luento 12.11.2015 Luku 4 Satunnaisotos, otossuure ja otosjakauma 4.1. Satunnaisotos X 1, X 2,, X n on satunnaisotos, jos X i :t ovat riippumattomia ja noudattavat samaa jakaumaa. Sanonta
/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla
16.11.2017/1 MTTTP5, luento 16.11.2017 3.5.5 Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla ~,, ~,,. 16.11.2017/2 Esim. Tutkittiin uuden menetelmän käyttökelpoisuutta
Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.
6.10.2015/1 MTTTP1, luento 6.10.2015 KERTAUSTA JA TÄYDENNYSTÄ Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla
Väliestimointi (jatkoa) Heliövaara 1
Väliestimointi (jatkoa) Heliövaara 1 Bernoulli-jakauman odotusarvon luottamusväli 1/2 Olkoon havainnot X 1,..., X n yksinkertainen satunnaisotos Bernoulli-jakaumasta parametrilla p. Eli X Bernoulli(p).
Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria.
6.10.2016/1 MTTTP1, luento 6.10.2016 KERTAUSTA JA TÄYDENNYSTÄ Luottamisvälin avulla voidaan arvioida populaation tuntematonta parametria. Muodostetaan väli, joka peittää parametrin etukäteen valitulla
MTTTP1, luento KERTAUSTA
25.9.2018/1 MTTTP1, luento 25.9.2018 KERTAUSTA Varianssi, kaava (2) http://www.sis.uta.fi/tilasto/mtttp1/syksy2018/kaavat.pdf n i i n i i x x n x n x x n s 1 2 2 1 2 2 1 1 ) ( 1 1 Mittaa muuttujan arvojen
Otoskoko 107 kpl. a) 27 b) 2654
1. Tietyllä koneella valmistettavien tiivisterenkaiden halkaisijan keskihajonnan tiedetään olevan 0.04 tuumaa. Kyseisellä koneella valmistettujen 100 renkaan halkaisijoiden keskiarvo oli 0.60 tuumaa. Määrää
MTTTP5, luento Otossuureita ja niiden jakaumia (jatkuu)
21.11.2017/1 MTTTP5, luento 21.11.2017 Otossuureita ja niiden jakaumia (jatkuu) 4) Olkoot X 1, X 2,..., X n satunnaisotos (, ):sta ja Y 1, Y 2,..., Y m satunnaisotos (, ):sta sekä otokset riippumattomia.
Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? Nollahypoteesi Vaihtoehtoinen hypoteesi (yksisuuntainen)
1 MTTTP3 Luento 29.1.2015 Luku 6 Hypoteesien testaus Tutkimusongelmia ja tilastollisia hypoteeseja: Perunalastupussien keskimääräinen paino? H 0 : µ = µ 0 H 1 : µ < µ 0 Nollahypoteesi Vaihtoehtoinen hypoteesi
/1. MTTTP5, luento Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla
17.11.2016/1 MTTTP5, luento 17.11.2016 3.5.5 Normaalijakauma (jatkuu) Binomijakaumaa voidaan approksimoida normaalijakaumalla likimain Jos X ~ Bin(n, p), niin X ~ N(np, np(1 p)), kun n suuri. 17.11.2016/2
Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma tiedetään. Se on normaalijakauma, havainnollistaminen simuloiden
1 KERTAUSTA JA TÄYDENNYSTÄ Luento 30.9.2014 Olkoon satunnaisotos X 1, X 2,, X n normaalijakaumasta N(µ, σ 2 ), tällöin ~ N(µ, σ 2 /n), kaava (6). Otoskeskiarvo on otossuure, jonka todennäköisyysjakauma
¼ ¼ joten tulokset ovat muuttuneet ja nimenomaan huontontuneet eivätkä tulleet paremmiksi.
10.11.2006 1. Pituushyppääjä on edellisenä vuonna hypännyt keskimäärin tuloksen. Valmentaja poimii tämän vuoden harjoitusten yhteydessä tehdyistä muistiinpanoista satunnaisesti kymmenen harjoitushypyn
A130A0650-K Tilastollisen tutkimuksen perusteet 6 op Tentti / Anssi Tarkiainen & Maija Hujala
Kaavakokoelma, testinvalintakaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Tehtävä 1 a) Konepajan on hyväksyttävä alihankkijalta saatu tavaraerä, mikäli viallisten komponenttien
Kynä-paperi -harjoitukset. Taina Lehtinen Taina I Lehtinen Helsingin yliopisto
Kynä-paperi -harjoitukset Taina Lehtinen 43 Loput ratkaisut harjoitustehtäviin 44 Stressitestin = 40 s = 8 Kalle = 34 pistettä Ville = 5 pistettä Z Kalle 34 8 40 0.75 Z Ville 5 8 40 1.5 Kalle sijoittuu
https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014
1 MTTTP3 Tilastollisen päättelyn perusteet 2 Luennot 8.1.2015 ja 13.1.2015 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=6909&i dx=5&uilang=fi&lang=fi&lvv=2014
Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta
Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman
806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy (1 α) = 99 1 α = 0.
806109P TILASTOTIETEEN PERUSMENETELMÄT I Hanna Heikkinen Esimerkkejä estimoinnista ja merkitsevyystestauksesta, syksy 2012 1. Olkoon (X 1,X 2,...,X 25 ) satunnaisotos normaalijakaumasta N(µ,3 2 ) eli µ
pitkittäisaineistoissa
Puuttuvan tiedon ongelma p. 1/18 Puuttuvan tiedon ongelma pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto mtl.uta.fi/tilasto/sekamallit/puupitkit.pdf
Mittaustulosten tilastollinen käsittely
Mittaustulosten tilastollinen käsittely n kertaa toistetun mittauksen tulos lasketaan aritmeettisena keskiarvona n 1 x = x i n i= 1 Mittaustuloksen hajonnasta aiheutuvaa epävarmuutta kuvaa keskiarvon keskivirhe
TILASTOLLINEN LAADUNVALVONTA
1 Aki Taanila TILASTOLLINEN LAADUNVALVONTA 31.10.2008 2 TILASTOLLINEN LAADUNVALVONTA Tasalaatuisuus on hyvä tavoite, jota ei yleensä voida täydellisesti saavuttaa: asiakaspalvelun laatu vaihtelee, vaikka
Tutkimustiedonhallinnan peruskurssi
Tutkimustiedonhallinnan peruskurssi Hannu Toivonen, Marko Salmenkivi, Inkeri Verkamo hannu.toivonen, marko.salmenkivi, inkeri.verkamo@cs.helsinki.fi Helsingin yliopisto Hannu Toivonen, Marko Salmenkivi,
Tilastollinen testaus. Vilkkumaa / Kuusinen 1
Tilastollinen testaus Vilkkumaa / Kuusinen 1 Motivointi Viime luennolla: havainnot generoineen jakauman muoto on usein tunnettu, mutta parametrit tulee estimoida Joskus parametreista on perusteltua esittää
Matemaatikot ja tilastotieteilijät
Matemaatikot ja tilastotieteilijät Matematiikka/tilastotiede ammattina Tilastotiede on matematiikan osa-alue, lähinnä todennäköisyyslaskentaa, mutta se on myös itsenäinen tieteenala. Tilastotieteen tutkijat
Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003
Nimi Opiskelijanumero Tilastotieteen jatkokurssi syksy 2003 Välikoe 2 11.12.2003 Normaalisti jakautuneiden yhdistyksessä on useita tuhansia jäseniä. Yhdistyksen sääntöjen mukaan sääntöihin tehtävää muutosta
pitkittäisaineistoissa
Puuttuvan tiedon käsittelystä p. 1/18 Puuttuvan tiedon käsittelystä pitkittäisaineistoissa Tapio Nummi tan@uta.fi Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Puuttuvan tiedon
Luento KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja
1 Luento 23.9.2014 KERTAUSTA Kaksiulotteinen jakauma Pisteparvi, Toyota Avensis -farmariautoja 2 Ristiintaulukko Esim. Toyota Avensis farmariautoja, nelikenttä (2x2-taulukko) 3 Esim. 5.2.6. Markkinointisuunnitelma
Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu.
Ka6710000 TILASTOLLISEN ANALYYSIN PERUSTEET 2. VÄLIKOE 9.5.2007 / Anssi Tarkiainen Kaavakokoelma, testikaaviot ja jakaumataulukot liitteinä. Ei omia taulukoita! Laskin sallittu. Tehtävä 1. a) Gallupissa
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 30. lokakuuta 2007 Antti Rasila () TodB 30. lokakuuta 2007 1 / 23 1 Otos ja otosjakaumat (jatkoa) Frekvenssi ja suhteellinen frekvenssi Frekvenssien odotusarvo
Mittaustekniikka (3 op)
530143 (3 op) Yleistä Luennoitsija: Ilkka Lassila Ilkka.lassila@helsinki.fi, huone C319 Assistentti: Ville Kananen Ville.kananen@helsinki.fi Luennot: ti 9-10, pe 12-14 sali E207 30.10.-14.12.2006 (21 tuntia)
Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä
Tilastollisen analyysin perusteet Luento 8: Lineaarinen regressio, testejä ja luottamusvälejä arvon Sisältö arvon Bootstrap-luottamusvälit arvon arvon Oletetaan, että meillä on n kappaletta (x 1, y 1 ),
Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4
Sisällysluettelo ESIPUHE 1. PAINOKSEEN... 3 ESIPUHE 2. PAINOKSEEN... 3 SISÄLLYSLUETTELO... 4 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 6 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA... 7 1.2 AIHEESEEN PEREHTYMINEN...
Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen
MTTTP5, kevät 2016 4.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuihin 2-4 liittyen 1. Laitosneuvostoon valitaan 2 professoria, 4 muuta henkilökuntaan kuuluvaa jäsentä sekä 4 opiskelijaa. Laitosneuvostoon
Esim. Pulssi-muuttujan frekvenssijakauma, aineisto luentomoniste liite 4
18.9.2018/1 MTTTP1, luento 18.9.2018 KERTAUSTA Esim. Pulssi-muuttujan frekvenssijakauma, aineisto luentomoniste liite 4 pyöristetyt todelliset luokka- frekvenssi luokkarajat luokkarajat keskus 42 52 41,5
Jos nollahypoteesi pitää paikkansa on F-testisuuren jakautunut Fisherin F-jakauman mukaan
17.11.2006 1. Kahdesta kohteesta (A ja K) kerättiin maanäytteitä ja näistä mitattiin SiO -pitoisuus. Tulokset (otoskoot ja otosten tunnusluvut): A K 10 16 Ü 64.94 57.06 9.0 7.29 Oletetaan mittaustulosten
4. laskuharjoituskierros, vko 7, ratkaisut
4. laskuharjoituskierros, vko 7, ratkaisut D1. Kone valmistaa kuulalaakerin kuulia, joiden halkaisija vaihtelee satunnaisesti. Halkaisijan on oltava tiettyjen rajojen sisällä, jotta kuula olisi käyttökelpoinen.
Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä palamisaikaa?
21.3.2019/1 MTTTP1, luento 21.3.2019 7 TILASTOLLISEN PÄÄTTELYN PERUSTEITA Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä
Tilastollinen aineisto Luottamusväli
Tilastollinen aineisto Luottamusväli Keijo Ruotsalainen Oulun yliopisto, Teknillinen tiedekunta Matematiikan jaos Tilastollinen aineisto p.1/20 Johdanto Kokeellisessa tutkimuksessa tutkittavien suureiden
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas JAKAUMAN MUOTO Vinous, skew (g 1, γ 1 ) Kertoo jakauman symmetrisyydestä Vertailuarvona on nolla, joka vastaa symmetristä jakaumaa (mm. normaalijakauma)
voidaan hylätä, pienempi vai suurempi kuin 1 %?
[MTTTP1] TILASTOTIETEEN JOHDANTOKURSSI, Syksy 2017 http://www.uta.fi/sis/mtt/mtttp1/syksy_2017.html HARJOITUS 5 viikko 42 6.10.2017 klo 10:42:20 Ryhmät: ke 08.30 10.00 LS C6 Paajanen ke 10.15 11.45 LS
Testit laatueroasteikollisille muuttujille
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit laatueroasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit laatueroasteikollisille muuttujille >> Laatueroasteikollisten
HARJOITUS- PAKETTI E
Logistiikka A35A00310 Tuotantotalouden perusteet HARJOITUS- PAKETTI E (6 pistettä) TUTA 17 Luento 18 Jonojen hallinta Hamburger Restaurant Pinball Wizard 1 piste Benny s Arcade 1/4 Luento 19 Projektin
Järvi 1 Valkjärvi. Järvi 2 Sysijärvi
Tilastotiedettä Tilastotieteessä kerätään tietoja yksittäisistä asioista, ominaisuuksista tai tapahtumista. Näin saatua tietoa käsitellään tilastotieteen menetelmin ja saatuja tuloksia voidaan käyttää
Harjoitus 2: Matlab - Statistical Toolbox
Harjoitus 2: Matlab - Statistical Toolbox Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen tavoitteet Satunnaismuuttujat ja todennäköisyysjakaumat
MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu
10.1.2019/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 10.1.2019 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2018 10.1.2019/2
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012. Timo Törmäkangas
TUTKIMUSAINEISTON KVANTITATIIVINEN ANALYYSI LTKY012 Timo Törmäkangas TEOREETTISISTA JAKAUMISTA Usein johtopäätösten teko helpottuu huomattavasti, jos tarkasteltavan muuttujan perusjoukon jakauma noudattaa
Jatkuvat satunnaismuuttujat
Jatkuvat satunnaismuuttujat Satunnaismuuttuja on jatkuva jos se voi ainakin periaatteessa saada kaikkia mahdollisia reaalilukuarvoja ainakin tietyltä väliltä. Täytyy ymmärtää, että tällä ei ole mitään
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 15. marraskuuta 2007 Antti Rasila () TodB 15. marraskuuta 2007 1 / 19 1 Tilastollisia testejä (jatkoa) Yhden otoksen χ 2 -testi varianssille Kahden riippumattoman
Testit järjestysasteikollisille muuttujille
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testit järjestysasteikollisille muuttujille TKK (c) Ilkka Mellin (2007) 1 Testit järjestysasteikollisille muuttujille >> Järjestysasteikollisten
Testejä suhdeasteikollisille muuttujille
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Testejä suhdeasteikollisille muuttujille TKK (c) Ilkka Mellin (007) 1 Testejä suhdeasteikollisille muuttujille >> Testit normaalijakauman
Kvantitatiiviset menetelmät
Kvantitatiiviset menetelmät HUOM! Tentti pidetään tiistaina.. klo 6-8 Vuorikadulla V0 ls Muuttujien muunnokset Usein empiirisen analyysin yhteydessä tulee tarve muuttaa aineiston muuttujia Esim. syntymävuoden
6. laskuharjoitusten vastaukset (viikot 10 11)
6. laskuharjoitusten vastaukset (viikot 10 11) 1. a) Sivun 102 hypergeometrisen jakauman määritelmästä saadaan µ µ 13 39 13! 13 12 11 10 9 µ 0! 8! 1! 2 2! 2 1 0 49 48! 47!! 14440 120 31187200 120 1287
1. Matikan kurssin arvosanat jakautuivat seuraavalla tavalla:
MAA6.3 Loppukoe 9.11.01 Jussi Tyni Valitse kuusi tehtävää Muista merkitä vastauspaperiin oma nimesi ja tee etusivulle pisteytysruudukko. Kaikkiin tehtävien ratkaisuihin välivaiheet näkyviin! 1. Matikan
Estimointi. Vilkkumaa / Kuusinen 1
Estimointi Vilkkumaa / Kuusinen 1 Motivointi Tilastollisessa tutkimuksessa oletetaan jonkin jakauman generoineen tutkimuksen kohteena olevaa ilmiötä koskevat havainnot Tämän mallina käytettävän todennäköisyysjakauman
Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit
Tilastollisen analyysin perusteet Luento 3: Epäparametriset tilastolliset testit s t ja t kahden Sisältö t ja t t ja t kahden kahden t ja t kahden t ja t Tällä luennolla käsitellään epäparametrisia eli
Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen., jos otoskeskiarvo on suurempi kuin 13,96. Mikä on testissä käytetty α:n arvo?
MTTTP5, kevät 2016 15.2.2016/RL Lisätehtäviä ratkaisuineen luentomonisteen lukuun 6 liittyen 1. Valitaan 25 alkion satunnaisotos jakaumasta N(µ, 25). Olkoon H 0 : µ = 12. Hylätään H 0, jos otoskeskiarvo
1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet
VAASAN YLIOPISTO/AVOIN YLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia 1 KURSSIKYSELYAINEISTO: 1. Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka
GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus
GeoGebra tutkivan oppimisen välineenä: havainto-hypoteesi-testaus Mitä jäi mieleen viime viikosta? Mitä mieltä olet tehtävistä, joissa GeoGebralla työskentely yhdistetään paperilla jaettaviin ohjeisiin
Tilastollisen analyysin perusteet Luento 1: Lokaatio ja hajonta
Tilastollisen analyysin perusteet Luento 1: ja hajonta Sisältö Havaittujen arvojen jakauma Havaittujen arvojen jakaumaa voidaan kuvailla ja esitellä tiivistämällä havaintoarvot sopivaan muotoon. Jakauman
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 11. lokakuuta 2007 Antti Rasila () TodB 11. lokakuuta 2007 1 / 15 1 Johdantoa tilastotieteeseen Peruskäsitteitä Tilastollisen kuvailun ja päättelyn menetelmiä
Matematiikan kotitehtävä 2, MAA 10 Todennäköisyys ja tilastot
Matematiikan kotitehtävä 2, MAA 10 Todennäköisyys ja tilastot Sievin lukio Tehtävien ratkaisut tulee olla esim. Libre officen -writer ohjelmalla tehtyjä. Liitä vastauksiisi kuvia GeoGebrasta ja esim. TI-nSpire
Otantajakauman käyttö päättelyssä
Keskiarvo otatajakauma Toisistaa tietämättä kaksi tutkijaa tutkii samaa ilmiötä, jossa perusjoukko koostuu kuudesta tutkittavasta ja tarkoituksea o laskea keskiarvo A: Kokoaistutkimus B: Otatatutkimus
Virhearviointi. Fysiikassa on tärkeää tietää tulosten tarkkuus.
Virhearviointi Fysiikassa on tärkeää tietää tulosten tarkkuus. Virhelajit A. Tilastolliset virheet= satunnaisvirheet, joita voi arvioida tilastollisin menetelmin B. Systemaattiset virheet = virheet, joita
1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet
VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: 1.Työpaikan työntekijöistä laaditussa taulukossa oli mm. seuraavat rivit ja sarakkeet Nimi Ikä v. Asema Palkka
Teema 8: Parametrien estimointi ja luottamusvälit
Teema 8: Parametrien estimointi ja luottamusvälit Todennäköisyyslaskennan perusteet (Teemat 6 ja 7) antavat hyvän pohjan siirtyä kurssin viimeiseen laajempaan kokonaisuuteen, nimittäin tilastolliseen päättelyyn.
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi
MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi 5B Tilastollisen merkitsevyyden testaus Osa II Lasse Leskelä Matematiikan ja systeemianalyysin laitos Perustieteiden korkeakoulu Aalto-yliopisto
5 Lisa materiaali. 5.1 Ristiintaulukointi
5 Lisa materiaali 5.1 Ristiintaulukointi 270. a) Aineiston koko nähdään frekvenssitaulukon oikeasta alakulmasta: N = 559. Tilastotieteen johdantokurssille osallistui yhteensä 559 opiskelijaa. Huomaa: Opiskelijoiden
https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015
25.10.2016/1 MTTTP5, luento 25.10.2016 1 Kokonaisuudet, joihin opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=11585 &idx=2&uilang=fi&lang=fi&lvv=2015 2 Osaamistavoitteet Opiskelija osaa
ABHELSINKI UNIVERSITY OF TECHNOLOGY
Tilastollinen testaus Tilastollinen testaus Tilastollisessa testauksessa tutkitaan tutkimuskohteita koskevien oletusten tai väitteiden paikkansapitävyyttä havaintojen avulla. Testattavat oletukset tai
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170
VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE 4.6.2013 Ratkaisut ja arvostelu 1.1 Satunnaismuuttuja X noudattaa normaalijakaumaa a) b) c) d) N(170, 10 2 ). Tällöin P (165 < X < 175) on likimain
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 8. marraskuuta 2007 Antti Rasila () TodB 8. marraskuuta 2007 1 / 18 1 Kertausta: momenttimenetelmä ja suurimman uskottavuuden menetelmä 2 Tilastollinen
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. Luentokuulustelujen esimerkkivastauksia. Pertti Palo. 30.
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa Luentokuulustelujen esimerkkivastauksia Pertti Palo 30. marraskuuta 2012 Saatteeksi Näiden vastausten ei ole tarkoitus olla malleja vaan esimerkkejä.
KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun se kelpaa kyllä!
VAASAN YLIOPISTO/KESÄYLIOPISTO TILASTOTIETEEN PERUSTEET Harjoituksia A KURSSIKYSELYAINEISTO: HUOM! Aineiston tilastoyksikkömäärä 11 on kovin pieni oikean tilastotieteen tekemiseen, mutta Harjoitteluun
2. TILASTOLLINEN TESTAAMINEN...
!" # 1. 1. JOHDANTO... 3 2. 2. TILASTOLLINEN TESTAAMINEN... 4 2.1. T-TESTI... 4 2.2. RANDOMISAATIOTESTI... 5 3. SIMULOINTI... 6 3.1. OTOSTEN POIMINTA... 6 3.2. TESTAUS... 7 3.3. TESTIEN TULOSTEN VERTAILU...
Näistä standardoiduista arvoista laskettu keskiarvo on nolla ja varianssi 1, näin on standardoidulle muuttujalle aina.
[MTTTP1] TILASTOTIETEEN JOHDANTOKURSSI, Syksy 2017 http://www.uta.fi/sis/mtt/mtttp1/syksy_2017.html HARJOITUS 3 viikko 40 Joitain ratkaisuja 1. Suoritetaan standardointi. Standardoidut arvot ovat z 1 =
/1. MTTTP1, luento Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti:
4.10.2016/1 MTTTP1, luento 4.10.2016 7.4 Normaalijakauma (jatkoa) Olkoon Z ~ N(0, 1). Määritellään z siten, että P(Z > z ) =, graafisesti: Samoin z /2 siten, että P(Z > z /2 ) = /2, graafisesti: 4.10.2016/2
/1. MTTTP5, luento Kertausta. Olk. X 1, X 2,..., X n on satunnaisotos N(µ, ):sta, missä tunnettu. Jos H 0 on tosi, niin
30.11.2017/1 MTTTP5, luento 30.11.2017 Kertausta H 0 : µ = µ 0 Olk. X 1, X 2,..., X n on satunnaisotos N(µ, ):sta, missä tunnettu. Jos H 0 on tosi, niin = / ~ 0,1. Kaava 5.1 30.11.2017/2 Esim. Tutkija
Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi
Tehtävä. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi lyhyesti. a) a, c, e, g, b),,, 7,, Ratkaisut: a) i ja k - oikea perustelu ja oikeat kirjaimet, annetaan
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa. 6. luento. Pertti Palo
FoA5 Tilastollisen analyysin perusteet puheentutkimuksessa 6. luento Pertti Palo 1.11.2012 Käytännön asioita Harjoitustöiden palautus sittenkin sähköpostilla. PalautusDL:n jälkeen tiistaina netistä löytyy
Regressioanalyysi. Kuusinen/Heliövaara 1
Regressioanalyysi Kuusinen/Heliövaara 1 Regressioanalyysin idea ja tavoitteet Regressioanalyysin idea: Oletetaan, että haluamme selittää jonkin selitettävän muuttujan havaittujen arvojen vaihtelun joidenkin
Mittausepävarmuuden laskeminen ISO mukaisesti. Esimerkki: Campylobacter
Mittausepävarmuuden laskeminen ISO 19036 mukaisesti. Esimerkki: Campylobacter Marjaana Hakkinen Erikoistutkija, Elintarvike- ja rehumikrobiologia Mikrobiologisten tutkimusten mittausepävarmuus 18.3.2019
TUTKIMUSAINEISTON ANALYYSI. LTKY012 Timo Törmäkangas
TUTKIMUSAINEISTON ANALYYSI LTKY012 Timo Törmäkangas LUENNOT Luento Paikka Vko Päivä Pvm Klo 1 L 304 8 Pe 21.2. 08:15-10:00 2 L 304 9 To 27.2. 12:15-14:00 3 L 304 9 Pe 28.2. 08:15-10:00 4 L 304 10 Ke 5.3.
Mat Tilastollisen analyysin perusteet, kevät 2007
Mat-.14 Tilastollisen analyysin perusteet, kevät 7 7. luento: Tarina yhden selittään lineaarisesta regressiomallista atkuu Kai Virtanen 1 Luennolla 6 opittua Kuvataan havainnot (y, x ) yhden selittään
Järvitesti Ympäristöteknologia T571SA 7.5.2013
Hans Laihia Mika Tuukkanen 1 LASKENNALLISET JA TILASTOLLISET MENETELMÄT Järvitesti Ympäristöteknologia T571SA 7.5.2013 Sarkola Eino JÄRVITESTI Johdanto Järvien kuntoa tutkitaan monenlaisilla eri menetelmillä.
1. Johdanto Todennäköisyysotanta Yksinkertainen satunnaisotanta Ositettu otanta Systemaattinen otanta...
JHS 160 Paikkatiedon laadunhallinta Liite III: Otanta-asetelmat Sisällysluettelo 1. Johdanto... 2 2. Todennäköisyysotanta... 2 2.1 Yksinkertainen satunnaisotanta... 3 2.2 Ositettu otanta... 3 2.3 Systemaattinen
Harjoitus 7: NCSS - Tilastollinen analyysi
Harjoitus 7: NCSS - Tilastollinen analyysi Mat-2.2107 Sovelletun matematiikan tietokonetyöt Syksy 2006 Mat-2.2107 Sovelletun matematiikan tietokonetyöt 1 Harjoituksen aiheita Tilastollinen testaus Testaukseen
MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu
5.3.2018/1 MTTTA1 Tilastomenetelmien perusteet 5 op Luento 5.3.2018, osa 1 1 Kokonaisuudet johon opintojakso kuuluu https://www10.uta.fi/opas/opintojakso.htm?rid=14600 &idx=1&uilang=fi&lang=fi&lvv=2017
pisteet Frekvenssi frekvenssi Yhteensä
806118P JOHDATUS TILASTOTIETEESEEN Loppukoe 15.3.2018 (Jari Päkkilä) 1. Kevään -17 Johdaus tilastotieteeseen -kurssin opiskelijoiden harjoitusaktiivisuudesta saatujen pisteiden frekvenssijakauma: Harjoitus-
1. Tilastollinen malli??
1. Tilastollinen malli?? https://fi.wikipedia.org/wiki/tilastollinen_malli https://en.wikipedia.org/wiki/statistical_model http://projecteuclid.org/euclid.aos/1035844977 Tilastollinen malli?? Numeerinen
Tilastollisen analyysin perusteet Luento 10: Johdatus varianssianalyysiin
Tilastollisen analyysin perusteet Luento 10: Sisältö Varianssianalyysi Varianssianalyysi on kahden riippumattoman otoksen t testin yleistys. Varianssianalyysissä perusjoukko koostuu kahdesta tai useammasta
Sovellettu todennäköisyyslaskenta B
Sovellettu todennäköisyyslaskenta B Antti Rasila 3. marraskuuta 2007 Antti Rasila () TodB 3. marraskuuta 2007 1 / 18 1 Varianssin luottamusväli, jatkoa 2 Bernoulli-jakauman odotusarvon luottamusväli 3
9. laskuharjoituskierros, vko 12-13, ratkaisut
9. laskuharjoituskierros, vko 12-13, ratkaisut D1. Olkoot X i, i = 1, 2,..., n riippumattomia, samaa eksponenttijakaumaa noudattavia satunnaismuuttujia, joiden odotusarvo E(X i = β, toisin sanoen X i :t
Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1
Ilkka Mellin Tilastolliset menetelmät Osa 3: Tilastolliset testit Tilastollinen testaus TKK (c) Ilkka Mellin (2007) 1 Tilastolliset testit >> Tilastollinen testaus Tilastolliset hypoteesit Tilastolliset
Metsämuuronen: Tilastollisen kuvauksen perusteet ESIPUHE... 4 SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 2. AINEISTO...
Sisällysluettelo ESIPUHE... 4 ALKUSANAT E-KIRJA VERSIOON... SISÄLLYSLUETTELO... 6 1. METODOLOGIAN PERUSTEIDEN KERTAUSTA... 8 1.1 KESKEISTEN KÄSITTEIDEN KERTAUSTA...9 1.2 AIHEESEEN PEREHTYMINEN...9 1.3