Sini- ja kosinifunktio

Samankaltaiset tiedostot
Matemaattisen analyysin tukikurssi

Äärettömät raja-arvot

Olkoon funktion f määrittelyjoukkona reaalilukuväli (erityistapauksena R). Jos kaikilla määrittelyjoukon luvuilla x 1 ja x 2 on voimassa ehto:

Ratkaise tehtävä 1 ilman teknisiä apuvälineitä! 1. a) Yhdistä oikea funktio oikeaan kuvaajaan. (2p)

Matematiikan tukikurssi

Matematiikan tukikurssi

Kaikkia alla olevia kohtia ei käsitellä luennoilla kokonaan, koska osa on ennestään lukiosta tuttua.

Fysiikan matematiikka P

Radiaanit. Kun kulman α suuruus nyt mitataan tämän kaaren pituutena, saadaan kulmaan arvo radiaaneissa.

Reaaliluvuista. Yleistä funktio-oppia. Trigonometriset funktiot. Eksponentti- ja logaritmifunktiot. LaMa 1U syksyllä 2011

Johdatus reaalifunktioihin P, 5op

Matematiikan peruskurssi 2

0. Kertausta. Luvut, lukujoukot (tavalliset) Osajoukot: Yhtälöt ja niiden ratkaisu: N, luonnolliset luvut (1,2,3,... ) Z, kokonaisluvut

TRIGONOMETRISTEN FUNKTIOIDEN KUVAAJAT

Juuri 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty c) sin 50 = sin ( ) = sin 130 = 0,77

MATP153 Approbatur 1B Harjoitus 6 Maanantai

2) Kaksi lentokonetta lähestyy toisiaan samalla korkeudella kuvan osoittamalla tavalla. Millä korkeudella ja kuinka kaukana toisistaan ne ovat?

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 6: Alkeisfunktioista

LASKIN ON SALLITTU ELLEI TOISIN MAINITTU! TARKISTA TEHTÄVÄT KOKEEN JÄLKEEN JA ANNA PISTEESI RUUTUUN!

3 Derivoituvan funktion ominaisuuksia

sin x cos x cos x = sin x arvoilla x ] π

* Trigonometriset funktiot suorakulmaisessa kolmiossa * Trigonometristen funktioiden kuvaajat

Päähakemisto Tehtävien ratkaisut -hakemisto. Vastaus: a) 90 b) 60 c) 216 d) 1260 e) 974,03 f) ,48

Funktion määrittely (1/2)

Funktio 1. a) Mikä on funktion f (x) = x lähtöjoukko eli määrittelyjoukko, kun 0 x 5?

5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia. 1. Tarkastellaan väitettä

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

Derivaatan sovellukset (ääriarvotehtävät ym.)

A = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2.

1.5. Trigonometriset perusyhtälöt

x = π 3 + nπ, x + 1 f (x) = 2x (x + 1) x2 1 (x + 1) 2 = 2x2 + 2x x 2 = x2 + 2x f ( 3) = ( 3)2 + 2 ( 3) ( 3) = = 21 tosi

1.7. Trigonometristen funktioiden derivaatat

Trigonometriset funktiot 1/7 Sisältö ESITIEDOT: reaalifunktiot

l 1 2l + 1, c) 100 l=0 AB 3AC ja AB AC sekä vektoreiden AB ja

Läpäisyehto: Kokeesta saatava 5. Uusintakoe: Arvosana määräytyy yksin uusintakokeen perusteella.

l 1 2l + 1, c) 100 l=0

b) Määritä/Laske (ei tarvitse tehdä määritelmän kautta). (2p)

MS-A0102 Differentiaali- ja integraalilaskenta 1

MATEMATIIKAN PERUSKURSSI I Harjoitustehtäviä syksy Millä reaaliluvun x arvoilla. 3 4 x 2,

Matematiikan peruskurssi 2

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

Lineaarialgebra MATH.1040 / trigonometriaa

Kompleksiluvut., 15. kesäkuuta /57

MS-A0104 Differentiaali- ja integraalilaskenta 1 (ELEC2) MS-A0106 Differentiaali- ja integraalilaskenta 1 (ENG2)

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

Vinokulmainen kolmio. Hannu Lehto. Lahden Lyseon lukio

TRIGONOMETRISET JA HYPERBOLISET FUNKTIOT

Matemaattisen analyysin tukikurssi

Trigonometrian kaavat 1/6 Sisältö ESITIEDOT: trigonometriset funktiot

6 Eksponentti- ja logaritmifunktio

Perustehtävät. Kompleksitehtävät, 10/9/2005, sivu 1 / 10. Tehtävä 1. Sievennä 1.

Johdatus reaalifunktioihin P, 5op

2.2 Jatkuva funktio Funktio f(x) jatkuva pisteessä x 0, jos f on määritelty. Esim. sin x. = lim. lim. (1 x 2 /6 + O(x 4 )) = 1.

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

Testaa taitosi Piirrä yksikköympyrään kaksi erisuurta kulmaa, joiden a) sini on 0,75 b) kosini on

1.6. Yhteen- ja vähennyslaskukaavat

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,

Ratkaisut vuosien tehtäviin

Trigonometriset funktiot

Tekijä Pitkä matematiikka

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A)

Trigonometriaa ja solve-komento GeoGebralla

Yhden muuttujan reaalifunktiot

5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia

Johdatus reaalifunktioihin P, 5op

Pyramidi 9 Trigonometriset funktiot ja lukujonot HK1-1. Dsin3 x. 3cos3x. Dsinx. u( x) sinx ja u ( x) cosx. Dsin. Dsin

6*. MURTOFUNKTION INTEGROINTI

Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim.

= 9 = 3 2 = 2( ) = = 2

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Johdatus matematiikkaan

Muista tutkia ihan aluksi määrittelyjoukot, kun törmäät seuraaviin funktioihin:

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai

1 TRIGONOMETRIAA JA VEKTOREITA. 1.1 Trigonometriset funktiot Kulmayksiköistä. Vaasan yliopiston julkaisuja, opetusmonisteita 1


2 Funktion derivaatta

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

(a) avoin, yhtenäinen, rajoitettu, alue.

Tekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0.

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

z Im (z +1) 2 = 0. Mitkä muut kompleksitason pisteet toteuttavat tämän yhtälön? ( 1) 0 z ( 1) z ( 1) arg = arg(z 0) arg(z ( 1)), z ( 1) z ( 1)

Pyramidi 10 Integraalilaskenta harjoituskokeiden ratkaisut sivu 298 Päivitetty

1 Kompleksiluvut. Kompleksiluvut 10. syyskuuta 2005 sivu 1 / 7

6 Funktioita ja yhtälöitä

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon.

Epäyhtälöt 1/7 Sisältö ESITIEDOT: yhtälöt

1. Viikko. K. Tuominen MApu II 1/17 17

KERTAUSHARJOITUKSIA. 1. Rationaalifunktio a) ( ) 2 ( ) Vastaus: a) = = 267. a) a b) a. Vastaus: a) a a a a 268.

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

, c) x = 0 tai x = 2. = x 3. 9 = 2 3, = eli kun x = 5 tai x = 1. Näistä

x + 1 πx + 2y = 6 2y = 6 x 1 2 πx y = x 1 4 πx Ikkunan pinta-ala on suorakulmion ja puoliympyrän pinta-alojen summa, eli

Tehtävä 1. Miksi seuraavat esimerkit eivät ole funktioita? 1. f : R Z, f(x) = x 2. 2 kun x on parillinen,

Matematiikan taito 9, RATKAISUT. , jolloin. . Vast. ]0,2] arvot.

Trigonometriset funk/ot

MS-A0003/A0005 Matriisilaskenta Laskuharjoitus 2 / vko 45

Luvuilla laskeminen. Esim. 1 Laske

Transkriptio:

Sini- ja kosinifunktio Trigonometriset funktio voidaan määritellä muun muassa potenssisarjana tai yksikköympyrän avulla. Yksikköympyrään pohjautuvassa määritelmässä sini- ja kosinifunktion muuttujana pidetään vastapäivään mitattua kulmaa (radiaaneina), jonka origosta lähtevä jana muodostaa positiivisen x-akselin kanssa. Sini- ja kosinifunktiolla funktion arvot määräytyvät janan leikkauspisteestä ympyrän kehän kanssa seuraavasti: Leikkauspiste: x 0, y 0 y 0 Määritellään: α sin α = y 0 cos α = x 0 x 0 Koska kulmaa α kohdellaan funktion muuttujana, niin on tavanomaista merkitä sitä kirjaimella x

Sini-ja kosifunktio Saadaan kuvaukset: sin x R 1,1 ja cos x R 1,1 Määrittelyjoukko on koko reaalilukujen joukko, sillä: Kun sallitaan kulman(radiaaneina) tehdä useita kierroksia, niin muuttujana voidaan pitää mitä tahansa reaalilukua. Myötäpäivään kierretyt kulmat tulkitaan negatiivisiksi arvoiksi. Arvojoukko on suljettu väli 1,1, sillä: Yksikköympyrän säteen pituus on määritelmällisesti yksi, joten leikkauspisteen kumpikaan koordinaatti ei voi olla koskaan itseisarvoltaan ykköstä suurempi.

Yksikköympyrä On tärkeää oppia hahmottamaan radiaaneina ilmaistua kulmaa vastaavan janan leikkauspiste ympyrän kehällä ja päinvastoin. Koska kulman on sallittua tehdä useita kierroksia, niin tulee myös huomioida kulmien monikerrat: Esimerkiksi yhtälön sin x = 3 2 eräät ratkaisut ovat: x = 4 3 π tai x = 5 3 π Tämän lisäksi yhtälö toteutuu kaikilla kulmilla: x = 4 π + 2πn tai x = 5 π + 2πn, 3 3 missä n Z, eli kulmiiin voidaan lisätä kokonaisenkierroksen monikerta 360 on radiaaneina 2π, eli yksikköympyrän kehän pituus.

Esimerkki 1. sin 2π ja cos 2π? Vastaus: Kierretään yksikköympyrää ympyrän kehän verran radiaaneissa, eli asteissa 360. Tällöin origosta lähtevä jana leikkaa ympyränkehän pisteessä 1,0. Siis sin 2π = 0 ja cos 2π = 1. 2. sin π? Vastaus: Kun kulma on π, niin origosta lähtevä jana leikkaa 3 3 ympyränkehän pisteessä 1, 3. Siis sin π = 3. 2 2 3 2

Tangentti- ja kotangenttifunktio Tangentti- ja kotangenttifunktio voidaan määritellä sini- ja kosinifunktioiden avulla seuraavasti: tan x = sin x cos x ja cot x = cos x sin x Nimittäjä ei saa olla tietenkään nolla, joten rajoitetaan määrittelyjoukko kummallekin kuvaukselle seuraavasti: tan x x R x π 2 + πn (n Z) R cot x : x R x πn (n Z) R

Trigonometristen funktioiden ominaisuuksia i. sin 2 x + cos 2 x = 1 ii. iii. sin x = sin x cos x = cos x iv. tan x = tan x ja cot x = cot x v. sin 2x = 2 sin x cos x vi. cos 2x = cos 2 x sin 2 x = 1 2sin 2 x = 2cos 2 x 1 2 tan x vii. tan 2x = 1 tan 2 x viii. sin x + 2nπ = sin x ja cos x + 2nπ = cos x kaikilla x Z ix. tan x + nπ = tan x ja cot x + nπ = cot x kaikilla x Z Ominaisuudet (ii) ja (iii) sanovat, että sinifunktio on ns. paritonfunktio ja kosinifunktio on ns. parillinen funktio. Ominaisuudet (viii) ja (ix) sanovat, että sinin ja kosinin perusjakso on 2π. Vastaavasti tangentin ja kotangentin perusjakso on π.

Arkussini ja arkuskosini Sini- ja kosinifunktiolle voidaan funktioiden jaksollisuuden vuoksi määritellä käänteisfunktio usealla eri tavalla riippuen siitä, miten käänteisfunktioiden maalijoukko rajoitetaan. Palautetaan mieliin, että sini ja kosini on jatkuva kuvaus: R 1,1 Sinifunktio on bijektio, kun rajoitutaan monotonisuus väleille x π 2 + nπ, π 2 + nπ, missä n on ennalta määrätty kokonaisluku. Kosinifunktio on bijektio, kun rajoitutaan monotonisuus väleille x 0 + nπ, π + nπ, missä n on ennalta määrätty kokonaisluku. Erityisesti (eli tapaus n = 0): Kun x π 2, π 2, niin sinifunktio on aidosti kasvava Kun x 0, π, niin kosinifunktio on aidosti vähenevä

Arkussini ja arkuskosini Käänteisfunktio voidaan asettaa siis äärettömän monella eri tavalla riippuen siitä, miten kokonaisluku n valitaan, joka taas vaikuttaa käänteisfunktion maalijoukkoon ja siihen, onko funktio kasvava vai vähenevä. Tehdään sopimus ja asetetaan(n=0): arc sin x 1,1 π 2, π 2 arc cosx 1,1 0, π Näin saatuja funktioita kutsutaan arkussinin päähaaraksi ja arkuskosinin päähaaraksi. Muut arkussinin haarat ja arkuskosinin haarat saadaan asettamalla(n nollasta poikkeava kokonaisluku): arc sin x 1,1 arc cos x 1,1 π 2 + nπ, π 2 + nπ 0 + nπ, π + nπ Huomaa: Yläviivaavalla painotetaan, että kyseessä on arkusfunktion päähaara.

Esimerkki Tarkastellaan sinifunktiota: π 2 päähaara "kasvava haara" π 2 vaihtoehtoinen haara "vähenevä haara" π Aidosti kasvavan funktion käänteisfunktio on aidosti kasvava ja aidosti vähenevän funktion käänteisfunktio on aidosti vähenevä Näin ollen esimerkiksi, koska sinifunktio on aidosti kasvava välillä π, π 2 2 tarkoittaa sitä, että arkussinin päähaara on aidosti kasvava funktio., niin tämä

Arkustangentti Samoiten tangenttifunktion rajoittumalla: tan π 2, π 2 R On olemassa käänteisfunktio, jota kutsutaan arkustangentin päähaaraksi: arc tan R π 2, π 2 Tangenttifunktio on määrittely joukossaan aidosti kasvava funktio, joten erityisesti arkustangentin päähaara on aidosti kasvava funktio.