HUOLTOMATEMATIIKKA 1 TEHTÄVÄT

Samankaltaiset tiedostot
HUOLTOMATEMATIIKKA 1, SISÄLTÖ TIEDOT JA ESIMERKIT:

KORJAUSMATIIKKA 3, TEHTÄVÄT

MATEMATIIKAN KOE. AMMATIKKA top asteen ammatillisen koulutuksen kaikkien alojen yhteinen matematiikka kilpailu. Oppilaitos:.

1. Muunna seuraavat yksiköt. Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu. Oppilaitos:.. Koulutusala:...

(1) Desimaaliluvut ja lukujen pyöristäminen

Prosentti- ja korkolaskut 1

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu

16 Murtoluvut. Mitä murtolukua kirjaimet A F esittävät? Ilmoita murtolukumuodossa. a) c) b) Ilmoita sekalukuna. a) 7 4.

Ammatillisen koulutuksen kaikkien alojen yhteinen matematiikan valmiuksien kilpailu

Ammattimatematiikan tuki

Kuutio % Kappaleet kertaus

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille PAOJ 3. Isto Jokinen 2013

KOKEITA KURSSI Pitemmдstд osasta sahaat pois 5. 3 b) Muunna murto- tai sekaluvuksi. d) 0,9 e) 1,3 f) 2,01

1.3 Prosenttilaskuja. pa b = 100

Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g?

Matikka on hauskaa! Esimerkkejä alakoulun matematiikasta laskimen kanssa

1. Kymmenjärjestelmä ja desimaalilukujen yhteen- ja vähennyslaskua

Pitkäjärven koulun lämmön kulutus

A-osio: Laske ilman laskinta tälle paperille, aikaa maksimissaan 60 min. MAOL:ia saa käyttää.

A-osio. Ei laskinta! Laske kaikki tehtävät. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa.

Prosenttilaskentaa osa 2

Aihe: Yhtälön käyttö soveltamisessa ja ongelmanratkaisussa

Yksikkömuunnokset. Pituus, pinta-ala ja tilavuus. Jaana Ohtonen Språkskolan/Kielikoulu Haparanda-Tornio. lördag 8 februari 14

7.lk matematiikka. Murtoluvut. Hatanpään koulu Syksy 2017 Janne Koponen

- mittayksikkö eli yksikkö on mittaamisessa tarvittava apuväline. - yksiköiden avulla voidaan verrata mitattujen suureiden arvoja

7.lk matematiikka. Murtoluvut. Hatanpään koulu Syksy 2017 Janne Koponen

Apua esimerkeistä Kolmio teoriakirja. nyk/matematiikka/8_luokka/yhtalot_ yksilollisesti. Osio

R1 Harjoitustehtävien ratkaisut

Tehtävä 1. Jatka loogisesti oheisia jonoja kahdella seuraavaksi tulevalla termillä. Perustele vastauksesi

7. Resistanssi ja Ohmin laki

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRIS- TÖALAN VALINTAKOE 2008 MATEMATIIKKA

6. MURTOLUVUT MURTOLUVUN MUUTTAMINEN YHTEENLASKU JA VÄHENNYSLASKU KERTOLASKU JAKOLASKU

MATEMATIIKKA. Matematiikkaa pintakäsittelijöille. Ongelmanratkaisu. Isto Jokinen 2017

TEHTÄVIEN RATKAISUT. Luku

MATEMATIIKKAKILPAILU

11.1 Yleistä Kun eri asioiden suuruuksia verrataan, käytetään asian havainnollistamiseksi usein prosentteja.

4. Nokian osakkeen arvo oli eräänä päivänä 12,70 ja kaksi päivää myöhemmin 11,22. Kuinka monta prosenttia osakkeen arvo oli muuttunut?

Merkitse yhtä puuta kirjaimella x ja kirjoita yhtälöksi. Mikä tulee vastaukseksi? 3x + 2x = 5x + =

Mittaustarkkuus ja likiarvolaskennan säännöt

Prosenttiarvon laskeminen Esimerkki. Kuinka paljon pitsapala painaa, kun koko pitsa painaa 350 g?

Luvuilla laskeminen. 1. Laske. a) 2 5 b) 6 11 c) 4 + ( 4) d) 1 ( 7) Ratkaisu. a) 2 5 = 7 b) 6 11 = 5 c) 4 + ( 4) = 4 4 = 0 d) 1 ( 7) = = 6

PRELIMINÄÄRIKOE. Lyhyt Matematiikka

WintEVE Sähköauton talvitestit

Vastaukset. 1. a) 5 b) 4 c) 3 d) a) x + 3 = 8 b) x - 2 = -6 c) 1 - x = 4 d) 10 - x = a) 4 b) 3 c) 15 d) a) 2x. c) 5 3.

Kenguru 2006 sivu 1 Cadet-ratkaisut

AMMATIKKA top

MITTAAMINEN I. Käännä! matematiikkalehtisolmu.fi

MATEMATIIKKAKILPAILU

FYSIIKAN HARJOITUSTEHTÄVIÄ

MATEMATIIKAN JOHDANTOKURSSI ASSIn opiskelijoille soveltuvin osin

MATEMATIIKKAKILPAILU

A. Desimaalilukuja kymmenjärjestelmän avulla

TUEKSI MYYNTITYÖN MATEMATIIKAN VALINTAKOKEESEEN VALMISTAUTUMISEEN. Katri Währn

Joni Heikkilä WINTEVE SÄHKÖAUTON TALVITESTIT

Polynomi ja yhtälö Sievennä. a) 4a + 3a b) 11x x c) 9x + 6 3x. Ratkaisu a) 7a b) 12x c) 6x + 6

PERUSKOULUSTA PITKÄLLE

AMMATTIKORKEAKOULUJEN TEKNIIKAN VALINTAKOE

MAA1.1 Koe Jussi Tyni Kastellin lukio Tee pisteytysruudukko! Vastaa yhteensä 6 tehtävään. Muista kirjoittaa selkeät välivaiheet

Tehtävät on koostettu Matematiikkalehti Solmun Matematiikkadiplomista V. Sivunumerot viittaavat sen diplomitehtävien sivuihin.

MATEMATIIKKAKILPAILU

Matemaattisten Aineiden Opettajien Liitto MAOL ry Valtakunnallinen kuudennen luokan matematiikan koe 2014

Ylioppilastutkintolautakunta S t u d e n t e x a m e n s n ä m n d e n

b) Kun vähenevä on 1000 ja vähentäjä 670, mikä on erotus? c) Summa on 720, toinen yhteenlaskettava 180. Mikä on toinen?

Vastaukset. 1. kaksi. 3. Pisteet eivät ole samalla suoralla. d) x y = x e) 5. a) x y = 2x

TEHTÄVIEN RATKAISUT. Luku a) Merkintä f (5) tarkoittaa lukua, jonka funktio tuottaa, kun siihen syötetään luku 5.

niin järjestys on tämä: ensin kerto- ja jakolaskut vasemmalta oikealle, sen jälkeen plus- ja miinuslaskut vasemmalta oikealle.

Liite 1 b. Oripään (14.) tarjousalueet kartalla

Differentiaali- ja integraalilaskenta

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

Opettaja: tyk.fi Aika ja paikka: ma, ke klo 17:00-18:25, luokka 26.

MAA1 päässälaskut. Laske ilman laskinta tälle paperille. Kirjaa myös välivaihe(et).

HUOLTOMATEMATIIKKA 2, MATERIAALI

Ma9 Lausekkeita ja yhtälöitä II

Talousmatematiikan perusteet, ORMS1030

Talousmatematiikan perusteet: Luento 1. Prosenttilaskentaa Korkolaskentaa

5.3 Ensimmäisen asteen polynomifunktio

6 Kertausosa. 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 %

8 8 x = x. x x = 350 g

MEKANIIKAN TEHTÄVIÄ. Nostotyön suuruus ei riipu a) nopeudesta, jolla kappale nostetaan b) nostokorkeudesta c) nostettavan kappaleen massasta

AMMATTIKORKEAKOULUJEN LUONNONVARA- JA YMPÄRISTÖALAN VALINTAKOE

FYSIIKAN HARJOITUSKOE I Mekaniikka, 8. luokka

MATEMATIIKKAKILPAILU

6 Kertausosa. 1. a) Arvo laskee 4,3 % 100 % - 4,3 % = 95,7 % Arvo nousee 28,9 % 100 % + 28,9 % = 128,9 %

Differentiaalilaskennan tehtäviä

Mikä neljästä numeroidusta kuviosta jatkaa alkuperäistä kuviosarjaa? Perustele lyhyesti

Matematiikka_Peruslaskuja.notebook. May 17, 2017

HYDRAULIIKAN PERUSTEET JA PUMPUN HYÖTYSUHDE PUMPUN HYÖTYSUHTEEN LASKEMINEN

a) Montako rasiaa täyttyy 35 karkista 63 karkista 49 karkista 70 karkista 56 karkista

0. perusmääritelmiä. Lukutyypit Laskusäännöt Laskujärjestys

KYMPPI-kartoitus.

Transkriptio:

1 HUOLTOMATEMATIIKKA 1 TEHTÄVÄT 1) Laskujärjestys 2) Likiarvo ja pyöristäminen 3) Paperilla laskeminen, yhteen- ja vähennyslaskut sekä kerto- ja jakolaskut 4) Yksikkömuunnokset, kerrannaisyksiköt sekä aika 5) Suhde 6) Tekijäyhtälön ratkaisu, kolmiomalli 7) Prosentti 1) ja 2) LASKUJÄRJESTYS sekä PYÖRISTÄMINEN Laske laskimella ja PYÖRISTÄ SÄÄNNÖN MUKAAN!! a) 15,2 + 0,54 17 = b) 175 3,5 1,5 = c) 15 (12,5 5,45) : 3 = d) 4 8-2 6 4 6 e) 12:6+2 2-2 24 (3-2) 12 f) (13,15-1,20) (12,5-5,2) 52 (13+8,7) 3) PAPERILLA LASKEMINEN - Näissä laskuissa voit käyttää laskinta VAIN TULOKSEN TARKISTAMISEEN! Laskut ON LASKETTAVA RUUTUPAPERILLA ALLEKKAIN! Laske ruutupaperille ALLEKKAIN! a) 749 + 107 b) 198 + 2762 c) 2,5 + 72,3 d) 250 + 12,75 + 0,55 e) 37-12 f) 565-234 g) 3120 175 h) 25,25 3,75 i) 597 356-592 798 J) 5,225-2,3 k) 7,89-12,765 l) 18 7,85 m) 12,897 124 n) 27,99 7,25 o) 82,5 : 3 p) 1750 : 4 q) 25,4 : 3,5 r) 7,678 : 18 s) 1,2 : 0,15 t) 1583 : 728

2 4) YKSIKKÖMUUNNOKSET (KERRANNAISYKSIKÖT JA AIKA) Muunna a) 1,3 km = m b) 550 g = kg c) 160 cl = dl d) 1,5 ha = a e) 52 mm = cm f) 2 500 kw = MW g) Laske tulos metreinä (kaikki muutokset ) 0,07 km + 3540 mm + 175 cm + 0,85 m h) 120 min = h i) 15 min = h j) 2,5 vrk = h k) 0,5 a = h l) 1,25 h = min m) 3,45 h = h ja min n) 2 h 50 min = h o) 350 s = min

3 p) Muuta 3,275 h muotoon jossa desimaaliosa ilmenee minuutteina ja sekunteina. q) Ilmoita tunteina, minuutteina ja sekunteina 4000 sekuntia (eli desimaalilukuna). r) Muunna sekunneiksi a) 2 h 8 min 18 s b) 16 h 56 min 13 s s) Ilmoita tunteina, minuutteina ja sekunteina a) 11 808 s b) 2 150 s t) Ilmoita desimaalilukuna (tunneissa) a) 2 h 35 min 55 s b) 7 h 28 min 25 s 5) SUHDE LASKE a) Mikä on todellinen matka luonnossa (kilometreinä), jos kartalla jonka mittakaava on 1 : 2 000 000, matka on 4.7 cm? b) Rami, Tuuli ja Roosa ostivat yhdessä 10 e arvan, josta Rami maksoi viidesosan, Tuuli kaksi viidesosaa ja Roosa maksoi loput. Arvasta tuli voitto, 1500 e. Kuinka paljon Rami ja Tuuli saivat voittoa, jos voitto jaettiin sijoitussumman mukaan?

c) Rami ja Kimmo ostivat yhdessä auton (Volvon), joka maksoi 750 euroa. Rami maksoi autosta kolmasosa ja Kimmo maksoi loput. Pienen kunnostuksen jälkeen äijät myivät auton 1600 eurolla. Kuinka paljon Rami ja Kimmo saivat voittoa, jos voitto jaettiin sijoitussumman mukaan? 4 c) Tarkoituksesi on sekoittaa raakaa lasinpesunestettä ja vettä suhteessa 1:4. Astia johon teet sekoituksen on tilavuudeltaan 7 litraa ja astia pitää saada täyteen. Paljonko astiaan tulee raakaa lasinpesunestettä ja paljonko laitat vettä. d) Tuulilasinpesunesteen ja veden seos kestää suhteessa 1:3 pakkasta -12 C. Paljonko neste kestää pakkasta jos seossuhde on 1:2 6) TEKIJÄYHTÄLÖ ( kolmiomalli ) RATKAISE X käyttäen kolmiomenetelmää a) X 5 = 15 b) 30 = 45 X c) 2 X = 3,25 d ) 13 3 X e ) 17 X 5 f) 5 : 10 = X : 2 g) Selvitä kolmiomenetelmällä, miten sähkövirta I lasketaan ja laske parkkien ottama virta, kun yhteisteho (P) on 25 W ja käyttöjännite (U) on 14 V. Sähkötehon kaava on P = U I f) Selvitä kolmiomenetelmällä, miten sähkövirta (I) lasketaan ja laske puhallinmoottorin ottama virta, kun moottorin resistanssi (R) on 3 ja käyttöjännite (U) on 14 V. Ohmin laki eli kaava on U = R I

5 7) PROSENTTI 1) Paljonko on a) 22 % 158 eurosta b) 8,5 % 125,5 eurosta 2) Kuinka monta prosenttia c) 0,75 % 8565 eurosta a) 25 cm on 120 cm:stä b) 50 V on 150 V:sta 3) Mistä hinnasta c) 250 A on 100 A:sta a) 28 e on 46 % b) 1250 e on 22 % c) 15 e on 120 % 4) Kuinka monta prosenttia 200 ma on 2,5 A:sta (ole tarkkana yksiköiden kanssa!) 5) Montako prosenttia hinta nousee, jos alkuperäinen hinta oli 253 e ja uusi hinta on 268 e? 6) Montako prosenttia hinta laskee, jos alkuperäinen hinta oli 268 e ja uusi hinta on 253 e? 7) Kari maksoi stereoista 1250 euroa ja Kalle 1380 euroa. Kuinka monta prosenttia Kalle maksoi enemmän kuin Kari?

8) Kari maksoi stereoista 1250 euroa ja Kalle 1380 euroa. Kuinka monta prosenttia Kari maksoi vähemmän kuin Kalle? 6 9) Mitä digiboxi maksaa kun sen pyyntihinta oli 300 euroa ja sen hinta aleni ensin 10 % ja viikon kuluttua vielä 15 %? 10) Opiskelijamäärä laski luokalla 20 opiskelijasta 17 opiskelijaan. Montako prosenttia luokan opiskelijamäärä laski? 11) 153 kw Volvon teho nousi 15 %. Paljonko teho nousi kilowatteina? 12) Puolue sai edellisissä vaaleissa 201:sta edustajasta 19 omaa edustajaa ja uusissa vaaleissa 14 edustajaa. a) Montako prosenttia puolueella oli edustajistosta kummassakin tapauksessa? b) Montako prosenttia edustus laski? 13) Arvonlisävero on 24 % tuotteen myyntihinnasta. ALV lisätään tuotteen nettohintaan. a) Mikä on kaiuttimen hinta, kun sen ALV:n osuus on 125 euroa? b) Mikä on jarrupalojen arvonlisäveroton hinta, kun verollinen hinta on 42 e? 14) Autonasentajan bruttopalkka on 1800 e/kk, josta veron osuus on 27,5 % ja liiton jäsenmaksu 1,5 % (vähennetään bruttopalkasta, jolloin jäljelle jää nettopalkka). Asentajalta kuluu asumiseen 32 % ja muihin kuluihin 35 % nettokuukausipalkasta (eli käteen jäävästä summasta). Asentaja lyhentää lainaa 85 e/kk. Kuinka paljon hänelle jää rahaa tilille?