4 (x 1)(y 3) (y 3) (x 1)(y 3)3 5 3

Samankaltaiset tiedostot
a) on lokaali käänteisfunktio, b) ei ole. Piirrä näiden pisteiden ympäristöön asetetun neliöruudukon kuva. VASTAUS:

13. Taylorin polynomi; funktioiden approksimoinnista. Muodosta viidennen asteen Taylorin polynomi kehityskeskuksena origo funktiolle

BM20A5840 Usean muuttujan funktiot ja sarjat Harjoitus 1, Kevät 2018

y = 3x2 y 2 + sin(2x). x = ex y + e y2 y = ex y + 2xye y2

läheisyydessä. Piirrä funktio f ja nämä approksimaatiot samaan kuvaan. Näyttääkö järkeenkäyvältä?

Matematiikan peruskurssi (MATY020) Harjoitus 10 to

Kuva 1: Funktion f tasa-arvokäyriä. Ratkaisu. Suurin kasvunopeus on gradientin suuntaan. 6x 0,2

12. Hessen matriisi. Ääriarvoteoriaa

Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x

2 Osittaisderivaattojen sovelluksia

Tutki, onko seuraavilla kahden reaalimuuttujan reaaliarvoisilla funktioilla raja-arvoa origossa: x 2 + y 2, d) y 2. x + y, c) x 3

Maksimit ja minimit 1/5 Sisältö ESITIEDOT: reaalifunktiot, derivaatta

Pisteessä (1,2,0) osittaisderivaatoilla on arvot 4,1 ja 1. Täten f(1, 2, 0) = 4i + j + k. b) Mihin suuntaan pallo lähtee vierimään kohdasta

DI matematiikan opettajaksi: Täydennyskurssi, kevät 2010 Luentorunkoa ja harjoituksia viikolle 11: ti klo 13:00-15:30

Matematiikka B1 - TUDI

f(x, y) = x 2 y 2 f(0, t) = t 2 < 0 < t 2 = f(t, 0) kaikilla t 0.

Matemaattinen Analyysi

f(x 1, x 2 ) = x x 1 k 1 k 2 k 1, k 2 x 2 1, 0 1 f(1, 1)h 1 = h = h 2 1, 1 12 f(1, 1)h 1 h 2

12. Derivointioperaattoreista geometrisissa avaruuksissa

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 6: Ääriarvojen luokittelu. Lagrangen kertojat.

3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =

Tilavuus puolestaan voidaan esittää funktiona V : (0, ) (0, ) R,

KERTAUSHARJOITUKSIA. 1. Rationaalifunktio a) ( ) 2 ( ) Vastaus: a) = = 267. a) a b) a. Vastaus: a) a a a a 268.

Antti Rasila. Kevät Matematiikan ja systeemianalyysin laitos Aalto-yliopisto. Antti Rasila (Aalto-yliopisto) MS-A0204 Kevät / 16

MAA7 Kurssikoe Jussi Tyni Tee B-osion konseptiin pisteytysruudukko! Kaikkiin tehtäviin välivaiheet näkyviin! Laske huolellisesti!

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /

r > y x z x = z y + y x z y + y x = r y x + y x = r

VASTAA YHTEENSÄ KUUTEEN TEHTÄVÄÄN

BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 5, Syksy 2016

Matematiikan tukikurssi

Funktion raja-arvo ja jatkuvuus Reaali- ja kompleksifunktiot

f x da, kun A on tason origokeskinen yksikköympyrä, jonka kehällä funktion f arvot saadaan lausekkeesta f (x, y) = 2x 3y 2.

Funktion suurin ja pienin arvo DERIVAATTA,

Differentiaali- ja integraalilaskenta 2 (CHEM) MS-A0207 Hakula/Vuojamo Kurssitentti, 12.2, 2018, arvosteluperusteet

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo 10-13

Funktiojonot ja funktiotermiset sarjat Funktiojono ja funktioterminen sarja Pisteittäinen ja tasainen suppeneminen

MATEMATIIKAN PERUSKURSSI II

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta

H7 Malliratkaisut - Tehtävä 1

MAT Laaja Matematiikka 1U. Hyviä tenttikysymyksiä T3 Matemaattinen induktio

Taylorin sarja ja Taylorin polynomi

Derivaatan sovellukset (ääriarvotehtävät ym.)

Matematiikan tukikurssi

, on säännöllinen 2-ulotteinen pinta. Määrää T x0 pisteessä x 0 = (0, 1, 1).

MATEMATIIKAN JA TILASTOTIETEEN LAITOS Analyysi I Harjoitus alkavalle viikolle Ratkaisuehdotuksia (7 sivua) (S.M)

6. Toisen ja korkeamman kertaluvun lineaariset

3 x 1 < 2. 2 b) b) x 3 < x 2x. f (x) 0 c) f (x) x + 4 x Etsi käänteisfunktio (määrittely- ja arvojoukkoineen) kun.

Tekijä Pitkä matematiikka

Helsingin, Itä-Suomen, Jyväskylän, Oulun, Tampereen ja Turun yliopisto Matematiikan valintakoe klo Ratkaisut ja pisteytysohjeet

Aalto-yliopiston perustieteiden korkeakoulu Matematiikan ja systeemianalyysin laitos. MS-A0203 Differentiaali- ja integraalilaskenta 2, kevät 2016

Matematiikan tukikurssi, kurssikerta 3

x = (1 t)x 1 + tx 2 x 1 x 2

BM20A0300, Matematiikka KoTiB1

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

Differentiaali- ja integraalilaskenta

lnx x 1 = = lim x = = lim lim 10 = x x0

MATEMATIIKAN KOE PITKÄ OPPIMÄÄRÄ Merkitään f(x) =x 3 x. Laske a) f( 2), b) f (3) ja c) YLIOPPILASTUTKINTO- LAUTAKUNTA

Sovellutuksia Pinta-alan ja tilavuuden laskeminen Keskiö ja hitausmomentti

Yhtälön oikealla puolella on säteen neliö, joten r. = 5 eli r = ± 5. Koska säde on positiivinen, niin r = 5.

3 Derivoituvan funktion ominaisuuksia

11 MATEMAATTINEN ANALYYSI

Matemaattisten menetelmien hallinnan tason testi.

2 Pistejoukko koordinaatistossa

Todista suoraan integraalin määritelmään perustuen tasointegraalin ominaisuus. λ f = λ f,

Vektoriarvoiset funktiot Vektoriarvoisen funktion jatkuvuus ja derivoituvuus

Osoita, että kaikki paraabelit ovat yhdenmuotoisia etsimällä skaalauskuvaus, joka vie paraabelin y = ax 2 paraabelille y = bx 2. VASTAUS: , b = 2 2

Johdatus tekoälyn taustalla olevaan matematiikkaan

Vektorilaskenta, tentti

d Todista: dx xn = nx n 1 kaikilla x R, n N Derivaatta Derivaatta ja differentiaali

ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e) A =

Differentiaalilaskennan tehtäviä

Differentiaalilaskenta 1.

Matematiikan peruskurssi (MATY020) Harjoitus 7 to

Differentiaali- ja integraalilaskenta 3 Mallit laskuharjoitusviikkoon 5 /

sin(x2 + y 2 ) x 2 + y 2

MAA7 HARJOITUSTEHTÄVIÄ

ja B = 2 1 a) A + B, b) AB, c) BA, d) A 2, e) A T, f) A T B, g) 3A (e)

Mat Matematiikan peruskurssi K2

Talousmatematiikan perusteet: Luento 14. Rajoitettu optimointi Lagrangen menetelmä: yksi yhtälörajoitus Lagrangen menetelmä: monta yhtälörajoitusta

Matematiikan perusteet taloustieteilij oille I

Matemaattinen Analyysi

Talousmatematiikan perusteet: Luento 14. Rajoittamaton optimointi Hessen matriisi Ominaisarvot Ääriarvon laadun tarkastelu

Differentiaali- ja integraalilaskenta 1 Ratkaisut 3. viikolle /

A = (a 2x) 2. f (x) = 12x 2 8ax + a 2 = 0 x = 8a ± 64a 2 48a x = a 6 tai x = a 2.

MATP153 Approbatur 1B Harjoitus 6 Maanantai

3. Useamman muuttujan funktioiden differentiaalilaskentaa Olkoon A R n. Kuvaus f : A R on n:n muuttujan reaalifunktio. Se kuvaa

y=-3x+2 y=2x-3 y=3x+2 x = = 6

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 1: Moniulotteiset integraalit

Mapu 1. Laskuharjoitus 3, Tehtävä 1

Matematiikan tukikurssi

l 1 2l + 1, c) 100 l=0

Vastaus: 10. Kertausharjoituksia. 1. Lukujonot lim = lim n + = = n n. Vastaus: suppenee raja-arvona Vastaus:

= 9 = 3 2 = 2( ) = = 2

Jouni Sampo. 5. helmikuuta 2014

MS-A0207 Differentiaali- ja integraalilaskenta 2 Luento 5: Gradientti ja suunnattu derivaatta. Vektoriarvoiset funktiot. Taylor-approksimaatio.

Oletetaan ensin, että tangenttitaso on olemassa. Nyt pinnalla S on koordinaattiesitys ψ, jolle pätee että kaikilla x V U

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009

Matematiikan perusteet taloustieteilijöille II Harjoituksia kevät ja B = Olkoon A = a) A + B b) AB c) BA d) A 2 e) A T f) A T B g) 3A

MS-A0107 Differentiaali- ja integraalilaskenta 1 (CHEM)

Transkriptio:

. Taylorin polynomi; funktion ääriarvot.1. Taylorin polynomi 94. Kehitä funktio f (x,y) = x 2 y Taylorin polynomiksi kehityskeskuksena piste ( 1,2) a) laskemalla osittaisderivaatat, b) kirjoittamalla muuttujat muotoon x = 1 + (x + 1), y = 2 + (y 2). 95. Laske Taylorin polynomit seuraavissa tapauksissa: a) f (x,y) = 2x 4 5y + 2xy 2, keskus = (0,0), aste = ; b) f (x,y) = y 2 lnx, keskus = (1,0), aste = 4; c) f (x,y) = x y, keskus = (1,), aste = 4. a) 2xy 2 5y ; b) (x 1)y 2 1 2 (x 1)2 y 2 ; c) + 2 (x 1) + 6 (y ) + 8 (x 1)2 + 4 (x 1)(y ) 72 (y )2 16 (x 1) + 16 (x 1)2 (y ) 48 (x 1)(y )2 + 42 (y ) + 128 (x 1)4 96 (x 1) (y ) 192 (x 1)2 (y ) 2 + 288 (x 1)(y ) 5 1068 (y )4. 96. Laske termin (x + π) 2 (y π) 2 kerroin funktion f (x,y) = sin(xcosy) tekijöiden x + π ja y π mukaan etenevässä Taylorin kehitelmässä. 97. Muodosta funktion e x+2y toisen asteen Taylorin polynomi pisteessä (0,0) sekä Taylorin lauseen mukainen lauseke funktion ja polynomin erotukselle. Etsi erotuksen itseisarvolle yläraja neliössä 1 < x < 1, 1 < y < 1. 98. Etsi funktion f (x,y,z) = 1 x + y + z kolmannen asteen Taylorin polynomi pisteessä (1,0,0) laskemalla kertoimet osittaisderivaattojen avulla. 99. Etsi funktion f (x,y,z) = 1 x + y + z kolmannen asteen Taylorin polynomi pisteessä (1, 0, 0) käyttämällä hyväksi yhden muuttujan funktion 1/(1 + t) Maclaurinin polynomia.

100. Muodosta funktiolle f (x,y,z) = 1 x + y + z = 1 1 + (x 1) + y + z neljännen asteen Taylorin polynomi pisteessä (1,0,0) käyttämällä hyväksi funktion 1/(1 +t) Taylorin polynomia. Laske tämän avulla f xyzz (1,0,0). 101. Muodosta funktion f (x, y) = sin(xy) kuudennen asteen Taylorin polynomi pisteessä (0, 0) käyttämällä funktion sint Taylorin polynomia. Laske tämän avulla kaikki funktion kuudennen kertaluvun osittaisderivaatat origossa. 102. Muodosta funktiolle f (x,y) = e xy siny kolmannen asteen Taylorin polynomi kehityskeskuksena origo käyttämällä yhden muuttujan funktioiden e t ja sint Maclaurinin polynomeja. 10. Laske funktion f (x,y) = ln(1+x 2 +y 2 ) osittaisderivaatta f xxxxxxyy (0,0) muodostamalla funktiolle riittävän korkeata astetta oleva Taylorin polynomi. Muodosta tätä varten ensin funktion ln(1 +t) Taylorin polynomi. 1440. 104. Yhtälö x 2 + 2y 2 + z 2 = 6 määrittelee eräässä pisteen (1,1,1) ympäristössä funktion z = f (x,y). Muodosta tämän funktion toisen asteen Taylorin polynomi pisteessä (1,1). 105. Laske funktion f (x,y,z) origokeskisen Taylorin polynomin neljännen asteen termien kertoimet. Vrt. näitä ns. multinomikertoimiin. 106. Tarkastellaan funktiota f : R 2 R pisteen (x 0,y 0 ) ympäristössä. Merkitään h = (x x 0,y y 0 ) = (h x,h y ). Osoita, että jos tässä ympäristössä on voimassa f (x,y) = A 0 + A 1 (h x,h y ) + + A n (h x,h y ) + u(x,y) h n+1, f (x,y) = B 0 + B 1 (h x,h y ) + + B n (h x,h y ) + v(x,y) h n+1, missä A j ja B j ovat astetta j olevia homogeenisia kahden muuttujan polynomeja ja funktiot u ja v ovat rajoitettuja, niin kehitelmät ovat identtiset.

.2. Funktion suhteelliset ääriarvot 107. Luokittele seuraavat neliömuodot: a) 2x 2 7xy 15y 2, b) 6xy 9x 2 y 2, c) 4xy 2x 2 y 2. Missä neliömuodot ovat = 0? 108. Luokittele seuraavat neliömuodot: a) 2x 2 + 2y 2 + z 2 4xy + 6yz, b) x 2 + 2y 2 + z 2 2yz + 2zx. 109. Etsi funktion f (x,y) = 2xy x 2 y 4 lokaalit ääriarvot. Piirrä funktion kuvaaja. 110. Etsi seuraaville funktioille f ne pisteet, joissa grad f = O, ja tutki lokaalin ääriarvon esiintymistä: a) y 4 + x 2 2xy, b) x + xy + y 2 x 9y, c) x 4 + y 4 + 4xy 2y 2, d) (x + 2y 2)(x 2)(y 1), e) xy 8 + 1 x 1 y, f) (x + y)e x2 y 2. 111. f (x,y) = (x 2 y 2 )e ( x2 y 2 )/2 lokaalit ääriarvokohdat, näiden laatu sekä ääriarvot. Suhteellinen maksimi f (± 2,0) = 2/e, suhteellinen minimi f (0,± 2) = 2/e. 112. Millä vakion a arvoilla funktiolla on suhteellinen minimikohta origossa? f (x,y) = e x2 2cosy + axy 11. Tutki funktion f (x,y) = x +axy 2 x 2 y 2 +4 suhteellisia ääriarvokohtia vakion a eri arvoilla. Määritä ääriarvojen laatu neliömuotojen teoriaa käyttäen. Onnistutaanko tällöin kaikissa tapauksissa?

114. Tutki, onko piste (2,0) funktion f (x,y) = x + 2 xy2 x 2 y 2 + 4 ääriarvopiste. Millainen tulos saadaan neliömuotojen teorian avulla? Piirrä pinnasta korkeuskäyräkuva. 115. Tutki neliömuotoja käyttäen, onko origo suhteellinen ääriarvo funktiolle f (x,y,z) = e x2 + e y2 + e z2 xy. Jos on, onko kyseessä maksimi vai minimi? 116. Tutki, onko origo suhteellinen ääriarvokohta funktiolle f (x,y) = 5 k=1 (x + xy 2 ) k. 117. Osoita, että funktiolla f (x,y) = (x 2 y)(2x 2 y) ei ole ääriarvoa origossa, vaikka sen rajoittumalla jokaiselle origon kautta kulkevalle suoralle on suhteellinen minimi. f (x,kx) = 2x 4 kx + k 2 x 2, f (0,y) = y 2 ; funktio saa paraabelien y = x 2, y = 2x 2 valissä negatiivisia arvoja, muualla paraabelin ulkopuolella positiivisia... Absoluuttiset ääriarvot 118. Etsi seuraavien funktioiden maksimi ja minimi annetussa joukossa: a) xy + x y, {(x,y) x 2 + y 2 1, x + y + 1 0, x y 1 0}; b) x 2 2y 2 xy x, {(x,y) x 1, y 1, x + y 1}; c) + x x 2 y 2, {(x,y) 2x 2 + y 2 1}; d) y 2 2x 2, {(x,y) x 2 y 1, x + y 1}; e) xy(a x y), {(x,y) x a, y a}; f) x + y, {(x,y) 0 xy 1, x 2 + y 2 4}; g) sinx + siny sin(x + y), {(x,y) 0 x π, 0 y π}; h) (x + y)e y, {(x,y) x 1, y 1}; i) xsinz + ycosz, {(x,y,z) x 2 + y 2 + z 2 1}. a) 1, 1 2 2; b) 17 8, 4; c) 1 4, 7 4 ; d) 2, ; e) a, a ; f) 8, 8; g) 2, 0; h) 2e, 1; i) 1, 1.

119. suuurin ja pienin arvo ympyrässä x 2 + y 2 R 2. f (x,y) = xe x2 y 2 120. f (x,y) = x 2 + y 2 + 2axy suurin ja pienin arvo ympyrässä {(x,y) x 2 + y 2 1} kaikilla vakion a arvoilla. 121. Paraboloidisegmentistä x 2 + 4y 2 z 1 sahataan suorakulmainen särmiö, jonka sivutahkot ovat koordinaattitasojen suuntaiset. Määritä tämän suurin mahdollinen tilavuus. Mitkä ovat tällöin särmiön mitat? maxv = 1/4; mitat 1, 1/2, 1/2. 122. Suorakulmaisen särmiön sivutahkot ovat koordinaattitasojen suuntaiset ja se sijaitsee ellipsoidin x 2 /a 2 + y 2 /b 2 + z 2 /c 2 = 1 sisässä. Miten suuri voi särmiön tilavuus olla? Mitkä ovat tällöin sen särmien pituudet? 8 abc; särmät 2a/, 2b/, 2c/. 12. suurin ja pienin arvo joukossa f (x,y) = x x 2 + y 2 mikäli nämä ovat olemassa. a) {(x,y) 0 < x 2 + y 2 1}, b) {(x,y) x 2 + y 2 1}, c) R 2 \ {(0,0)}, a) Ei ole; b) 1, 1; c) ei ole. 124. a) f (x,y) = (x + y)e x2 y 2, b) f (x,y) = suurin ja pienin arvo tasossa R 2, mikäli nämä ovat olemassa. 125. Osoita, että reaalilukujoukon maksimi on olemassa ja määritä se. Maksimi on 1/ 2e pisteessä (1/ 2,1). {xye x2y x 0, 0 y 1} 1 + 2x + 2y 1 + x 2 + y 2

126. Tutki funktion f (x,y) = xy 2 (1 x) y absoluuttista maksimia ja minimiä, kun 0 x 1, y 0. Minimi = 0, maksimia ei ole (supremum = ).