MS-C1340 Lineaarialgebra ja differentiaaliyhtälöt Ominaisarvoteoriaa Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2015 1 / 22 R. Kangaslampi matriisiteoriaa
Kertaus: ominaisarvot Määritelmä 1 Jos n n-matriisille A pätee Ax = λx jollakin vektorilla x C n \ {0} ja skalaarilla λ C, niin λ on matriisin A ominaisarvo ja x sitä vastaava ominaisvektori. Ominaisyhtälö Ax = λx on yhtäpitävästi (A λi)x = 0, missä I on identtinen matriisi. Tälle löytyy nollasta eroava ratkaisu x täsmälleen silloin, kun det(a λi) = 0 jollekin λ R. 2 / 22 R. Kangaslampi matriisiteoriaa
Kertaus: ominaisarvot Huomioita reaalisia ominaisvektoreita ei aina ole olemassa ominaisvektori on määritelmän mukaan nollasta eroava ominaisarvo voi olla nolla Ax = λx A(tx) = λ(tx) kaikilla t R, joten ominaisvektorin x sijaan voidaan puhua x:n suuntaisesta ominaissuorasta {tx t R}. (Kulkee origon kautta.) Jos lineaarikuvauksen A R n n ominaisarvo λ 0, niin vastaava ominaissuora kuvautuu itselleen ja ominaisarvo λ ilmoittaa ominaissuoran suuntaisen venytyksen. Jos λ < 0, niin suunnistus ominaissuoralla kääntyy, ts. venytyksen lisäksi lineaarikuvaus peilaa ominaissuoran normaalin suhteen. Jos λ = 0, niin kuvaus litistää ominaissuoran origoksi. 3 / 22 R. Kangaslampi matriisiteoriaa
Kertaus: ominaisarvot Ominaisarvot ja -vektorit lasketaan siis seuraavasti: Muodosta karakteristinen polynomi p(λ) = det(a λi). Etsi karakteristisen polynomin nollakohdat p(λ) = 0, nämä ovat ominaisarvot. Ratkaise kullakin ominaisarvolla λ i sitä vastaava ominaisvektori/suora yhtälöstä (A λ i I)x = 0. 4 / 22 R. Kangaslampi matriisiteoriaa
Kertaus: ominaisarvot Määritelmä 2 Polynomin det(a λi ) juuren kertaluku on kyseisen ominaisarvon λ algebrallinen kertaluku m a (λ). Ominaisarvon λ geometrinen kertaluku m g (λ) on sitä vastaavan ominaisavaruuden dimensio, eli lineaarisesti riippumattomien ominaisvektorien lukumäärä. Huom: Geometrinen kertaluku ei koskaan voi olla suurempi kuin algebrallinen kertaluku, m g (λ) m a (λ). 5 / 22 R. Kangaslampi matriisiteoriaa
Kertaus: ominaisarvot Esimerkki 3 Etsi matriisin A = 1 0 2 0 3 0 2 0 1 ominaisarvojen algebralliset ja geometriset kertaluvut. Ratkaisu: Lasketaan ominaisarvot karakteristisen polynomin nollakohtina: det(a λi) =... = (3 λ) 2 (λ + 1) = 0, joten ominaisarvon λ = 3 algebrallinen kertaluku on 2 ja ominaisarvon λ = 1 on 1. Lasketaan sitten ominaisvektorit: 6 / 22 R. Kangaslampi matriisiteoriaa
Kertaus: ominaisarvot Kun λ = 1, yhtälö on (A + 1I)x = 0, ja saadaan x 2 = 0 ja x 3 = x 1, eli ominaissuora {t(1, 0, 1) t R}. Näin ollen geometrinen kertaluku on m g ( 1) = m a ( 1) = 1. Arvolle λ = 3 saadaan yhtälöstä (A 3I)x = 0 ehdot x 2 R ja x 3 = x 1, joten tätä ominaisarvoa vastaten saadaankin ominaistaso {s(1, 0, 1) + t(0, 1, 0) s, t R}. (Lineaarisesti riippumattomat ominaisvektorit esim. (1, 0, 1) ja (0, 1, 0)). Geometrinen kertaluku on siis m g (3) = 2. 7 / 22 R. Kangaslampi matriisiteoriaa
Ominaisarvot Ominaisarvoista voidaan puhua myös yleisemmin lineaarikuvauksille, ei vain matriiseille: Määritelmä 4 Olkoon V K -kertoiminen vektoriavaruus. Lineaarikuvausta avaruudelta itselleen: T : V V kutsutaan tavallisesti (lineaari-)operaattoriksi. Jos on olemassa λ K ja vektori v V \ {0} siten, että T v = λ v, niin sanotaan, että λ on T :n ominaisarvo ja vektori v on tähän liittyvä T :n ominaisvektori. 8 / 22 R. Kangaslampi matriisiteoriaa
Ominaisarvot Esimerkki 5 Tarkastellaan polynomeja {ˆp 1, ˆp 2, ˆp 3, ˆp 4 } = {1, 1 x, (1 x) 2, (1 x) 3 } ja lineaarikuvausta Tp(x) = p(2 x) polynomiavaruudessa P 3.Tällöin pätee T ˆp 1 = ˆp 1, T ˆp 2 = ˆp 2, T ˆp 3 = ˆp 3 ja T ˆp 4 = ˆp 4. Täten T :llä on ominaisarvot 1 ja 1. Ominaisarvoa 1 vastaavat ominaisvektorit ovat polynomit 1 ja (1 x) 2, ominaisarvoa 1 vastaavia ominaisvektoreita ovat 1 x ja (1 x) 3. 9 / 22 R. Kangaslampi matriisiteoriaa
Ominaisarvot Jos u ja v ovat lineaarikuvauksen T samaan ominaisarvoon λ liittyviä ominaisvektoreita, niin T (α u + β v) = α T u + β T v = α λ u + β λ v = λ (α u + β v), joten niiden lineaarikombinaatiokin on λ :aan liittyvä ominaisvektori (jos 0). Yhteen ominaisarvoon λ liittyvät ominaisvektorit muodostavatkin nollan kanssa ominaisavaruuden E T (λ) = { v V T v = λ v } = N(T λi ). 10 / 22 R. Kangaslampi matriisiteoriaa
Ominaisarvot Huom: Ominaisarvon geometrinen kertaluku on siis ominaisavaruuden dimensio: m g (λ) = dim(e A (λ)). Matriisin A K n n ominaisarvojen joukkoa eli spektriä merkitään Λ(A) :lla. Tämä on K :n ei-tyhjä osajoukko, jossa on korkeintaan n alkiota. A :n spektraalisäde ρ(a) on suurin A :n ominaisarvojen itseisarvoista eli ρ(a) = max λ. λ Λ(A) 11 / 22 R. Kangaslampi matriisiteoriaa
Ominaisarvot Esimerkki 6 Matriisille A = 1 0 2 0 3 0 2 0 1 laskettiin aiemmin ominaisarvoiksi λ = 3 ja λ = 1. Arvolle λ = 1 saatiin ominaisvektori (1, 0, 1) T ja arvolle λ = 3 ominaisvektorit (1, 0, 1) T ja (0, 1, 0) T. Nyt siis spektri on Λ(A) = { 1, 3} ja spektraalisäde on ρ(a) = max λ Λ(A) λ = 3. Ominaisavaruudet ovat E A ( 1) = N(A + I) = {α(1, 0, 1) T } α R, { E A (3) = N(A 3I) = α(1, 0, 1) T + β(0, 1, 0) T } α, β R. 12 / 22 R. Kangaslampi matriisiteoriaa
Ominaisarvot Seuraava, jo mahdollisesti tuttu tulos, on avuksi muodostettaessa ominaisvektoreista kantoja: Lause 7 Olkoot λ 1,..., λ n lineaarikuvauksen T : V V erisuuria ominaisarvoja ja v 1,..., v n näitä vastaavia ominaisvektoreita. Tällöin v 1,..., v n ovat lineaarisesti riippumattomat. (Todistettu Matriisilaskenta-kurssilla) 13 / 22 R. Kangaslampi matriisiteoriaa
Kertaus: Neliömatriisi A, joilla on n riippumatonta ominaisvektoria, voidaan diagonalisoida. Tämä tarkoittaa, että matriisi A voidaan kirjoittaa muodossa A = SΛS 1, missä matriisin S sarakkeet ovat matriisin A ominaisvektorit, ja matriisi Λ on diagonaalimatriisi, jossa kussakin sarakkeessa on matriisissa S samassa sarakkeessa olevaan ominaisvektoriin liittyvä ominaisarvo. Huom n n-matriisi diagonalisoituu, jos sillä on n lineaarisesti riippumatonta ominaisvektoria. Erityisesti tämä tapahtuu silloin, kun matriisilla on n erisuurta ominaisarvoa, mutta voi siis tapahtua muulloinkin! 14 / 22 R. Kangaslampi matriisiteoriaa
Kertaus: Esimerkki 8 ( ) 1 2 Matriisin A = ominaisarvoa 1 vastaa ominaisvektori 2 1 ( ) ( ) 1 1 ja ominaisarvoa 3 vastaa. Diagonalisoi A. 1 1 Vastaus: A = SΛS 1 = ( 1 1 1 1 ) ( 1 0 0 3 ) ( 1/2 1/2 1/2 1/2 ) 15 / 22 R. Kangaslampi matriisiteoriaa
Kertaus: Jos matriisi on diagonalisoituva, sen potensseja on hyvin näppärä laskea: A 2 = SΛ } S 1 {{ S} ΛS 1 = SΛ 2 S 1 =I A 3 = SΛ } S 1 {{ S} Λ } S 1 {{ S} ΛS 1 = SΛ 3 S 1 =I =I A k = SΛ k S 1 Diagonaalimatriisin potenssit ovat helppoja: Λ k = λ 1 0 0 0... 0 0 0 λ n k = λ k 1 0 0 0... 0 0 0 λ k n. 16 / 22 R. Kangaslampi matriisiteoriaa
Kertaus: Käänteismatriisin löytäminenkin on diagonalisoidulle matriisille helppoa: A 1 = (SΛS 1 ) 1 = SΛ 1 S 1. missä diagonaalimatriisi kääntyy näppärästi, λ 1 0 0 Λ 1 =. 0.. 0 0 0 λ n 1 λ 1 1 0 0 =. 0.. 0. 0 0 λ 1 n 17 / 22 R. Kangaslampi matriisiteoriaa
Kertaus: Esimerkki 9 Laske A 2014, kun A = ( 5 1 0 4 ) Vastaus: A = SΛS 1 = ( 1 1 0 1 ) ( 5 0 0 4 ) ( 1 1 0 1 ), A 2014 = = ( ) ( 1 1 5 2014 0 0 1 0 4 2014 ( 5 2014 5 2014 4 2014 ) 0 4 2014 ) ( 1 1 0 1 ) 18 / 22 R. Kangaslampi matriisiteoriaa
Neliömatriisi A on similaarinen matriisin B kanssa, jos on olemassa säännöllinen matriisi S siten, että B = SAS 1. Tällöin merkitään A B. Muotoa SAS 1 olevaa matriisia kutsutaan A :n similaarimuunnokseksi. Esimerkki 10 Diagonalisoituva matriisi A on similaarinen sellaisen diagonaalimatriisin kanssa, jossa diagonaalilla ovat A:n ominaisarvot. Lineaarioperaattorin matriisiesitykset eri kantojen suhteen ovat keskenään similaariset. 19 / 22 R. Kangaslampi matriisiteoriaa
Lause 11 Matriisien similaarisuus eli on ekvivalenssirelaatio, eli sillä on ominaisuudet: [Refleksiivisyys:] A A kaikilla A K n n. [Symmetrisyys:] A B = B A. [Transitiivisuus:] A B ja B C = A C. Todistus. Harjoitustehtävä 20 / 22 R. Kangaslampi matriisiteoriaa
Similaarisilla matriiseilla on monia yhteisiä ominaisuuksia. Lause 12 Keskenään similaarisilla matriiseilla on sama karakteristinen polynomi ja siten myös samat ominaisarvot samoine algebrallisine kertalukuineen. Myös ominaisarvojen geometriset kertaluvut ovat samat. Todistus. Taululla. 21 / 22 R. Kangaslampi matriisiteoriaa
Lause 13 Matriisi on similaarinen diagonaalimatriisin kanssa täsmälleen silloin, kun sen ominaisvektoreista voidaan muodostaa kanta. Näin on erityisesti silloin, kun ominaisarvot ovat erisuuret. Lause 14 Matriisi on similaarinen diagonaalimatriisin kanssa täsmälleen silloin, kun kaikille ominaisarvoille pätee m g (λ) = m a (λ). 22 / 22 R. Kangaslampi matriisiteoriaa