KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4

Samankaltaiset tiedostot
KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + 2 ( 1) ( 1) 3 = = 4

3 TOISEN ASTEEN POLYNOMIFUNKTIO

4 TOISEN ASTEEN YHTÄLÖ

MAA2.3 Koontitehtävät 2/2, ratkaisut

3 Yleinen toisen asteen yhtälö ja epäyhtälö

2 Yhtälöitä ja funktioita

MAA02. A-osa. 1. Ratkaise. a) x 2 + 6x = 0 b) (x + 4)(x 4) = 9 a) 3x 6x

A-osio. Ei laskinta! Laske kaikki tehtävät. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa.

11 MATEMAATTINEN ANALYYSI

Juuri 2 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

MAB3 - Harjoitustehtävien ratkaisut:

4 Yleinen potenssifunktio ja polynomifunktio

1 Ensimmäisen asteen polynomifunktio

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka

MAB3 - Harjoitustehtävien ratkaisut:

Huippu Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

y=-3x+2 y=2x-3 y=3x+2 x = = 6

2 Pistejoukko koordinaatistossa

Aloita Ratkaise Pisteytä se itse Merkitse pisteet saanut riittävästi pisteitä voit siirtyä seuraavaan osioon ei ole riittävästi

Vastaukset. 1. kaksi. 3. Pisteet eivät ole samalla suoralla. d) x y = x e) 5. a) x y = 2x

6 Kertaus: Lausekkeet ja yhtälöt

1 ENSIMMÄISEN ASTEEN POLYNOMIFUNKTIO

Tekijä MAA2 Polynomifunktiot ja -yhtälöt = Vastaus a)

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan yksi tunti aikaa. Laske kaikki tehtävät:

Kertaustehtävien ratkaisut

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

origo III neljännes D

Huippu 7 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

MAA2 POLYNOMIFUNKTIOT JA -YHTÄLÖT

1 Rationaalifunktio , a) Sijoitetaan nopeus 50 km/h vaihtoaikaa kuvaavan funktion lausekkeeseen.

Lue tehtävänannot huolella. Tee pisteytysruudukko 1. konseptin yläreunaan. ILMAN LASKINTA -OSIO! LASKE KAIKKI SEURAAVAT TEHTÄVÄT:

Tekijä Pitkä matematiikka a) Ratkaistaan nimittäjien nollakohdat. ja x = 0. x 1= Funktion f määrittelyehto on x 1 ja x 0.

x 7 3 4x x 7 4x 3 ( 7 4)x 3 : ( 7 4), 7 4 1,35 < ln x + 1 = ln ln u 2 3u 4 = 0 (u 4)(u + 1) = 0 ei ratkaisua

Lukuväleistä. MB 3 Funktio. -2 < x < 5 tai ]-2,5] x < 3 tai ]-,3]

Derivaatan sovellukset (ääriarvotehtävät ym.)

Paraabeli suuntaisia suoria.

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.

4. Kertausosa. 1. a) 12

Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä

Kertaus. Integraalifunktio ja integrointi. 2( x 1) 1 2x. 3( x 1) 1 (3x 1) KERTAUSTEHTÄVIÄ. K1. a)

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

2 Yhtälöitä ja epäyhtälöitä

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

KERTAUSHARJOITUKSIA. 1. Rationaalifunktio a) ( ) 2 ( ) Vastaus: a) = = 267. a) a b) a. Vastaus: a) a a a a 268.

Huippu Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

Äänekosken lukio Mab4 Matemaattinen analyysi S2016

Kertaus. x x x. K1. a) b) x 5 x 6 = x 5 6 = x 1 = 1 x, x 0. K2. a) a a a a, a > 0

Laudatur 4 MAA4 ratkaisut kertausharjoituksiin

4 FUNKTION ANALYSOINTIA

MAA7 7.1 Koe Jussi Tyni Valitse kuusi tehtävää! Tee vastauspaperiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin!

4 Polynomifunktion kulku

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

= 9 = 3 2 = 2( ) = = 2

c) Määritä paraabelin yhtälö, kun tiedetään, että sen huippu on y-akselilla korkeudella 6 ja sen nollakohdat ovat x-akselin kohdissa x=-2 ja x=2.

TEHTÄVIEN RATKAISUT. Luku a) Merkintä f (5) tarkoittaa lukua, jonka funktio tuottaa, kun siihen syötetään luku 5.

3 Määrätty integraali

yleisessä muodossa x y ax by c 0. 6p

OSA 1: YHTÄLÖNRATKAISUN KERTAUSTA JA TÄYDENNYSTÄ SEKÄ FUNKTIO

MAY1 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Julkaiseminen sallittu vain koulun suljetussa verkossa.

3. Laadi f unktioille f (x) = 2x + 6 ja g(x) = x 2 + 7x 10 merkkikaaviot. Millä muuttujan x arvolla f unktioiden arvot ovat positiivisia?

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!

Matematiikan pohjatietokurssi

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

Matematiikan peruskurssi (MATY020) Harjoitus 7 to

5.3 Ensimmäisen asteen polynomifunktio

x = 6 x = : x = KERTAUSHARJOITUKSIA Funktion nollakohdat ja merkki 229.a) Funktio f ( x) = 2x+ Nollakohta f x b) Funktio gx ( ) = x

3.3 Paraabeli toisen asteen polynomifunktion kuvaajana. Toisen asteen epäyhtälö

Huippu 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 6 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

4.1 Kaksi pistettä määrää suoran

2. Luvut. 3 pullollista, joten Timo tarvitsee 25 pulloa litrasta saadaan 17 24, 186. a) 4

Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x

YHTÄLÖ kahden lausekkeen merkitty yhtäsuuruus

Juuri 12 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Vanhoja koetehtäviä. Analyyttinen geometria 2016

2 Raja-arvo ja jatkuvuus

määrittelyjoukko. log x piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä millä korkeudella tangentti leikkaa y-akselin.

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai

1.1 Polynomifunktio ( x ) = 2 x - 6

Ympyrän yhtälö

määrittelyjoukko. 8 piirretään tangentti pisteeseen, jossa käyrä leikkaa y-akselin. Määritä tangentin yhtälö.

Kaikkiin tehtäviin ratkaisujen välivaiheet näkyviin! Lue tehtävänannot huolellisesti. Tee pisteytysruudukko B-osion konseptin yläreunaan!


Transkriptio:

KERTAUS KERTAUSTEHTÄVIÄ K1. P( 1) = 3 ( 1) + ( 1) + 3 ( 1) 3 = 3 + 3 = 4 K. a) x 3x + 7x 5x = 4x + 4x b) 5x 3 (1 x ) = 5x 3 1 + x = 6x 4 c) (x + 3)(x 4) = x 3 4x + 3x 1 = x 3 + 3x 4x 1 Vastaus: a) 4x + 4x b) 6x 4 c) x 3 + 3x 4x 1 K3. Sievennetään polynomi: P(x) = (3x + x 3) 3x(x x) + 5 x = 6x + 4x 6 3x 3 + 6x + 5 x = 3x 3 + 10x + 5x 1 a) asteluku on 3 b) toisen asteen termin kerroin on 10 c) vakiotermi on 1 d) P() = 3 3 + 10 + 5 1 = 3 8 + 10 4 + 5 1 = 4 + 40 + 10 1 = 5 Vastaus: a) 3 b) 10 c) 1 d) 5 K4. a) (y + 4) + (y + 4) = (y + 4)(y + 4) + y + 8 = y + 4y + 4y + 16 + y + 8 = y + 10y + 4 b) (k + 3)(k 3) (k 3) = k 3k + 3k 9 (k 3)(k 3) = k 9 (k 3k 3k + 9) = k 9 (k 6k + 9) = k 9 k + 6k 9 = 6k 18 Vastaus: a) y + 10y + 4 b) 6k 18

K5. a) P(x) + Q(x) = x + 3x + 3x = 3x + 5x b) P(x) Q(x) = x (3x + 3x) = x 3x 3x = 3x x c) P(x) Q(x) = x (3x + 3x) = x 3x + x 3x = 6x 3 + 6x Q(x) d) P(x) = 3x + 3x = 3x x x + 3x x = 3x + 3 Vastaus: a) 3x + 5x b) 3x x c) 6x 3 + 6x d) 3 x + 3 K6. Sievennykseen voi käyttää esimerkiksi symbolista laskinta tai GeoGebraa. Vastaus: x 4 1x 7x 7

K7. Suoran y = x + 3 vakiotermi on 3, joten piste (0, 3) on suoralla. Kulmakerroin on, joten lisää pisteitä saadaan kulkemalla aina yksi yksikkö oikealle ja kaksi yksikköä ylös. 1 Suoran y= x 1 vakiotermi on 1, joten piste (0, 1) on suoralla. 1 Kulmakerroin on, joten lisää pisteitä saadaan kulkemalla aina yksi yksikkö oikealle ja puoli yksikköä alas. Suoralla x = ovat ne pisteet, joiden x-koordinaatti on. Tällaisia pisteitä ovat esimerkiksi (, 0), (, 1) ja (,). Suora on y-akselin suuntainen. Suoralla y = 3 ovat ne pisteet, joiden y-koordinaatti on 3. Tällaisia pisteitä ovat esimerkiksi (0, 3), (1, 3) ja (, 3). Suora on x-akselin suuntainen.

K8. a) Funktion f kuvaaja leikkaa y-akselin pisteessä (0, ), eli vakiotermi b =. Kuvaaja nousee kaksi yksikköä, kun mennään yksi yksikkö oikealle, eli kulmakerroin k =. Siis f(x) = x. Funktion f nollakohta on kuvaajan perusteella x = 1. b) Funktion g kuvaaja leikkaa y-akselin pisteessä (0, 1), eli vakiotermi b = 1. Kuvaaja se laskee yhden yksikön, kun mennään kolme yksikköä oikealle, eli k = 1. Siis g(x) = 1. 3 3 x +1 Funktion g nollakohta on kuvaajan perusteella x = 3. c) Funktio h saa joka kohdassa arvon, joten se on vakiofunktio h(x) =. Funktio h ei leikkaa x-akselia, eli sillä ei ole nollakohtaa. Vastaus: a) f(x) = x, x = 1 b) g(x) = 1, x = 3 3 x +1 c) h(x) =, ei nollakohtaa. K9. a) Vakiotermin on oltava 4 ja kulmakertoimen negatiinen luku. Esimerkiksi y = x + 4 käy. b) Kulmakertoimen on oltava 3. Esimerkiksi y = 3x + 1 käy. c) Suoran on oltava y-akselin suuntainen eli muotoa x = a. Esimerkiksi suora x = 1 käy. Vastaus: a) y = x + 4 b) y = 3x + 1 c) x = 1

K10. Suoran ja y-akselin leikkauspiste (0, 6) nähdään vakiotermistä 6. Kulmakerroin on 4, joten suora nousee neljä yksikköä, kun mennään yksi yksikkö oikealle. Piirtämällä suora nähdään, että suora leikkaa x-akselin, kun x 1,5. Tarkistetaan vielä laskemalla, että y-koordinaatti on nolla, kun x = 1,5: y = 4 1,5 + 6 = 0. Vastaus: suoran ja x-akselin leikkauspiste on (1,5; 0).

K11. a) x + 3 = 5 x = 5 3 x = 8 : x = 4 b) x 3 = 4 x x + x = 4 + 3 3x = 7 : 3 7 x = 3 c) 9x = 4x 9x 4x = 0 5x = 0 : 5 x = 0 Vastaus: a) x = 4 b) K1. a) 3(x 1) = 4(3x + ) 3x 3 = 1x + 8 3x 1x = 6 + 3 9x = 9 :( 9) x = 1 7 x = c) x = 0 3

b) 3) ) x 1 x = + 4 6 3 3x 1 4x = + 4 6 6 6 6 3x 1 = 4x + 4 3x 4x = 4 + 1 x = 5 :( 1) x = 5 Vastaus: a) x = 1 b) x = 5 K13. (x 3) 3(3x ) 5 = 3x + 3 4x 6 9x + 6 5 = 3x + 3 5x 5 = 3x + 3 5x 3x = 3 + 5 8x = 8 :( 8) x = 1 Tutkitaan sijoittamalla, toteuttaako x = 1 yhtälön x + x = : ( 1) + ( 1) = 0 x = 1 ei toteuta yhtälöä x + x =. Vastaus: x = 1. Ei toteuta.

K14. Merkitään kuukausipalkkaa kirjaimella x. Muodostetaan yhtälö ja ratkaistaan se. 15) 1) 10) x x x + + + 960 = x 4 5 6 15x 1x 10x + + + 960 = x 60 60 60 60 15x+ 1x+ 10x+ 57600 = 60x Vastaus: 500. 37x 60x = 57600 ( ) 3x = 57600 : 3 x = 504,34... K15. Merkitään pienempien kukkien määrää kirjaimella p. Pienempien kukkien yhteishinta on tällöin,5p. Isompien kukkien määrä i = 13 p ja yhteishinta 7(13 p). Muodostetaan yhtälö ja ratkaistaan se.,5p + 7(13 p) = 55,5p + 91 7p = 55 4,5p = 55 91 4,5p = 36 : ( 4,5) p = 8 Isompien kukkien määrä oli 13 8 = 5. Vastaus: 8 pientä ja 5 isoa kukkaa

K16. a) y = x + 5 3y + x = 1 Sijoitetaan ylemmästä yhtälöstä saatava muuttujan y lauseke alempaan: 3(x + 5) + x = 1 6x + 15 + x = 1 7x = 1 15 7x = 14 :7 x = Sijoitetaan x = yhtälöön y = x + 5: y = ( ) + 5 = 4 + 5 = 1 Tarkistus: ( ) + 5 = 1 3 1 + ( ) = 1 Yhtälöparin ratkaisu on siis x =, y = 1.

b) x + y = 1 x + y = 0 x + y = 1 x = y Sijoittamalla saadaan ( y) + y = 1 4y + y = 1 y = 1 : ( ) y = 1 = 0,5 Sijoitetaan saatu muuttujan y arvo yhtälöön x = y: 1 x = x = 1 1 Laskujen perusteella leikkauspiste on (1, ). Tarkistetaan piirtämällä. Ratkaistaan ensin molemmista yhtälöistä y. x + y = 1 y = 1 x : 1 y= x 1 y= x+ Vakiotermi on 1, joten suora leikkaa y-akselin pisteessä (0, 1 ). Kulmakerroin on 1, joten lisää pisteitä saadaan kulkemalla aina yksi yksikkö oikealle ja yksi yksikkö alas.

x + y = 0 y = x : 1 y= x Vakiotermi on 0, joten suora leikkaa y-akselin pisteessä (0, 0). 1 Kulmakerroin on, joten lisää pisteitä saadaan kulkemalla aina yksi yksikkö oikealle ja puoli yksikköä alas. Vastaus: a) x =, y = 1 b) (1, 1 )

K17. Suorien leikkauspiste saadaan yhtälöparilla y = x + 3 y = 3x +1 Sijoittamalla saadaan x + 3 = 3x + 1 x 3x = 1 3 4x = :( 4) x = 4 = 1 Sijoitetaan x = 1 yhtälöön y = x + 3: y = 1 + 3 = 1 + 6 = 5 Vastaus: Suorien leikkauspiste on 1, 5

K18. Merkitään kivennäisveden hintaa muuttujalla v ja proteiinipatukan hintaa muuttujalla p. Jussin ostoksista saadaan yhtälö 3v + 5p = 10,95 ja Katariinan ostoksista yhtälö v + 3p = 4,85. Saadaan yhtälöpari 3v+ 5p= 10,95 v + 3p = 4,85 3 3v+ 5p= 10,95 + 3v 9p = 14,55 ( ) 3v 3v + 5p 9p = 10,95 14,55 4p = 3,6 : ( 4) p = 0,9 Sijoitetaan p = 0,9 yhtälöön v + 3p = 4,85: v + 3 0,9 = 4,85 v +,7 = 4,85 v = 4,85,7 v =,15 Vastaus: kivennäisveden kappalehinta on,15 ja proteiinipatukan 0,90.

99 km km K19. Helikopterin nopeus Lahteen päin oli = 198 ja Helsinkiin päin 1 h h 99 km km = 180. Toisaalta helikopterin nopeus maan suhteen on 33 h h 60 helikopterin nopeuden h ja tuulen nopeuden w summa tai erotus riippuen tuulen suunnasta. Saadaan yhtälöpari h+ w= 198 + h w= 180 h+ h+ w w= 198 + 180 h = 378 : h = 189 Helikopterin nopeus ilman tuulta oli siis km km km 198 189 = 9 h h h Vastaus: km 9 h km 189 h, joten tuulen nopeus oli

K0. a) f(x) = x( x) = x x Funktio on toisen asteen polynomifunktio. Koska toisen asteen termin kerroin on negatiivinen, kuvaajaparaabeli aukeaa alaspäin. b) f(x)= x x(x 1) = x x + x = x Funktio ei ole toisen asteen polynomifunktio. c) f(x)=(x )(x 1) = x x x + = x 3x + Funktio on toisen asteen polynomifunktio. Koska toisen asteen termin kerroin on positiivinen, kuvaajaparaabeli aukeaa ylöspäin. d) ( ) x x x x f x = = = x 1. x x x Funktio ei ole toisen asteen polynomifunktio. Vastaus: a) On. Alaspäin. b) Ei ole. c) On. Ylöspäin. d) Ei ole. K1. Piirretään paraabeli y = x 9. Kuvaajan perusteella funktion nollakohdat ovat 3 ja 3. Tarkistetaan laskemalla: f( 3) = ( 3) 9 = 9 9 = 0 f(3) = 3 9 = 9 9 = 0 Vastaus: Funktion nollakohdat ovat x = 3 ja x = 3.

K. Piirretään paraabeli y = 0,1x + 6x. Kuvasta nähdään, että jäätelön myynti on suurimmillaan, kun lämpötila on 30 C. Tällöin jäätelöä myydään 90 litraa päivässä. Vastaus: 30 C, 90 litraa päivässä K3. Appletin avulla kokeilemalla huomataan, että sininen ja punainen paraabeli ovat päällekkäin, kun punaisen paraabelin yhtälö on y = 0,5x + x + 1,5. Sinisen paraabelin yhtälö on siten myös y = 0,5x + x + 1,5.

K4. a) Piirretään paraabelit sopivalla ohjelmalla ja määritetään niiden yhteiset pisteet. Vain yksi yhteinen piste löytyi, (0, 3). Tarkistetaan, onko piste molemmilla paraabeleilla, sijoittamalla x = 0 paraabelien yhtälöihin. y = 0 + 4 0 3 = 3 y = 0 3 = 3 Piste (0, 3) on molemmilla paraabeleilla.

b) Piirretään paraabelit sopivalla ohjelmalla ja määritetään niiden yhteiset pisteet. Vain yksi yhteinen piste löytyi, (1, ). Tarkistetaan, onko piste molemmilla paraabeleilla, sijoittamalla x = 1 paraabelien yhtälöihin. y = 1 + 1 + 1 = y = 1 1 + 3 = Piste (1, ) on molemmilla paraabeleilla. Vastaus: a) (0, 3) b) (1, ) K5. a) x x + 3 = 0 Toisen asteen yhtälön ratkaisukaavalla (a =, b = 1, c = 3) ( ) ( ) ( ) ( ) 1 ± 1 4 3 x = 1± 1+ 4 x = 4 1± 5 x = 4 1± 5 x = 4 x = 1+ 5 4 = 6 4 = 3 tai x = 1 5 4 = 4 4 = 1

b) x 1 x = 0 Toisen asteen yhtälön ratkaisukaavalla (a = 1, b =, c = 1) ( ) ( ) ( ) 4 1 1 ± x = 1 ± 0 x = 0 x = ± x = x = 1 c) x(3x + 1) = 5 3x + x = 5 3x + x 5 = 0 Toisen asteen yhtälön ratkaisukaavalla (a = 3, b = 1, c = 5) x = 1± 1 4 3 ( 5) 1± 1+ 60 = 3 6 1+ 61 1 61 x = tai x = 6 6 = 1± 61 6 Vastaus: a) x = 3 tai x = 1 b) x = 1 c) 1+ 61 x = tai 6 1 61 x = 6

K6. a) x + 4 = 0 x = 4 < 0 Yhtälöllä ei ole ratkaisua, koska minkään reaaliluvun neliö ei ole negatiivinen. b) 4x 9 = 0 4x = 9 :4 x = 9 4 x =± 9 4 x =± 3 c) ) x 3x + = 0 4 x 3x + = 0 4 4 4 x + 3x = 0 Otetaan muuttaja x yhteiseksi tekijäksi. x( + 3x) = 0 Tulon nollasäännöllä x = 0 tai + 3x = 0 3x = :3 x = 3 Yhtälö x + 3x = 0 voidaan ratkaista myös ratkaisukaavalla (a = 3, b =, c = 0). Vastaus: a) Ei ratkaisua b) x =± 3 c) x = 3 tai x = 0

K7. Olkoon kysytty luku x. Muodostetaan yhtälö ja ratkaistaan se. x = x 4 4 4x = x 4x x = 0 1 Otetaan muuttuja x yhteiseksi tekijäksi. x(4x 1) = 0 Tulon nollasäännön mukaan x = 0 tai 4x 1 = 0 4x = 1 :4 x = 1 4 Yhtälö 4x x = 0 voidaan ratkaista myös ratkaisukaavalla (a = 4, b = 1, c = 0). Vastaus: 0 tai 1 4

K8. Kolmion pinta-ala on kannan ja korkeuden tulo jaettuna kahdella. Kateettien välinen kulma on suora, joten ne ovat kanta ja korkeus. Muodostetaan yhtälö ja ratkaistaan se. ( x )( 3x 1) = 1 (x )(3x 1) = 4 3x x 6x + = 4 3x 7x 40 = 0 Toisen asteen yhtälön ratkaisukaavalla (a = 3, b = 7, c = 40) x = ( 7) ± x = 7 + 3 6 = 30 6 ( 7) 4 3 ( 40) 3 = 5 tai x = 7 3 6 = 7 ± 59 6 = 16 6 = 8 3 = 7 ± 3 6 Pituus ei voi olla negatiivinen, joten x = 8 voidaan hylätä. 3 Kateettien pituudet ovat x = 5 = 3 (m) ja 3x 1 = 3 5 1 = 14 (m). Vastaus: 3 m ja 14 m

K9. a) 1 75 3, 384 = (J) b) 1 E = mv E = mv : m E = v m E ± = v m 9600 ± = v 4,1 ± 68,4319... = v Nopeuden suunnalla ei ole väliä, joten negatiivista nopeutta ei tarvitse antaa vastauksessa. Vastaus: a) 380 J b) 68 m/s

K30. Televisio osuu maahan, kun y = 0. Muodostetaan yhtälö ja ratkaistaan se. 0 = 8,5 4,9x 4,9x = 8,5 : 4,9 x = 1,7346... x = 1,7346... x = 1,3170... Televisio osuu maahan 1,3 metrin etäisyydellä seinästä. Tarkistetaan piirtämällä. Piirtäminen antaa saman tuloksen. Vastaus: 1,3 metrin päässä seinästä

K31. Taulukoidaan suureiden arvoja. Suure A Suure B 10 4 x 14 a) Suureet ovat suoraan verrannolliset, joten saadaan yhtälö 10 x = 4 14. Kerrotaan ristiin: 4x = 10 14 4x = 140 :4 x = 140 4 = 35 b) Suureet ovat kääntäen verrannolliset, joten verrantoyhtälö on x 14 = 10 10 4 ( 410 40 0 x = = = 14 14 7 Vastaus: a) x = 35 b) x = 0 7

K3. Lasketaan, kuinka paljon yksi kilogramma pähkinöitä maksaa. Taulukoidaan suureiden arvoja. massa (g) hinta ( ) 40 3,90 1000 x Pähkinöiden määrän kaksinkertaistuessa myös hinta kaksinkertaistuu, joten pähkinöiden hinta on suoraan verrannollinen massaan. Muodostetaan yhtälö ja ratkaistaan se. 40 1000 = 3,90 x Kerrotaan ristiin: 40x = 3,90 1000 :40 x = 3900 40 = 16,5 Vastaus: Pähkinöiden kilohinta on 16,5. K33. Taulukoidaan suureiden arvoja. aika (h) keskinopeus (km/h),5 80 x 100 Ajan kaksinkertaistuessa keskinopeus puolittuu, joten aika ja keskinopeus ovat kääntäen verrannolliset. Muodostetaan yhtälö ja ratkaistaan se. x 80 =,5,5 100 x = 80,5 100 x = Vastaus: Matka kestäisi tuntia.

K34. Taulukoidaan suureiden arvoja. matka (m) aika (s ) 4,9 1 55 x Muodostetaan yhtälö ja ratkaistaan se. 4,9 1 = 55 x 4,9x = 1 55 :4,9 x = 55 4,9 55 x =± 4,9 x ± 3,3503 Negatiivinen ratkaisu voidaan hylätä, koska kamera putosi vasta hetkellä x = 0. Vastaus: Putoaminen kestää noin 3,4 sekuntia. K35. Taulukoidaan suureiden arvoja. hinta ( ) myynti (kpl) 5 3400 1,15 5 x Muodostetaan yhtälö ja ratkaistaan se. 1 5 x = 1 1,15 5 3400 1 x = 1,15 3400 1,15 x = 1 3 400 : 1,15 x = 956,5... Paitoja myydään noin 3 000 kappaletta. Vastaus: 3 000 kappaletta

K36. a) 100 % + 13 % = 113 % = 1,13 Tuotteen lopullinen hinta on 1,13a. b) 100 % 41 % = 59 % = 0,59 Tuotteen lopullinen hinta on 0,59a. Vastaus: a) 1,13a b) 0,59a K37. 100 % 17 % = 83 % = 0,83. Merkitään puhelimen alkuperäistä hintaa muuttujalla x. Muodostetaan yhtälö ja ratkaistaan se. 0,83x = 543 :0,83 x = 543 0,83 x 654, ( ) Alennus oli 654, 543 = 111,. Vastaus: Puhelimen alkuperäinen hinta oli 654, ja alennus oli 111,. K38. Merkitään miesopiskelijoiden määrää muuttujalla x. Koska 100 % + 5 % = 15 % = 1,5, niin naisopiskelijoita on 1,5x. Muodostetaan yhtälö ja ratkaistaan se. x + 1,5x = 07,5x = 07 :,5 x = 9 Naisopiskelijoiden määrä on 1,5 9 = 115. Vastaus: Naisopiskelijoita hyväksytään 115 ja miesopiskelijoita 9.

K39. Merkitään kenkien hintaa vakiolla a ja prosenttikerrointa kirjaimella x. Koska 100 % + 3 % = 13 % =1,3, niin kenkien hinta on korotuksen jälkeen 1,3a. Muodostetaan yhtälö ja ratkaistaan se. 1,3ax = a :a 1,3x = 1 :1,3 x = 1 1,3 0,813 100 % 81,3 % = 18,7 % 19 % Vastaus: 19 % K40. Merkitään lisättävän hapon määrää grammoina muuttujalla x. Varsinaista happoa siitä on 40 % eli 0,4x. Varsinaista happoa on aluksi 400 g 0,5 = 100 g ja lopuksi 100 + 0,4x grammaa. Liuoksen määrä aluksi on 400 g ja lopuksi 400 + x grammaa. Liuoksen vahvuuden on oltava lopuksi 30 %. Muodostetaan yhtälö ja ratkaistaan se. 0,3(400 + x) = 100 + 0,4x 10 + 0,3x = 100 + 0,4x 0,3x 0,4x = 100 10 0,1x = 0 ( 10) x = 00 Happoa on siis lisättävä 00 g. Vastaus: 00 g