The Plant Cell / Fotosynteesi



Samankaltaiset tiedostot
2.2. Fotosynteesipotentiaalin vaihtelu

Miten kasvit saavat vetensä?

Miten kasvit saavat vetensä?

Solun toiminta. II Solun toiminta. BI2 II Solun toiminta 7. Fotosynteesi tuottaa ravintoa eliökunnalle

Nimi sosiaaliturvatunnus. Vastaa lyhyesti, selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan

LUKIOLAISTEN VAIHTOEHTOISET KÄSITYKSET

Solun toiminta. II Solun toiminta. BI2 II Solun toiminta 6. Kasvien vesi- ja ravinnetalous

GLYKOLYYSI! Glykolyyttinen metaboliareitti! LUENNON RAKENNE! ENERGIA HIILIHYDRAATEISTA. ATP:n ANAEROBINEN JA AEROBINEN UUDELLEENMUODOSTUS

Teesi, antiteesi, fotosynteesi

Oksidatiivinen fosforylaatio = ATP:n tuotto NADH:lta ja FADH2:lta hapelle tapahtuvan elektroninsiirron ja ATP-syntaasin avulla

Soluhengitys + ATP-synteesi = Oksidatiivinen fosforylaatio Tuomas Haltia Elämälle (solulle) välttämättömiä asioita ovat:

GLYKOLYYSI! Riikka Kivelä, LitT Tutkijatohtori Wihurin tutkimuslaitos ja Translationaalisen syöpäbiologian tutkimusohjelma Helsingin yliopisto

VIHREIDEN KASVIEN FOTOSYNTEESI

Solun toiminta. II Solun toiminta. BI2 II Solun toiminta 8. Solut tarvitsevat energiaa

Nimi sosiaaliturvatunnus. Vastaa lyhyesti, selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan

Lääketieteen ja biotieteiden tiedekunta Sukunimi Bioteknologia tutkinto-ohjelma Etunimet valintakoe pe Tehtävä 1 Pisteet / 15

NITRIFIKAATIOBAKTEERIEN TOIMINTA

FNR-like-proteiinin sijainti ja toiminta kasvien kloroplasteissa

Aikaerotteinen spektroskopia valokemian tutkimuksessa

Kuva 1. Korento lehdellä (Miettinen, A., 2006).

Vitamiinien puutostilat: Christian Ejkman ( ) havaitsi ensimmäisenä vuonna 1888, että jonkin ravintotekijän puute aiheutti kanoilla

Helsingin yliopisto/tampereen yliopisto Henkilötunnus - Biokemian/bioteknologian valintakoe Etunimet Tehtävä 5 Pisteet / 20

PROTEIINIEN MUOKKAUS JA KULJETUS

Käytetään nykyaikaista kvanttimekaanista atomimallia, Bohrin vetyatomi toimii samoin.

Liikunta. Terve 1 ja 2

Ma > GENERAL PRINCIPLES OF CELL SIGNALING

KEMIA HYVÄN VASTAUKSEN PIIRTEET

Vastaa lyhyesti selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan

Kvantittuminen. E = hf f on säteilyn taajuus h on Planckin vakio h = 6, Js = 4, evs. Planckin kvanttihypoteesi

Solun perusrakenne I Solun perusrakenne. BI2 I Solun perusrakenne 4. Entsyymit ovat solun kemiallisia robotteja

Atomien rakenteesta. Tapio Hansson

2.1 Solun rakenne - Lisämateriaalit

Luku 14: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi

3.1 Varhaiset atomimallit (1/3)

12. Amiinit. Ammoniakki 1 amiini 2 amiini 3 amiini kvarternäärinen ammoniumioni

8. Alkoholit, fenolit ja eetterit

Tehtävä 1. Valitse seuraavista vaihtoehdoista oikea ja merkitse kirjain alla olevaan taulukkoon

Luennon 5 oppimistavoitteet. Soluseinän biosynteesi. Puu Puun rakenne ja kemia. Solun organelleja. Elävä kasvisolu

KE Orgaaninen kemia 1

ENTSYYMIKATA- LYYSIN PERUSTEET (dos. Tuomas Haltia)

Biomolekyylit ja biomeerit

Tuma - nucleus. Tumahuokonen nuclear pore samanlaisia kasveilla ja eläimillä. Tuman rakenne. Solubiologian luennot 2003, kasvitiede

Hiilen ja vedyn reaktioita (1)

Kuva 1: Yhdisteet A-F viivakaavoin, tehtävän kannalta on relevanttia lisätä näkyviin vedyt ja hiilet. Piiroteknisistä syistä tätä ei ole tehty

Laserin käyttö eläinlääkinnässä

elektroni = -varautunut tosi pieni hiukkanen nukleoni = protoni/neutroni

vi) Oheinen käyrä kuvaa reaktiosysteemin energian muutosta reaktion (1) etenemisen funktiona.

DEE Aurinkosähkön perusteet

Määritelmä, metallisidos, metallihila:

MUUTOKSET ELEKTRONI- RAKENTEESSA

Elintoimintojen ylläpito

Luku 13: Elektronispektroskopia. 2-atomiset molekyylit moniatomiset molekyylit Fluoresenssi ja fosforesenssi

Biokemian perusteet : Hemoglobiini, Entsyymikatalyysi

Siirtymämetallien erityisominaisuuksia

Aurinko. Tähtitieteen peruskurssi

Prosessimittaukset. Miksi prosessikierroista tehdään mittauksia

CHEM-A1200 Kemiallinen rakenne ja sitoutuminen

Solun perusrakenne I Solun perusrakenne. BI2 I Solun perusrakenne 3. Solujen kemiallinen rakenne

Lasku- ja huolimattomuusvirheet ½ p. Loppupisteiden puolia pisteitä ei korotettu ylöspäin, esim. 2 1/2 p = 2 p.

SMG-4450 Aurinkosähkö

sosiaaliturvatunnus Tehtävissä tarvittavia atomipainoja: hiili 12,01; vety 1,008; happi 16,00. Toisen asteen yhtälön ratkaisukaava: ax 2 + bx + c = 0;

Reaktioyhtälö. Sähköisen oppimisen edelläkävijä Empiirinen kaava, molekyylikaava, rakennekaava, viivakaava

DNA:n informaation kulku, koostumus

FNR-ISOENTSYYMIEN YLITUOTTO LITURUOHON KLOROPLASTISSA

Mind Master. Matti Vire

Nimi sosiaaliturvatunnus

Revontulet matkailumaisemassa

Erilaisia soluja. Siittiösolu on ihmisen pienimpiä soluja. Tohvelieläin koostuu vain yhdestä solusta. Veren punasoluja

KOTONA, KOULUSSA JA KAUPUNGISSA

Kappale 1. Peruskemia

Orgaanisten yhdisteiden rakenne ja ominaisuudet

Nimi sosiaaliturvatunnus. Vastaa lyhyesti, selkeällä käsialalla. Vain vastausruudun sisällä olevat tekstit, kuvat jne huomioidaan

8. Alkoholit, fenolit ja eetterit

SOLUN AINEENVAIHDUNTA Nina Peitsaro Helsingin yliopisto Lääketietellinen tiedekunta/biokemia

2. Täydennä seuraavat reaktioyhtälöt ja nimeä reaktiotuotteet

4 ev OY/MFP R Materiaalifysiikan perusteet P Ratkaisut 6, Kevät 2017

Sukunimi Etunimet Tehtävä 1 Pisteet / 20

Reaktiosarjat

Ekosysteemiekologia tutkii aineen ja energian liikettä ekosysteemeissä. Häiriö näissä liikkeissä (jotakin on jossakin liikaa tai liian vähän)

Hapettuminen ja pelkistyminen: RedOx -reaktiot. CHEM-A1250 Luento

Kemian syventävät kurssit

Ohjeita opetukseen ja odotettavissa olevat tulokset

Hapettuminen ja pelkistyminen: RedOx -reaktiot. CHEM-A1250 Luento

Kierrätämme hiiltä tuottamalla puuta

BI4 IHMISEN BIOLOGIA

Erilaisia entalpian muutoksia

ELEC-C2210 Molekyyli- ja solubiologia

Johdantoa. Kemia on elektronien liikkumista/siirtymistä. Miksi?

YLEINEN KEMIA. Alkuaineiden esiintyminen maailmassa. Alkuaineet. Alkuaineet koostuvat atomeista. Atomin rakenne. Copyright Isto Jokinen

2.1 Sähköä kemiallisesta energiasta

ATOMIN JA IONIN KOKO

Hapetus-pelkistymisreaktioiden tasapainottaminen

Laatua raaka-aineiden jalostamiseen Elintarvike- ja poroalan koulutushanke

EPIONEN Kemia EPIONEN Kemia 2015

d) Klooria valmistetaan hapettamalla vetykloridia kaliumpermanganaatilla. (Syntyy Mn 2+ -ioneja)

Vanilliini (karbonyyliyhdiste) Etikkahappo (karboksyyliyhdiste)

(Huom! Oikeita vastauksia voi olla useita ja oikeasta vastauksesta saa yhden pisteen)

Fysiikka 8. Aine ja säteily

Bioteknologian tutkinto-ohjelma Valintakoe Tehtävä 3 Pisteet / 30

REAKTIOT JA TASAPAINO, KE5 KERTAUSTA

Transkriptio:

The Plant Cell / Fotosynteesi Solubiologian luennot 2003, kasvitiede Valoreaktiot Klorofyllimolekyylit ja muut pigmenttiaineet etenkin karotenoidit muodostavat valohaavin (200-300 pigmenttimolekyyliä), jonka molekyylit pyydystävät säteilyn energiaa. Valokvantin eli fotonin osuessa pigmenttimolekyyliin yksi sen elektroneista virittyy eli muuttuu korkeaenergiseksi = siirtyy enemmän energiaa sisältävälle orbitaalille eli kauemmaksi atomiytimestä Korkeaenergisestä elektronista energia siirtyy helposti naapurimolekyyliin, jonka elektroni vuorostaan virittyy jne. Lopulta energia välittyy reaktiokeskuksena toimivalle klorofyllimolekyylille, josta se siirtyy elektroninsiirtäjäentsyymille. Fotosynteesissä tuotetaan auringonvalon avulla orgaanisia yhdisteitä Fotosynteesissä valoenergia muuttuu kemialliseksi energiaksi ja sen avulla CO 2 pelkistyy ja yhtyy H 2 O:stä peräisin olevan vedyn kanssa glukoosiksi. 6 H 2 O + 6 CO 2 C 6 H 12 O 6 + 6O 2 Tämä tapahtuu pitkässä reaktioketjussa, jossa energia liitetään vähitellen orgaanisen aineeseen solun rakenteita vahingoittamatta. Yhteyttämisen vaiheet jaetaan valoreaktioihin (> O 2, NADPH, ATP) & hiilen pelkistykseen, Calvinin sykli (pimeäraktioihin). Valoreaktiot tylakoidikalvoilla Jos väärä aallonpituus niin valokvantti kulkee pigmentin läpi ilman että sitä absorboidaan. Miksi klorofylli on vihreää? Jos allonpituus on oikea, oikea määrä energiaa niin valokvantti absorboidaan ja elektroni virittyy (siirtyy uudelle orbitaalille) 1

Lateraalinen heterogeenisuus Virittynyt tila on epästabiili ja se voi stabiloitua eli elektroni palautuu perustasolleen yksinkertaisimmillaan lämpönä tai emittoitumalla (fluoresenssin avulla) non-appressed region of grana appressed grana region Elektroni voi myös stabiloitua siten, että energia siirtyy kokonaan toiselle läheiselle molekyylille. Tällä menetelmällä (energy transfer) absorboitu valoenergia siirtyy pigmenttimolekyyliltä toiselle. Lopuksi virittynyt molekyyli luovuttaa elektronin elektronin vastaanottajamolekyylille. non-appressed region Pääasiallisena antennapigmentteinä kasveilla toimivat klorofyllit. Chl a on sekä antennoissa että reaktiokeskuksissa. Chl b pelkästään antennoissa. Myös karotenoideja on antennoissa. Tyypillisesti kasvien antennakomplekseissa karotenoidi / totaali klorofylli suhde = 0.5 Kaikki klorofyllimolekyylit tylakoideissa ovat liittyneinä spesifisiin proteiineihin. Kaikki nämä proteiinit koodataan tumassa ja kuljetetaan kloroplastiin. Kun chl liittyy proteiiniin sen absorbtiomaksimi siirtyy kohti punaista spektrin aluetta (alhaisempi energia). Lateraalinen heterogeenisuus Komponentit Tylakoidit % Graana PSII 85 15 PSI 10 90 Cyt b 6 f kompleksi 50 50 LHC-II 90 10 ATP syntetaasi 0 100 plastosyaniini 40 60 Strooma Light-harvesting complex II (LHC II) Fotosynteesin valoreaktiot Pääasiallinen pigmenttejä sitova proteiini kloroplastin kalvoissa on LHC- II = light-harvesting complex II (eli fotosynteesissä valoa keräävä pigmenttiproteiini). On arvioitu, että tämä proteiini muodostaa määrällisesti noin puolet kaikista tylakoidien proteiineista. thylakoid membrane 2

Kloroplastit kykenevät vaikuttamaan LHC-II:n liittymistä PSII:een ja siten säätelemään valokvanttien jakautumista PSI ja PSII kesken. Kun PSII saa enemmän valoa kuin PSI plastokinoni (liikkuva elektronikantaja PSI ja PSII välillä) muuttuu pääosin pelkistyneeksi, jolloin LHC-II kinaasi aktivoituu ja fosforyloi LHC-II, jonka seurauksena LHC-II liikkuu pois grana-alueelta > valon absorbtio PSII:een vähenee. PSI:n aktivaation seuraksena plastokinoni muuttuu hapettuneemmaksi, LHC-II kinaasi muuttuu vähemmän aktiiviseksi ja fosfataasi defosforyloi LHC-II:n, joka liikkuu grana-alueelle > valon absorbtio PSII:een lisääntyy. LHC-II:n aktiivisuutta säädellään ns. feedbacksysteemillä Ei-syklinen elektronin siirto tuottaa O 2, ATP ja NADPH Valossa PSII tuottaa vahvan hapettimen P680 + ja suhteellisen pysyvän pelkistimen plastosemikinonin (Q A- ). P680 + ottaa elektronit vedeltä ja plastosemikinoni taas pelkistysvoimansa ansiosta siirtää elektronit useiden elektronikantajien kautta P700:lle. Vapautuneen energian avulla muodostetaan protonigradientti, jota käytetään ATP:n synteesiin. pelkistin hv> vahva hapetin Typen assimilaatio Tioredoksiinin pelkistys +H + > NADPH vahva pelkistin hv>hapetin PC = plastocyanin PSI ja PSII PSI on korkeamman aallonpituuden reaktiokeskus P700 on tehokkaampi pitkässä punaisessa valossa ja PSII toimii tehokkaamin punaisessa valossa johtuen alhaisemman aallonpituuden reaktiokeskuksesta P680. Jotta fotosynteesi olisi tehokasta näiden reaktiokeskusten täytyy toimia yhdessä. Kloroplasteissa toimii sekä ei-syklinen että syklinen elektroninsiirtoketju. Fotosysteemi II:n (PSII) reaktiokeskus PSII sisältää elketroninsiirtoon liittyvien komponenettien lisäksi yli 20 proteiinia (D1 ja D2 sitovat elektronin siitoon liittyviä prosteettisia ryhmiä, CP43 ja CP47 sitovat chl a antenna pigmenttejä ja jotkut liittyvät veden hapetukseen). Kloroplasteissa on sekä syklinen että ei-syklinen elektroninsiirtoketju PSII:n reaktiokeskuksen D1-proteiini aminopää syklinen ei-syklinen karboksyylipää 3

Sykliseen elektroninsiirtoketjuun liittyy vain PSI ja se tuottaa ATP:tä. ilmarako päältä ilmarako lehden poikkileikkauksessa Syklinen reitti tarvitsee kofaktorin, joka mitä todennäköisimmin on ferredoksiini. Valossa PSI pelkistää ferredoksiinin, joka (sen sijaan että siirtäisi elektronin NADP:lle) reagoi ferredoksiini-plastokinoni oksidoreduktaasin kanssa, jolloin elektronit siirtyvät kinoneille. Cyt b 6 f hapettaa plastokinonin ja protonin kuljetus kalvon läpi mahdollistuu. ulkokynsi viherhiukkanen tuma ulkosarana ulkoeteinen keskirako sisäeteinen sisäkynsi sisäsarana huulisolu ilmalokero Valosta riippuvaa ATP-synteesiä kloroplasteissa kutsutaan fotofosforylaatioksi (muistuttaa mitokondrioiden oksidatiivista fosforylaatiota) ATPsyntetaasi CF 0 toimii protonikanavana, koostuu alayksiköistä I-IV CF 1 -kompleksi sisältää ATP fosfataasiaktiivisuuden Calvinin kierto / C 3 kasvit Useimmat kasvit tuottavat 3-hiiliatomisen yhdisteen 3- fosfoglyseraatin (3-PGA) ensimmäisenä pysyvänä tuotteena monivaiheisessa reaktiosarjassa, jossa CO 2 muutetaan hiilihydraateiksi. CO 2 reagoi ensin 5-hiilisen yhdisteen ribuloosi-1,5- bisfosfaatin (RuBP) kanssa, jota reaktiota katalysoi ribuloosi bisfosfaatti karboksylaasi / oksygenaasi(rubisco). Syntyy 6-hiili-atominen välituote, joka heti pilkotaan kahdeksi PGAmolekyyliksi. Ilmaraot (stoma, stomata) ovat kasvin epidermisolukossa olevia pieniä aukkoja, joita reunustavat huulisolut. Niitä on yleensä enemmän lehtien ala- kuin yläpinnalla. Ilmarakojen avautuminen ja sulkeutuminen riippuvat huulisolujen nestejännityksestä eli turgorista. Ilmaraot säätelevät kasvin kaasujen vaihtoa ja veden haihdutuksen määrää, joten niillä on tärkeä merkitys kasvien elintoiminnoille. Huulisoluihin liittyvien apusolujen sijainnin ja lukumäärän mukaan erotetaan erilaisia ilmarakotyyppejä / laitteita huulisolut ilmarako epidermisolut Calvinin sykli Rubisco on ensimmäinen hiilen sidonnasta vastaava entsyymi ja se on yleisin liukoinen proteiini kloroplastissa (ja ehkä biosfäärissä). Rubisco koostuu 8 suuresta L- (large, 56 kda) ja 8 pienestä S- (small, 14 kda) alayksiköstä. L-alayksiköt koodataan kloroplastissa ja S-alayksiköt tumassa. Tumassa koodattavat ovat siis tuotava kloroplastiin, jossa ne kloroplastin stroomassa yhtyvät suuriin alayksikköihin näin muodostaen holoentsyymin. Calvinin sykli voidaan jakaa kolmeen vaiheeseen 1) karboksylaatioon, 2) pelkistykseen ja 3) regeneraatioon. Kaksivaiheinen pelkistysvaihe muuttaa 3 PGA:n trioosifosfaatiksi eli glyseraldehydi-3-fosfaatiksi (GAP). 4

Calvinin syklin pelkistymisvaihe, jossa 3-PGA:n karboksyyliryhmä pelkistyy aldehydiksi Glyseraldehydi-3- fosfaatti (GPA) Valoon liittyvät kovalenttiset muutokset säätelevät Calvinin syklin toimintaa Pelkistynyttä ferredoksiinia tuotetaan fotosynteesin valoreaktioissa ja se reagoi hapettuneen tioredoksiini f tai m kanssa ferredoksiini-tioredoksiini-reduktaasi (FTR) entsyymin katalysoimana. Pelkistynyt tioredoksiini voi taas puolestaan pelkistää kohdeentsyymien disulfidi-siltoja. Pimeässä entsyymien sulfhydryyli-ryhmät (SH) hapettuvat. Eli entsyymit aktivoituvat pelkistyessään valossa ja deaktivoituvat hapettuessaan pimeässä. Valon vaikutuksesta pelkistynyt tioredoksiini inhiboi katabolisia reaktioita (jotka tapahtuvat pääsääntöisesti pimeässä esim oksidatiivinen pentoosi fosfaatti reitti). Calvinin sykli Syklin regeneraatiovaiheessa palautetaan RuBP (5- hiilinen sokeri) = useita reaktioita (10 entsyymiä, kts. kaavakuva). Syklin 13 entsyymiä sijaitsevat stroomassa. Rubiscon lisäksi syklissä on kaksi muuta entsyymiä (sedoheptuloosi-1,7-bisfosfataasi ja fosforibulokinaasi). Monet syklin entsyymeistä ovat yhteisiä glykolyyttisen reitin kanssa. Koska sekä hiilihydraattien synteesiin ja hajotukseen tarvittavia entsyymejä on läsnä kloroplastissa, on tärkeää, että synteesi koneisto on päällä ja hajottava koneisto pois päältä valossa. Rubisco voi toimia myös oksygenaasina Ribuloosi-1,5-bisfosfaatti karboksylaasi / oksygenaasi Substraattina on tällöin happi (eikä hiilidioksidi). Hapen reagoidessa ribuloosi-1,5-bisfosfaatin (RuBP) kanssa syntyy 3-PGA ja 2-fosfoglykolaatti (2-hiilinen yhdiste). Kaksi substraattia hiilidioksidi ja happi kilpailevat samasta entsyymin aktiivisesta kohdasta. Entsyymin aktiivisuus näiden substraattien suhteen riippuu paljon ympäristössä olevan hapen ja hiilidioksidin määrästä. Karboksylaatio tapahtuu kolme kertaa nopeammin kuin oksygenaatio, mutta ilmassa on 600 molekyyliä happea jokaista hiilidioksidi-molekyyliä kohden. Oksygenaasi aktiivisuudella onkin huomattavaa vaikutusta hiilidioksidin sitomistehoon. Joissakin tapauksissa (C3-kasvit) 50 % fotosynteesissä sidotusta hiilidioksidista menetetään fotorespiraation takia. Valo säätelee Calvinin syklin toimintaa Muutokset strooman ph:ssa ja magnesium-ionien konsentraatiot ovat tärkeitä säätelijöitä. Rubiscon aktivaatioon liittyy karbamaatti-magnesium kompleksin muodostuminen ja hiilidioksidi. Strooman magnesium konsentraatio on myös tärkeä. Magnesiumin konsentraatio stroomassa lisääntyy 1-3 mm > 3-6 mm valossa. Kun valon vaikutuksesta protoneita kuljetetaan tylakoidikalvojen lumeniin niin magnesium-ioneja tuodaan stroomaan kompensoimaan positiivisten varausten menetystä. Fruktoosi-1,6-bisfosfataasi ja vähäisemmässä määrin myös muut entsyymit aktivoituvat valossa seurauksena stroman ph:n muutoksiin. C 3 -kasvi C 4 -kasvi esimerkiksi ananas, maissi ja monet trooppiset kasvit 5

C4-fotosynteesi C3, C4 ja CAM-kasvit Esim. soijapavulla jopa 50 % sidotusta hiilestä menetetään fotorespiraation takia > C4 fotosynteesin kehittyminen eli Rubisco / Calvinin sykli kauemmaksi happea vapauttavasta fotosysteemistä http://www.mhhe.com/biosci/esp/2001_gbio/folder_structure/ce/m6/s5/ C3 / C4-kasvit C3- kasveilla valoreaktiot (happen vapautuminen) ja Calvinin sykli tapahtuvat samoissa mesofyllin soluissa > fotorespiraatio C4-kasveilla hiilidioksidi sidotaan mesofyllin soluissa ja kuljetetaan jännetupen soluihin, joissa Calvinin sykli tapahtuu. > ei vaaraa fotorespiraatiosta C4-kasvit toimivat paremmin korkeissa lämpötiloissa ja kuivilla mailla hirssipeltoa C4- kasvi http://omega.dawsoncollege.qc.ca/ray/photo/phresp.htm CAM = Crassulacean Acid Metabolism C4- kasveja muistuttava metaboliareitti, jossa CAM- reaktiot ovat ajallisesti erillään C3-reaktioista. Ilmaraot ovat yöllä auki ja päivällä kiinni. Yöllä hiilidioksidi liittyy PEP > oksaloetikkahappo > omenahappo, joka varastoituu vakuoliin. Päivällä omenahppo otetaan vakuolista, hiilidioksidi vapautuu ja menee Calvinin sykliin. 6