MAA8 Juuri- ja logaritmifunktiot 5.4.0 Jussi Tyni. a) Derivoi f ( ) 3e 5 Mikä on funktion f () = ln(5 ) 00 määrittelyjoukko. c) Derivoi g( t) 4ln( t t ). Käyrälle g( ) e 8 piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä tangentin yhtälö. 3. Ratkaise yhtälöt: a) log 8 3 3 3 4 e 4. a) Ratkaise yhtälö Derivoi f ( ) 5. Määritä funktion f ( ) ln pienin arvo. 6. Länsi itä-suuntaisen päätien varressa on km etäisyydellä toisistaan talot A ja B. Tismalleen puolesta välistä km matkaa lähtee,5 km mittainen sivutie etelään, jonka päässä on talo C. Suunnittele sivutien varressa sijaitseva paikka (ei voi olla sivutien päissä, eli risteyksessä tai talon C luona) muuntajalle, josta taloihin A, B ja C luotisuoraan maahan kaivamalla vedettävien sähkölinjojen yhteiskustannukset ovat mahdollisimman halvat. Tien varteen kaivaminen maksaa 8 /m ja metsään kaivaminen /m. Kuva tehtävään 6
MAA8 Juuri- ja logaritmifunktiot 5.4.0 Jussi Tyni 7. Ravintoliuoksessa olevien bakteerien lukumäärää N(t) ajan funktiona kuvaa yhtälö at N t) N0e (, missä t on aika sekunteina ja a on juuri tämän bakteerikannan lisääntymiseen liittyvä vakio. N 0 on bakteerien määrä alkuhetkellä. Liuoksessa olevien bakteerien määrän todettiin olevan aluksi 3000 kpl ja 4 h 40 min myöhemmin 9 000 kpl. Määritä bakteerikannan lisääntymiseen liittyvä vakio a. Määritä paljonko bakteereja on 0 h kuluttua. Määritä mikä on bakteerikannan kasvunopeus 5 tunnin kuluttua. 8. a) Tutki onko funktio g( t) ln( t ) ln t, missä t 0 monotoninen (eli pelkästään kasvava tai pelkästään vähenevä). Määritä funktion f ( ) 9, ja 3 3 suurin ja pienin arvo annetulla välillä. Piirrä funktion kulusta mallikuva annetulle välille. *********************************************************************************** BONUSTEHTÄVÄ +3p: Onko yhtälö 7 0 5 tosi? Perustele vastauksesi matemaattisesti!!! OTA TÄMÄ KOEPAPERI MUKAASI! OIKEAT VASTAUKSET LÖYTYVÄT TÄMÄN PÄIVÄN AI- KANA (n. klo :30 jälkeen) NETISTÄ OSOITTEESTA: http://jussityni.wordpress.com/
MAA8 Juuri- ja logaritmifunktiot 5.4.0 Jussi Tyni MAA8. Ratkaisut. a) f ( ) 3e 5 f D e De e e e e 5 5 5 5 5 5 '( ) 3 3 3 53 (3 53 ) (35 ) ln(5 ) f( ) 00 on määritelty kun logaritmin ja juuren sisustat ovat positiivisia, eli 5 0 5 määritelty, kun 0 5 00 0 0 0 c) g t t t ( ) 4ln( ) 8 8t g '( t) 4 ( t) t t t t. Käyrä leikkaa y-akselia, kun =0, koska y-akseli kulkee -akselin kohdasta 0. Lasketaan leikkauspisteen y-koordinaatti sijoittamalla funktioon =0. g 0 (0) e 8 8 6 Koordinaattipiste on siis (0,-6). Derivaatta=käyrälle piirretyn tangentin kulmakerroin, joten: g '( ) e 4e => Kulmakerroin -akselin kohdassa 0 on siis 4. Nyt käytetään suoran yhtä- g löä: 0 '(0) 4e 4 y y k( ) 0 0 y ( 6) 4( 0) y 6 4 y 4 6 3. a) 3 log3 8 3 3 8 7 8 9 3 3 3 3 e 4 e ln ln e ln ( 3) ln e ln 3 ln ln 3 ln 3 4. a) yhtälö on määritelty, kun juuren sisusta on positiivien tai nolla, ja juuren vastaus on positiivinen tai nolla, eli: 0 0 Nyt uskaltaa korottaa puolittain toiseen. () ( ) 4 4 0 5 3
MAA8 Juuri- ja logaritmifunktiot 5.4.0 Jussi Tyni Nollakohdat: 5 3 0,7 5 3 5 3 4,3 ei sovi määrittelyjoukkoon, joten f ( ) f '( ) D D ( ) 4 3 5 3 0,7 on ainoa ratkaisu. 3 lavennetaan eka murtol ( ) 4 6 3 3 3 3. 5. f ( ) ln Pienin arvo derivaatan nollakohdasta: f '( ) D ln D ln ln ln Derivaatta on nolla, kun ln 0 ln :, 0 ln ln ln 0 Tähän ratkaisu haarukoimalla tai graafisella laskimella piirtämällä kuvaaja. Yhtälöön voi sijoittaa vain positiivisia :n arvoja (koska logaritmi). Kun kokeillaan ensin pieniä, ykköstä pienempiä arvoja (0,; 0,; 0,3 ) yhtälöön, huomataan, että mitä lähemmäs ykköstä mennään, sen lähemmäs yhtälön arvot lähestyvät nollaa. Mitä lähemmäs menee 0, sen kauempana yhtälön arvot ovat nollasta. Kun sijoitetaan =, yhtälön arvoksi tulee. Ja kun sijoitetaan ykköstä isompia :n arvoja (,5; ; 3; 4; ) yhtälön arvot lähtevät taas etääntymään nollasta enemmän ja enemmän.
MAA8 Juuri- ja logaritmifunktiot 5.4.0 Jussi Tyni Derivaatta saa siis aina vain positiivisia arvoja => Alkuperäinen funktio on kaikilla :n arvoilla kasvava. Sillä ei siis ole paikallista minimikohtaa (eikä paikallista maksimiakaan). Voi ajatella, että alkup. funktio lähestyy minimiarvoaan, kun lähestyy nollaa. ( ei voi olla nolla, koska logaritmi) 6. Kulufunktio: merkataan :ksi muuntajan ja päätien välinen pätkä, joten voidaan merkitä, että muuntajan ja talon C välinen pätkä on 500-. Merkataan y:ksi suorat linjat muuntajilta taloihin A ja B. Nyt: y 000 y 000000 Kulut: K ( ) (500 ) 8 000000 000 8 000000 K'( ) 8 000000 Kulujen ääriarvot derivaatan nollakohdista: K'( ) 8 0 000000 8 000000 000000 8 000000 () määritelty, kun 0 4 000000 000000 6 6 8 000000 000000 05 6 6000000 6000 000000 6 05 05 000 05 Tuossa neg. vastaus on teoreettinen, koska ne on määrittelyjoukossa poissuljettu. on noin 390,4. Tutkitaan merkkikaaviolla, onko 390,4 min. vai ma. kohta. 390,4 K'() - + K() Tässä derivaatan K () merkkiä on tutkittu kokeiluarvoilla. K (380) = -0, ja K (400) = 0, Ollaan siis löydetty kulufunktion K minimikohta, kun (matka päätieltä muuntajalle) on 390,4 m. Sijoitetaan siis muuntaja 390,4 metrin päähän päätiestä.
MAA8 Juuri- ja logaritmifunktiot 5.4.0 Jussi Tyni 7. a) 4h40min =80 min = sek. N a () 9000 3000 e : 3000 a a 3 ln ln ln e e a e a 0h = 600 min = 36000 sek 36000 36000 68 N( 36000) 3000e 3000e 3000e 3000 3 3600kpl c) 5 h =900 min. = 54000 sek. N ( t) D3000e t N(54000) 3000 e 3000 e 54000 t 6,7 Siis bakteerikannassa kasvua 6,7 bakteeria sekunnissa! 360 68 360 8. a) g( t) ln( t ) ln t, missä t 0 t( t) g'( t) t t t t t t Tutkitaan derivaatan nollakohtia: t t 0. Derivaatta ei voi olla nolla, koska kun :stä jaetaan millä tahansa luvulla, siitä ei voi tulla nollaa. Eli derivaatan merkki ei muutu => Derivaatta, eli alkuperäisen funktion muutosnopeus on aina joko positiivinen tai negatiivinen. Tutkitaan derivaatan merkkiä: t t t t t tai t t 0 ( ) 0 0 0 ylöspäinaukeava paraabeli - 0 osoittaja + + + + nimittäjä + - + + koko jakolasku + - + +
MAA8 Juuri- ja logaritmifunktiot 5.4.0 Jussi Tyni Merkkikaaviosta nähdään, että kun >0 jakolasku saa vain positiivisia arvoja. Derivaatta on t t siis aina positiivinen alkup. funktion määrittelyjoukossa >0. => Alkuperäinen funktio on siis aidosti kasvava määrittelyjoukossaan. f ja ( ) 9, 3 3 f '( ) 9 Derivaatan nollakohdat: 0 9 9 () määritelty, kun 0 3 9 9 => 9 9 3 9 9 3, 3, ei käy vastaukseksi, koska ei kuulu juuriyhtälön määrittelyjoukkoon. Derivaatalla on siis vain yksi nollakohta, n.. Ääriarvot derivaatan nollakohdista, merkkikaaviolla onko min vai ma. Kokeiluarvot: f ()=0, ja f (,5)=-0,5, f'() + - f() On löydetty siis funktion maksimikohta =,. Tällöin funktion arvo f(,)=4,4. Funktion ääriarvot voivat lisäksi löytyä tarkasteluvälin päätepisteistä. Lasketaan siis f(-3)=-3 ja f(3)=3. Maksimikohta on siis =3 ja maksimiarvo on f(3)=3.