TIES592 Monitavoiteoptimointi ja teollisten prosessien hallinta Yliassistentti Jussi Hakanen jussi.hakanen@jyu.fi syksy 2010
Monitavoiteoptimointi
Mitä monitavoitteisuus tarkoittaa? Halutaan saavuttaa useita tavoitteita samanaikaisesti Tavoitteet voivat olla ristiriitaisia (esim. yleensä hyvää ei saa halvalla) kaikkia tavoitteita ei voi saavuttaa samanaikaisesti Joudutaan tyytymään kompromisseihin
Monitavoitteinen päätöksentekoprosessi tarpeen tunnistaminen optimointehtävän muotoilu tehtävän (matemaattinen) mallinnus päätöksenteko parhaan ratkaisun implementointi & testaus
Optimointitehtävän muotoilu Optimoimalla vain yhtä tavoitetta muut jäävät huomiotta Tavoite vs. rajoite Tavoitteiden summaus Lasketaan yhteen appelsiineja ja omenoita Tavoitteiden muuntaminen Sisältää epävarmuuksia Monitavoitteinen muotoilu tuo esille tavoitteiden keskinäiset riippuvuudet
Esimerkki 1: Teräksen jatkuvavalu Teräksen jatkuvavalun toisiojäähdytysprosessin optimisäätö Tutkittu tietotekniikan laitoksella intensiivisesti mallinnus (1988) yksitavoiteoptimointi (1988-1994) monitavoiteoptimointi (1994-1998)
Teräksen jatkuvavalu sula teräs sisään (tundish) 1. vesijäähdytteinen muotti ohut kuori etenemistä tuetaan rullilla 2. jäähdytys vesisuihkuilla loppu jäähtyminen lämpösäteilynä
Teräksen jatkuvavalu Lämpötilan mittaaminen valussa hankalaa lämpötilajakauma numeerisesti Prosessi mallinnettu monifaasilämpöyhtälöä kuvaavilla osittaisdifferentiaaliyhtälöillä (kiinteä ja neste faasi) lämpötilajakauma Numeerinen malli käyttäen elementtimenetelmää (Finite Element method, FEM) Dynaaminen prosessi, riippuu siis ajasta
Teräksen jatkuvavalu Toisiojäähdytys merkittävä: vesisuihkujen intensiteetti (helppo säädellä) vaikuttaa merkittävästi teräksen jähmettymiseen Tavoite: minimoida virheiden määrä teräksessä Laatu riippuu mm. lämpötilan käyttäytymisestä teräksen pinnalla liian pieni jäähdytys liian pitkä nestemäinen osa liian suuri jäähdytys teräkseen muodostuu vikoja Objektifunktio: pitää pintalämpötila lähellä haluttua profiilia Rajoitteita mm. lämpötilan muutokselle teräksen pinnalla sekä itse lämpötilalle kriittisissä kohdissa
Teräksen jatkuvavalu Yksitavoitteisen optimointitehtävän tarkastelu: rajoitteet tiukkoja ei sallittuja ratkaisuita mistä antaa periksi? Muutetaan rajoitteet objektifunktioiksi (yht 5) mahdollistaa eri rajoitteiden samanaikaisen relaksoinnin tietoa eri rajoitteiden toteutumisesta ja niiden vuorovaikutuksista
Esimerkki 2: Vesikiertojen optimointi
Vesikiertojen optimointi Paperinvalmistusprosessi käyttää paljon vettä (nykyään n. 5-10 m 3 /paperitonni) Vettä voi kierrättää eri puolilla prosessia, kunhan se pysyy riittävän puhtaana liuennut orgaaninen aine kasaantuu Puhdas vesi maksaa Prosessi mallinnettu käyttäen VTT:n Balasprosessisimulaattoria (http://balas.vtt.fi/) Miten muotoilla optimointitehtävä?
Vesikiertojen optimointi Tavoitteena minimoida prosessiin tarvittava puhdas vesi Objektifunktio: minimoidaan puhtaan veden määrä Rajoitteet liuenneen orgaanisen aineen määrä paperikoneen viiravedessä liuenneen orgaanisen aineen määrä valkaisuun menevässä massassa Muuttujat: 5 splitteriä ja 3 venttiiliä
Vesikiertojen optimointi Käytännössä siis annetaan orgaanisen aineen pitoisuuksille ylärajat minimoidaan veden kulutus (yksi objektifunktio) Miten määrittää ylärajat? perustuen insinööritietoon ja nykytekniikkaan entäpä, jos rajoja relaksoitaisiin hieman? Monitavoitteinen muotoilu, jossa pitoisuusrajoitteet myös objektifunktioina (3)
Esimerkki 3: Kemiallinen erotusprosessi Tarkastellaan kromatografiaan perustuvaa kemiallista erotusprosessia Käytetään moniin tärkeisiin erotusprosesseihin (mm. sokeri-, petrokemian- ja lääketeollisuudessa) Perustuu eri kemiallisten komponenttien nopeuseroon nesteessä * http://www.pharmaceutical-technology.com
Adapted from Y. Kawajiri, Carnegie Mellon University Kromatografia (yksi kolumni) Liuotin Syöte (2 komponentin sekoitus) 1. 5. 3. 2. 4. 2. Uutto Syöttö 1. Alkutila tuotteen poisto kolumni täytetään liuottimella Pumppu Kromatografinen kolumni (astia täynnä adsorboivan aineen partikkeleita)
Desorbent Adapted from Y. Kawajiri, Carnegie Mellon University Prosessin simulointi Feed Askel Kierros Desorbent Feed Desorbent Desorbent Desorbent Feed Desorbent Feed Desorbent Feed Feed Feed 910 612 78 111 23 45 13 Feed Desorbent 14 15 Feed Desorbent 16 Liquid Flow 17 Liquid Flow Extract Raffinate Raffinate Extract Raffinate Extract Extract Raffinate Extract Raffinate Extract Raffinate Raffinate Extract Raffinate Extract Raffinate Extract November 11, 2009 Bergische Universität Wuppertal
Kemiallinen erotusprosessi Syöte- ja poistovirtojen paikkaa vaihdetaan säännöllisin väliajoin (askelaika) Säätö muuttujat askelaika virtausnopeudet
Kemiallinen erotusprosessi Tyypillisesti prosessi optimoidaan maksimoimalla tuottofunktio Tuottofunktion muodostaminen ei ole helppoa Monitavoitteinen muotoilu maksimoi prosessin läpi menevä ainemäärä minimoi käytetyn liuottimen määrä maksimoi tuotteen puhtaus maksimoi erotetun tuotteen määrä Mahdollistaa joustavamman tarkastelun ja paljastaa eri tavoitteiden vaikutukset ratkaisuun
Mitä tarkoittaa tehtävän ratkaiseminen? Tavoitteena löytää paras kompromissi Mahdollisia kompromisseja paljon, jopa ääretön määrä Perusidea: jos halutaan parantaa jotain tavoitetta, niin jostain joudutaan tinkimään
Optimaalisuus usealle tavoitteelle Optimoitavat tavoitteet ristiriitaisia ei yhtä optimaalista ratkaisua vrt. yhden objektifunktion optimointiin Kompromissi Optimaalisia ratkaisuita potentiaalisesti äärettömän paljon
Monitavoiteoptimointitehtävä Objektifunktiot, k kappaletta ( k > 1) erikoistapaus: kaksi objektifunktiota pystytään havainnollistamaan vektoreita objektiavaruudessa kun dimensio on 2 tai 3 Muuttujat: kontrolloidaan ratkaisua Rajoitteet: kuten yksitavoitteisissa optimointitehtävissä Sallittu alue S: koostuu pisteistä, jotka toteuttavat kaikki rajoitteet
Matemaattinen muotoilu Vektoriarvoinen objektifunktio Objektivektori Sallitun alueen kuva-avaruus
Optimaalisuus: objektiavaruus f 2 min Z = f(s) Parhaat arvot alhaalla ja vasemmalla f 1 min
Optimaalisuus Mitkä pisteet ovat optimaalisia? Miten ne löydetään?
Optimaalisuus: objektiavaruus f 2 min Z = f(s) Parhaat arvot alhaalla ja vasemmalla f 1 min
Pareto-optimaalisuus (PO) Matemaattinen määritelmä: Toisin sanoen: piste on Pareto-optimaalinen, jos ei ole toista sallittua pistettä, joka antaa vähintään yhtä hyvät arvot kaikille objektifunktioille ja ainakin yhdelle paremman Huomaa: Kaikki Pareto-optimaaliset pisteet ovat matemaattisesti yhtä hyviä
Miten valita paras PO-ratkaisu? Kaikki PO-ratkaisut matemaattisesti yhtä hyviä vrt. esim. tason vektorien järjestäminen PO-ratkaisuja mahdollisesti äärettömän monta Tarvitaan lisätietoa liittyen tehtävään, jota ollaan ratkaisemassa
Päätöksentekijä Decision maker (DM) Henkilö (tai henkilöt), joka on asiantuntija ratkaistavan tehtävän alalla Kykenee antamaan tietoa tavoitteisiin liittyvistä paremmuussuhteista kykenee esim. vertailemaan PO-ratkaisuja Ei tarvitse olla ammattilainen optimoinnin alalla Auttaa parhaan PO-ratkaisun (kompromissin) löytämisessä