Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia. TKK (c) Ilkka Mellin (2005) 1

Samankaltaiset tiedostot
Normaalijakaumasta johdettuja jakaumia

Lisää Diskreettejä jakaumia Lisää Jatkuvia jakaumia Normaalijakaumasta johdettuja jakaumia

Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia. Normaalijakaumasta johdettuja jakaumia: Mitä opimme?

Johdatus todennäköisyyslaskentaan Jatkuvia jakaumia. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Estimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus todennäköisyyslaskentaan Kertymäfunktio. TKK (c) Ilkka Mellin (2005) 1

Estimointi. Estimointi. Estimointi: Mitä opimme? 2/4. Estimointi: Mitä opimme? 1/4. Estimointi: Mitä opimme? 3/4. Estimointi: Mitä opimme?

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Jatkuvia jakaumia

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Kertymäfunktio. TKK (c) Ilkka Mellin (2007) 1

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2005) 1

Ilkka Mellin Tilastolliset menetelmät Osa 2: Otokset, otosjakaumat ja estimointi Estimointi

Johdatus tilastotieteeseen Testit suhdeasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Johdatus todennäköisyyslaskentaan Momenttiemäfunktio ja karakteristinen funktio. TKK (c) Ilkka Mellin (2005) 1

Testejä suhdeasteikollisille muuttujille

Johdatus todennäköisyyslaskentaan Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2004) 1

Johdatus tilastotieteeseen Väliestimointi. TKK (c) Ilkka Mellin (2005) 1

Johdatus tilastotieteeseen Testit laatueroasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Osa 2: Otokset, otosjakaumat ja estimointi

Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia. Moniulotteisia todennäköisyysjakaumia: Mitä opimme?

Moniulotteisia todennäköisyysjakaumia

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia

Satunnaismuuttujien muunnokset ja niiden jakaumat

Johdatus todennäköisyyslaskentaan Moniulotteisia todennäköisyysjakaumia. TKK (c) Ilkka Mellin (2005) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Momenttiemäfunktio ja karakteristinen funktio

Testit järjestysasteikollisille muuttujille

tilastotieteen kertaus

Todennäköisyyslaskun kertaus. Vilkkumaa / Kuusinen 1

Testit laatueroasteikollisille muuttujille

Tilastotieteen kertaus. Kuusinen/Heliövaara 1

Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus KE (2014) 1

Estimointi. Vilkkumaa / Kuusinen 1

Tilastotieteen kertaus. Vilkkumaa / Kuusinen 1

Käytetään satunnaismuuttujaa samoin kuin tilastotieteen puolella:

Sovellettu todennäköisyyslaskenta B

6. laskuharjoitusten vastaukset (viikot 10 11)

Johdatus tilastotieteeseen Tilastolliset testit. TKK (c) Ilkka Mellin (2005) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat. Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2007) 1

Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio

Ilkka Mellin (2008) 1/5

Sovellettu todennäköisyyslaskenta B

Tilastollinen aineisto Luottamusväli

Todennäköisyysjakaumia

Sovellettu todennäköisyyslaskenta B

Tilastolliset testit. Tilastolliset testit. Tilastolliset testit: Mitä opimme? 2/5. Tilastolliset testit: Mitä opimme? 1/5

Johdatus todennäköisyyslaskentaan Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2005) 1

3. laskuharjoituskierros, vko 6, ratkaisut

Ilkka Mellin Tilastolliset menetelmät. Osa 3: Tilastolliset testit. Tilastollinen testaus. TKK (c) Ilkka Mellin (2007) 1

5/11 6/11 Vaihe 1. 6/10 4/10 6/10 4/10 Vaihe 2. 5/11 6/11 4/11 7/11 6/11 5/11 5/11 6/11 Vaihe 3

Todennäköisyyslaskun kertaus. Heliövaara 1

Tilastollinen testaus. Vilkkumaa / Kuusinen 1

Johdatus todennäköisyyslaskentaan Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 1

χ = Mat Sovellettu todennäköisyyslasku 11. harjoitukset/ratkaisut

Väliestimointi (jatkoa) Heliövaara 1

Harjoitus 2: Matlab - Statistical Toolbox

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi. Viikko 5

Verkot ja todennäköisyyslaskenta Verkko Verkko eli graafi muodostuu pisteiden joukosta V, särmien joukosta A ja insidenssikuvauksesta : A V V jossa

Jos nyt on saatu havaintoarvot Ü ½ Ü Ò niin suurimman uskottavuuden

Sovellettu todennäköisyyslaskenta B

Mat Sovellettu todennäköisyyslasku A. Moniulotteiset jakaumat. Avainsanat:

Johdatus todennäköisyyslaskentaan Jakaumien tunnusluvut. TKK (c) Ilkka Mellin (2005) 1

Jatkuvat satunnaismuuttujat

Sovellettu todennäköisyyslaskenta B

2. Jatkoa HT 4.5:teen ja edelliseen tehtavään: Määrää X:n kertymäfunktio F (x) ja laske sen avulla todennäköisyydet

30A02000 Tilastotieteen perusteet

Miten voidaan arvioida virheellisten komponenttien osuutta tuotannossa? Miten voidaan arvioida valmistajan kynttilöiden keskimääräistä palamisaikaa?

OPETUSSUUNNITELMALOMAKE

031021P Tilastomatematiikka (5 op) viikko 3

Moniulotteiset satunnaismuuttujat ja jakaumat

Johdatus todennäköisyyslaskentaan Todennäköisyyslaskenta ja puudiagrammit. TKK (c) Ilkka Mellin (2005) 1

Ilkka Mellin Todennäköisyyslaskenta. Osa 3: Todennäköisyysjakaumia. Diskreettejä jakaumia. TKK (c) Ilkka Mellin (2007) 1

OPETUSSUUNNITELMALOMAKE

ABHELSINKI UNIVERSITY OF TECHNOLOGY

Todennäköisyyden ominaisuuksia

4.1. Olkoon X mielivaltainen positiivinen satunnaismuuttuja, jonka odotusarvo on

Tehtäväsarja I Tehtävät 1-5 perustuvat monisteen kappaleisiin ja tehtävä 6 kappaleeseen 2.8.

MS-A0501 Todennäköisyyslaskennan ja tilastotieteen peruskurssi

MAT Todennäköisyyslaskenta Tentti / Kimmo Vattulainen

Sovellettu todennäköisyyslaskenta B

MTTTA1 Tilastomenetelmien perusteet 5 op Luento , osa 1. 1 Kokonaisuudet johon opintojakso kuuluu

MTTTA1 Tilastomenetelmien perusteet 5 op Luento Kokonaisuudet johon opintojakso kuuluu

Sovellettu todennäköisyyslaskenta B

Mat Tilastollisen analyysin perusteet, kevät 2007

Johdatus tilastotieteeseen Testit järjestysasteikollisille muuttujille. TKK (c) Ilkka Mellin (2004) 1

Kertausluento. Tilastollinen päättely II - 2. kurssikoe

Teema 7: Todennäköisyyksien laskentaa

Tilastolliset menetelmät. Osa 1: Johdanto. Johdanto tilastotieteeseen KE (2014) 1

Mat Tilastollisen analyysin perusteet, kevät 2007

Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat. Moniulotteiset satunnaismuuttujat ja todennäköisyysjakaumat

4. laskuharjoituskierros, vko 7, ratkaisut

0 kun x < 0, 1/3 kun 0 x < 1/4, 7/11 kun 1/4 x < 6/7, 1 kun x 1, 1 kun x 6/7,

Matemaattinen tilastotiede. Erkki Liski Matematiikan, Tilastotieteen ja Filosofian Laitos Tampereen Yliopisto

(b) Tarkista integroimalla, että kyseessä on todella tiheysfunktio.

Tilastollisia peruskäsitteitä ja Monte Carlo

VALTIOTIETEELLINEN TIEDEKUNTA TILASTOTIETEEN VALINTAKOE Ratkaisut ja arvostelu < X 170

Tilastollinen päättely II, kevät 2017 Harjoitus 1A

Tutkimustiedonhallinnan peruskurssi

Ilkka Mellin Todennäköisyyslaskenta Osa 2: Satunnaismuuttujat ja todennäköisyysjakaumat Moniulotteiset satunnaismuuttujat ja jakaumat

D ( ) Var( ) ( ) E( ) [E( )]

Tilastollinen päättömyys, kevät 2017 Harjoitus 6B

Gripenberg. MS-A0502 Todennäköisyyslaskennan ja tilastotieteen peruskurssi Tentti ja välikoeuusinta

Transkriptio:

Johdatus todennäköisyyslaskentaan Normaalijakaumasta johdettuja jakaumia TKK (c) Ilkka Mellin (2005) 1

Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin (2005) 2

Normaalijakaumasta johdettuja jakaumia: Mitä opimme? 1/2 Tutustumme tässä luvussa seuraaviin normaalijakaumasta (ks. lukua Jatkuvia jakaumia) johdettuihin jakaumiin: χ 2 -jakauma F-jakauma t-jakauma Tarkastelun kohteena ovat seuraavat χ 2 -, F-ja t-jakaumien ominaisuudet: (i) Jakauman määrittely (ii) Odotusarvo, varianssi ja standardipoikkeama (iii) Tiheysfunktion kuvaaja TKK (c) Ilkka Mellin (2005) 3

Normaalijakaumasta johdettuja jakaumia: Mitä opimme? 2/2 Lisäksi tarkastelemme todennäköisyyksien määräämistä χ 2 -, F-ja t- jakaumista. Koska χ 2 -, F-ja t-jakaumien tiheysfunktioiden integraalifunktioita ei tunneta, χ 2 -, F-ja t-jakaumiin liittyvien todennäköisyyksien määräämisessä on käytettävä jotakin numeerista menetelmää. Siksi useimmissa tilastotieteen ja todennäköisyyslaskennan oppikirjoissa on valmiit taulukot, joissa on taulukoituna χ 2 -, F-ja t- jakaumien kertymäfunktioiden arvoja ja niihin liittyviä todennäköisyyksiä. χ 2 -, F-ja t-jakaumien tiheysfunktioiden lausekkeet johdetaan luvussa Satunnaismuuttujien muunnokset ja niiden jakaumat. TKK (c) Ilkka Mellin (2005) 4

Normaalijakaumasta johdettuja jakaumia: Esitiedot Esitiedot: ks. seuraavia lukuja: Satunnaismuuttujat ja todennäköisyysjakaumat Kertymäfunktio Jakaumien tunnusluvut Jatkuvia jakaumia TKK (c) Ilkka Mellin (2005) 5

Normaalijakaumasta johdettuja jakaumia: Lisätiedot χ 2 -, F-ja t-jakaumien tiheysfunktioiden lausekkeiden johtaminen vaatii satunnaismuuttujan 2. potenssin sekä riippumattomien satunnaismuuttujien summan ja osamäärän jakaumien määräämistä; ks. lisätietoja luvusta Satunnaismuuttujien muunnokset ja niiden jakaumat Huomautus: Tarkoitamme satunnaismuuttujien riippumattomuudella sitä, että yhdenkään satunnaismuuttujan saamat arvot eivät riipu siitä, mitä arvoja muut satunnaismuuttujat saavat; käsite täsmennetään luvussa Kaksiulotteiset todennäköisyysjakaumat. TKK (c) Ilkka Mellin (2005) 6

Normaalijakaumasta johdettuja jakaumia >> Johdanto χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin (2005) 7

Johdanto Avainsanat χ 2 -jakauma F-jakauma Jakaumien määritteleminen t-jakauma TKK (c) Ilkka Mellin (2005) 8

Johdanto Jakaumien määritteleminen normaalijakauman avulla Useat tilastotieteen keskeiset todennäköisyysjakaumat voidaan määritellä normaalijakauman avulla. Tällaisia ovat esimerkiksi χ 2 -, F-ja t-jakaumat, joilla on keskeinen rooli otosjakaumien teoriassa, estimoinnissa ja testauksessa (ks. esim. lukuja Otos ja otosjakaumat, Estimointi ja Tilastollisten hypoteesien testaus). Tarkastelemme seuraavien jakaumien määrittelemistä ja ominaisuuksia: χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin (2005) 9

Normaalijakaumasta johdettuja jakaumia Johdanto >> χ 2 -jakauma F-jakauma t-jakauma TKK (c) Ilkka Mellin (2005) 10

χ 2 -jakauma Avainsanat χ 2 -jakauma Normaalijakauma Odotusarvo Standardipoikkeama Standardoitu normaalijakauma Tiheysfunktio Todennäköisyyksien määrääminen χ 2 -jakaumasta Vapausasteet Varianssi TKK (c) Ilkka Mellin (2005) 11

χ 2 -jakauma χ 2 -jakauman määritelmä 1/2 Olkoot X i, i = 1, 2,, n riippumattomia, standardoitua normaalijakaumaa N(0,1) (ks. lukua Jatkuvia jakaumia) noudattavia satunnaismuuttujia. Tällöin X i ~ N(0,1), i = 1,2,, n X, X,, X 1 2 n TKK (c) Ilkka Mellin (2005) 12

χ 2 -jakauma χ 2 -jakauman määritelmä 2/2 Olkoon X n = X i= 1 2 i N(0,1)-jakautuneiden, riippumattomien satunnaismuuttujien X i, i = 1, 2,, nneliösumma. Tällöin satunnaismuuttuja X noudattaa χ 2 -jakaumaa (Khiin neliö -jakaumaa) n:llä vapausasteella. Merkintä: X χ 2 (n) TKK (c) Ilkka Mellin (2005) 13

χ 2 -jakauma χ 2 -jakauman vapausasteet χ 2 -jakauman vapausasteiden lukumäärä n viittaa yhteenlaskettavien lukumäärään χ 2 -jakauman määrittelevässä neliösummassa. Vapausasteiden lukumäärä n on χ 2 -jakauman muodon määräävä parametri. TKK (c) Ilkka Mellin (2005) 14

χ 2 -jakauma Odotusarvo, varianssi ja standardipoikkeama Olkoon X χ 2 (n). Odotusarvo: E( X ) = n Varianssi ja standardipoikkeama: 2 Var( X ) = D ( X) = 2n D( X) = 2n TKK (c) Ilkka Mellin (2005) 15

χ 2 -jakauma Tiheysfunktion kuvaaja Kuva oikealla esittää χ 2 -jakauman χ 2 (n) tiheysfunktiota välillä [0, 10], kun vapausasteiden lukumäärällä n on seuraavat arvot: (i) n = 1 (ii) n = 2 (iii) n = 5 Jakauman odotusarvo: E( X ) = n 0.6 0.4 0.2 0 χ 2 (n) χ 2 (1) χ 2 (2) χ 2 (5) 0 2 4 6 8 10 TKK (c) Ilkka Mellin (2005) 16

χ 2 -jakauma Tiheysfunktion ja sen kuvaajan ominaisuuksia χ 2 -jakauman tiheysfunktio f(x) on positiivinen kaikille positiivisille argumentin arvoille: f(x) > 0, x > 0 Jos vapausasteiden lukumäärä n = 1, 2 niin tiheysfunktio on monotonisesti laskeva kaikille x 0. Jos vapausasteiden lukumäärä n 3 niin tiheysfunktio on yksihuippuinen ja sillä on maksimi jossakin pisteessä x > 0. TKK (c) Ilkka Mellin (2005) 17

χ 2 -jakauma Todennäköisyyksien määrääminen χ 2 -jakaumasta 1/2 Todennäköisyydet voidaan määrätä χ 2 -jakaumasta jakauman kertymäfunktion avulla. Olkoon X χ 2 (n). Olkoon satunnaismuuttujan X kertymäfunktio F Chi (x ; n) = Pr(X x) Huomautus 1: Merkinnällä F Chi (x ; n) on haluttu korostaa χ 2 -jakauman riippuvuutta sen vapausasteiden lukumäärästä n. Huomautus 2: χ 2 -jakauman tiheysfunktion integraalifunktiota ei tunneta, joten χ 2 -jakauman kertymäfunktion määräämiseen on käytettävä jotakin numeerista menetelmää. TKK (c) Ilkka Mellin (2005) 18

χ 2 -jakauma Todennäköisyyksien määrääminen χ 2 -jakaumasta 2/2 Kaikkien χ 2 -jakaumaan liittyvien tapahtumien todennäköisyydet saadaan todennäköisyyksistä Pr(X x) = F Chi (x ; n) todennäköisyyslaskennan laskusääntöjen avulla. Esimerkiksi Pr( a X b) = F ( b) F ( a) Chi Chi TKK (c) Ilkka Mellin (2005) 19

χ 2 -jakauma Todennäköisyyksien määrääminen χ 2 -jakaumasta: Taulukot 1/2 χ 2 -jakauman taulukot sisältävät tavallisesti argumentin x arvoja taulukoituna useille vapausasteiden lukumäärille n, mutta vain muutamille kertymäfunktion F Chi arvoille. Siten taulukot mahdollistavat seuraavan tehtävän ratkaisemisen (taulukkokohtaisin rajoituksin): Määrää x, kun todennäköisyys Pr(X x) = F Chi (x ; n) on annettu. TKK (c) Ilkka Mellin (2005) 20

χ 2 -jakauma Todennäköisyyksien määrääminen χ 2 -jakaumasta: Taulukot 2/2 Koska χ 2 -jakaumaa käytetään tavallisesti väliestimoinnin tai testauksen yhteydessä, χ 2 -jakauman taulukoihin on yleensä taulukoitu sellaisia argumentin x arvoja, jotka vastaavat todennäköisyyden Pr(X x) = F Chi (x ; n) komplementtitodennäköisyyttä p = Pr(X x) = 1 F Chi (x ; n) TKK (c) Ilkka Mellin (2005) 21

χ 2 -jakauma Todennäköisyyksien määrääminen χ 2 -jakaumasta: Esimerkki Kuva oikealla esittää χ 2 -jakauman χ 2 (10) tiheysfunktiota välillä [0, 35]. χ 2 -jakauman taulukoista saadaan: Alueen A pinta-ala = Pr(3.940 X 18.307) = FChi (18.307;10) FChi (3.940;10) = 0.95 0.05 = 0.9 0.12 0.1 0.08 0.06 0.04 0.02 0 χ 2 (10) 0.05 A = 0.9 0.05 0 5 10 15 20 25 30 35 3.940 18.307 TKK (c) Ilkka Mellin (2005) 22

χ 2 -jakauma Todennäköisyyksien määrääminen χ 2 -jakaumasta: Ohjelmat Olkoon X χ 2 (n). Monet tietokoneohjelmat mahdollistavat seuraavien tehtävien ratkaisemisen ilman χ 2 -jakauman taulukoiden asettamia rajoituksia: (i) Määrää todennäköisyys Pr(X x) = F Chi (x ; n) kun x on annettu. (ii) Määrää x, kun todennäköisyys Pr(X x) = F Chi (x ; n) on annettu. TKK (c) Ilkka Mellin (2005) 23

Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma >> F-jakauma t-jakauma TKK (c) Ilkka Mellin (2005) 24

F-jakauma Avainsanat χ 2 -jakauma F-jakauma Normaalijakauma Odotusarvo Standardipoikkeama Standardoitu normaalijakauma Tiheysfunktio Todennäköisyyksien määrääminen F-jakaumasta Vapausasteet Varianssi TKK (c) Ilkka Mellin (2005) 25

F-jakauma F-jakauman määritelmä 1/2 Olkoot Y i, i = 1, 2,, m ja X i, i = 1, 2,, n riippumattomia, standardoitua normaalijakaumaa N(0,1) (ks. lukua Jatkuvia jakaumia) noudattavia satunnaismuuttujia. Tällöin Yi ~ N(0,1), i = 1,2,, m, Xi ~ N(0,1), i = 1,2,, n Y1, Y2,, Ym, X1, X2,, Xn ja edelleen m n 2 2 2 2 i χ i χ i= 1 i= 1 Y = Y ~ ( m), X = X ~ ( n) Y X TKK (c) Ilkka Mellin (2005) 26

F-jakauma F-jakauman määritelmä 2/2 Olkoon 1 Y n Y F = m = 1 X m X n jossa 2 2 Y ~ χ ( m), X ~ χ ( n), Y X Tällöin satunnaismuuttuja F noudattaa Fisherin F- jakaumaa m:llä ja n:llä vapausasteella. Merkintä: F F(m, n) TKK (c) Ilkka Mellin (2005) 27

F-jakauma F-jakauman vapausasteet F-jakauman vapausasteiden lukumääristä ensimmäinen (m) viittaa yhteenlaskettavien lukumäärään F-jakauman määrittelevän lausekkeen osoittajassa. F-jakauman vapausasteiden lukumääristä toinen (n) viittaa yhteenlaskettavien lukumäärään F-jakauman määrittelevän lausekkeen nimittäjässä. Vapausasteiden lukumäärät m ja n ovat F-jakauman muodon määrääviä parametreja. TKK (c) Ilkka Mellin (2005) 28

F-jakauma Odotusarvo, varianssi ja standardipoikkeama Olkoon F F(m, n). Odotusarvo: n E( F) =, n> 2 n 2 Varianssi ja standardipoikkeama: 2 2 2 n ( m+ n 2) Var( F) = D ( F) =, n> 4 2 mn ( 2) ( n 4) 2 2 n ( m+ n 2) 2 D( F) =, n> 4 mn ( 2) ( n 4) TKK (c) Ilkka Mellin (2005) 29

F-jakauma F-jakauman ominaisuuksia Olkoon F F(m, n). Tällöin myös 1/F on F-jakautunut, mutta vapausastein n ja m: 1 ~ (, ) Fnm F TKK (c) Ilkka Mellin (2005) 30

F-jakauma Tiheysfunktion kuvaaja Kuva oikealla esittää F-jakauman F(m, n) tiheysfunktiota välillä [0, 5], kun vapausasteiden lukumäärillä m ja n on seuraavat arvot: (i) m = 10, n = 40 (ii) m = 40, n = 10 (iii) m = 40, n = 40 Jakauman odotusarvo: n E( F) =, n> 2 n 2 1.4 1.2 1 0.8 0.6 0.4 0.2 0 F(m, n) F(40, 40) F(10, 40) F(40, 10) 0 1 2 3 4 TKK (c) Ilkka Mellin (2005) 31

F-jakauma Tiheysfunktion ja sen kuvaajan ominaisuuksia F-jakauman tiheysfunktio f(x) on positiivinen kaikille positiivisille argumentin arvoille: f(x) > 0, x > 0 Jos osoittajan vapausasteiden lukumäärä m = 1, 2 niin tiheysfunktio on monotonisesti laskeva kaikille x 0. Jos osoittajan vapausasteiden lukumäärä m 3 niin tiheysfunktio on yksihuippuinen ja sillä on maksimi jossakin pisteessä x > 0. TKK (c) Ilkka Mellin (2005) 32

F-jakauma Todennäköisyyksien määrääminen F-jakaumasta 1/2 Todennäköisyydet voidaan määrätä F-jakaumasta jakauman kertymäfunktion avulla. Olkoon F F(m, n). Olkoon satunnaismuuttujan F kertymäfunktio F F (x ; m, n)= Pr(F x) Huomautus 1: Merkinnällä F F (x ; m, n) on haluttu korostaa F-jakauman riippuvuutta sen vapausasteiden lukumääristä m ja n. Huomautus 2: F-jakauman tiheysfunktion integraalifunktiota ei tunneta, joten F-jakauman kertymäfunktion määräämiseen on käytettävä jotakin numeerista menetelmää. TKK (c) Ilkka Mellin (2005) 33

F-jakauma Todennäköisyyksien määrääminen F-jakaumasta 2/2 Kaikkien F-jakaumaan liittyvien tapahtumien todennäköisyydet saadaan todennäköisyyksistä Pr(F x) = F F (x ; m, n) todennäköisyyslaskennan laskusääntöjen avulla. Esimerkiksi Pr( a F b) = F ( b) F ( a) F F TKK (c) Ilkka Mellin (2005) 34

F-jakauma Todennäköisyyksien määrääminen F-jakaumasta: Taulukot 1/4 F-jakauman taulukot sisältävät tavallisesti argumentin xarvojataulukoituina useille vapausasteiden lukumäärille m ja n, mutta vain muutamille kertymäfunktion F F arvoille. Siten taulukot mahdollistavat seuraavan tehtävän ratkaisemisen (taulukkokohtaisin rajoituksin): Määrää x, kun todennäköisyys Pr(F x) = F F (x ; m, n) on annettu. TKK (c) Ilkka Mellin (2005) 35

F-jakauma Todennäköisyyksien määrääminen F-jakaumasta: Taulukot 2/4 Koska F-jakaumaa käytetään tavallisesti väliestimoinnin tai testauksen yhteydessä, F-jakauman taulukoihin on yleensä taulukoitu sellaisia argumentin x arvoja, jotka vastaavat todennäköisyyden Pr(F x) = F F (x ; m, n) komplementtitodennäköisyyttä p = Pr(F x) = 1 F F (x ; m, n). TKK (c) Ilkka Mellin (2005) 36

F-jakauma Todennäköisyyksien määrääminen F-jakaumasta: Taulukot 3/4 Monet F-jakauman taulukot sisältävät todennäköisyyksiä p = Pr(F x) = 1 F F (x ; m, n) vastaavia argumentin arvoja vain, kun p on pieni. Suuriin p:n arvoihin liittyvät argumentin x arvot saadaan tällöin käyttämällä hyväksi sitä, että 1/F ~ F(n, m). Olkoon F m,n F(m, n) ja p = Pr(F m,n a) F n,m F(n, m) ja p = Pr(F n,m b) Tällöin 1 a = b TKK (c) Ilkka Mellin (2005) 37

F-jakauma Todennäköisyyksien määrääminen F-jakaumasta: Taulukot 4/4 Oletukset: F m,n F(m, n) F n,m F(n, m) p = Pr(F m,n a) = Pr(F n,m b) Tällöin: 1 a = b Perustelu: Todetaan ensin, että p= Pr( F a) mn, = Pr(1/ F 1/ a) mn, = Pr( Fnm, 1/ a) Koska oletuksen mukaan p = Pr( F b) niin b= 1/ a nm, TKK (c) Ilkka Mellin (2005) 38

F-jakauma Todennäköisyyksien määrääminen F-jakaumasta: Esimerkki Kuva oikealla esittää F-jakauman F(10, 60) tiheysfunktiota välillä [0, 4]. F-jakauman taulukoista saadaan: Alueen A pinta-ala = Pr(0.3815 F 1.993) = FF (1.993;10,60) FF (0.3815;10,60) = 0.95 0.05 = 0.9 1 0.8 0.6 0.4 0.2 0 F(10, 60) 0.05 A = 0.9 0.05 0 1 2 3 4 0.3815 1.993 TKK (c) Ilkka Mellin (2005) 39

F-jakauma Todennäköisyyksien määrääminen F-jakaumasta: Ohjelmat Olkoon F F(m, n). Useat tietokoneohjelmat mahdollistavat seuraavien tehtävien ratkaisemisen ilman F-jakauman taulukoiden asettamia rajoituksia: (i) Määrää todennäköisyys Pr(F x) = F F (x ; m, n) kun x on annettu. (ii) Määrää x, kun todennäköisyys Pr(F x) = F F (x ; m, n) on annettu. TKK (c) Ilkka Mellin (2005) 40

Normaalijakaumasta johdettuja jakaumia Johdanto χ 2 -jakauma F-jakauma >> t-jakauma TKK (c) Ilkka Mellin (2005) 41

t-jakauma Avainsanat χ 2 -jakauma F-jakauma Normaalijakauma Odotusarvo Standardipoikkeama Standardoitu normaalijakauma t-jakauma Tiheysfunktio Todennäköisyyksien määrääminen t-jakaumasta Vapausasteet Varianssi TKK (c) Ilkka Mellin (2005) 42

t-jakauma t-jakauman määritelmä 1/2 Olkoot Y ja X i, i = 1, 2,, n riippumattomia, standardoitua normaalijakaumaa N(0,1) (ks. lukua Jatkuvia jakaumia) noudattavia satunnaismuuttujia. Tällöin Y ~N(0,1), Xi ~N(0,1), i= 1,2,, n Y, X1, X2,, Xn ja edelleen n X = X ~ χ ( n) Y i= 1 X 2 2 i TKK (c) Ilkka Mellin (2005) 43

t-jakauma t-jakauman määritelmä 2/2 Olkoon Y t = 1 X n jossa 2 Y ~N(0,1), X ~ χ ( n), Y X Tällöin satunnaismuuttuja t noudattaa Studentin t- jakaumaa n:llä vapausasteella. Merkintä: t t(n) TKK (c) Ilkka Mellin (2005) 44

t-jakauma t-jakauman vapausasteet t-jakauman vapausasteiden lukumäärä n viittaa yhteenlaskettavien lukumäärään t-jakauman määrittelevän lausekkeen nimittäjässä. Vapausasteiden lukumäärä n on t-jakauman muodon määräävä parametri. TKK (c) Ilkka Mellin (2005) 45

t-jakauma Odotusarvo, varianssi ja standardipoikkeama Olkoon t t(n). Odotusarvo: E( t) = 0, n> 1 Varianssi ja standardipoikkeama: n t = t = n> n 2 n D( t) =, n> 2 n 2 2 Var( ) D ( ), 2 TKK (c) Ilkka Mellin (2005) 46

t-jakauma Tiheysfunktion kuvaaja Kuva oikealla esittää t-jakauman t(n) tiheysfunktiota välillä [ 4, +4], kun vapausasteiden lukumäärällä n on seuraavat arvot: (i) n = 1 (ii) n = 3 (iii) n = 100 Jakauman odotusarvo: E( t) = 0, n> 1 Kuvaan on piirretty myös standardoidun normaalijakauman N(0,1) tiheysfunktion kuvaaja. 0.5 0.4 0.3 0.2 0.1 0 t(n) ja N(0,1) t(3) t(1) t(100) N(0,1) -4-3 -2-1 0 1 2 3 4 TKK (c) Ilkka Mellin (2005) 47

t-jakauma Tiheysfunktion ja sen kuvaajan ominaisuuksia 1/2 t-jakauman tiheysfunktio f(x) on kaikkialla positiivinen: f(x) > 0 kaikille x Tiheysfunktio on yksihuippuinen. Tiheysfunktio saa maksimiarvonsa pisteessä 0. Tiheysfunktio on symmetrinen suoran x = 0 suhteen: f( x) = f(+ x) kaikille x TKK (c) Ilkka Mellin (2005) 48

t-jakauma Tiheysfunktion ja sen kuvaajan ominaisuuksia 2/2 t-jakauman tiheysfunktio muistuttaa standardoidun normaalijakauman N(0,1) tiheysfunktiota, mutta on sitä paksuhäntäisempi. t-jakauman tiheysfunktio muistuttaa standardoidun normaalijakauman N(0,1) tiheysfunktiota sitä voimakkaammin mitä suurempi on vapausasteiden lukumäärä n (ks. tarkemmin >). TKK (c) Ilkka Mellin (2005) 49

t-jakauma t-jakauma ja F-jakauma Olkoon t t(n). Tällöin t 2 ~ F(1, n) Olkoon F ~ F(1, n). Tällöin F tn ( ) TKK (c) Ilkka Mellin (2005) 50

t-jakauma t-jakauma ja normaalijakauma 1/2 t-jakauma lähestyy standardoitua normaalijakaumaa, kun vapausasteiden lukumäärä n kasvaa. Olkoon t t(n). Tällöin lim Pr( t z) =Φ( z) n + missä Φ on standardoidun normaalijakauman N(0,1) kertymäfunktio. TKK (c) Ilkka Mellin (2005) 51

t-jakauma t-jakauma ja normaalijakauma 2/2 Koska t-jakauma lähestyy vapausasteiden lukumäärän n kasvaessa standardoitua normaalijakaumaa N(0,1), voidaan t-jakaumaan liittyvät todennäköisyydet määrätä suurilla vapausasteiden luvuilla standardoidun normaalijakauman avulla. Normaalijakauma-approksimaatio t-jakaumalle on kohtuullinen jo, kun n = 30, ja riittävä useimpiin tarkoituksiin, kun n > 100. Esimerkki: Edellä esitetyssä kuvassa ei t(100)- ja N(0,1)-jakaumien tiheysfunktioiden kuvaajia pysty erottamaan toisistaan (ks. <). TKK (c) Ilkka Mellin (2005) 52

t-jakauma Todennäköisyyksien määrääminen t-jakaumasta 1/2 Todennäköisyyksien määrääminen t-jakaumasta voidaan tehdä jakauman kertymäfunktion avulla. Olkoon t t(n). Olkoon satunnaismuuttujan t kertymäfunktio F t (x ; n) = Pr(t x) Huomautus 1: Merkinnällä F t (x ; n) on haluttu korostaa t-jakauman riippuvuutta sen vapausasteiden lukumäärästä n. Huomautus 2: t-jakauman tiheysfunktion integraalifunktiota ei tunneta, joten t-jakauman kertymäfunktion määräämiseen on käytettävä jotakin numeerista menetelmää. TKK (c) Ilkka Mellin (2005) 53

t-jakauma Todennäköisyyksien määrääminen t-jakaumasta 2/2 Kaikkien tapahtumien todennäköisyydet saadaan todennäköisyyksistä Pr(t x) = F t (x ; n) todennäköisyyslaskennan laskusääntöjen avulla. Esimerkiksi Pr( a t b) = F( b) F( a) t t TKK (c) Ilkka Mellin (2005) 54

t-jakauma Todennäköisyyksien määrääminen t-jakaumasta: Taulukot 1/3 t-jakauman taulukot sisältävät tavallisesti argumentin xarvojataulukoituna useille vapausasteiden lukumäärille n, mutta vain muutamalle kertymäfunktion F t arvolle. Siten taulukot mahdollistavat seuraavan tehtävän ratkaisemisen (taulukkokohtaisin rajoituksin): Määrää x, kun todennäköisyys Pr(t x) = F t (x ; n) on annettu. TKK (c) Ilkka Mellin (2005) 55

t-jakauma Todennäköisyyksien määrääminen t-jakaumasta: Taulukot 2/3 Koska t-jakaumaa käytetään tavallisesti väliestimoinnin tai testauksen yhteydessä, t-jakauman taulukoihin on yleensä taulukoitu sellaisia argumentin x arvoja, jotka vastaavat todennäköisyyden Pr(t x) = F t (x ; n) komplementtitodennäköisyyttä p = Pr(t x) = 1 F t (x ; n) TKK (c) Ilkka Mellin (2005) 56

t-jakauma Todennäköisyyksien määrääminen t-jakaumasta: Taulukot 3/3 Monissa t-jakauman taulukoissa on taulukoitu todennäköisyyksiä p = Pr( t x) = 1 Ft ( x; n) vain, kun x 0. Tällöin todennäköisyydet Pr(t x) saadaan soveltamalla t-jakauman tiheysfunktion symmetrisyyttä pisteen x = 0 suhteen: ( ) Pr t x = 1 Pr( t x) = 1 Pr( t x) = Pr( t x) = p TKK (c) Ilkka Mellin (2005) 57

t-jakauma Todennäköisyyksien määrääminen t-jakaumasta: Esimerkki Kuva oikealla esittää t-jakauman t(10) tiheysfunktiota välillä [0, 4]. t-jakauman taulukoista saadaan: Alueen A pinta-ala = Pr( 1.812 t + 1.812) = Ft ( + 1.812;10) Ft ( 1.812;10) = 0.95 0.05 = 0.9 0.5 0.4 0.3 0.2 0.1 0 t(10) 0.05 A = 0.9 0.05-4 -3-2 -1 0 1 2 3 4 1.812 +1.812 TKK (c) Ilkka Mellin (2005) 58

t-jakauma Todennäköisyyksien määrääminen t-jakaumasta: Ohjelmat Olkoon t t(n). Monet tietokoneohjelmat mahdollistavat seuraavien tehtävien ratkaisemisen: (i) Määrää todennäköisyys Pr(t x) = F t (x ; n) kun x on annettu. (ii) Määrää x, kun todennäköisyys Pr(t x) = F t (x ; n) on annettu. TKK (c) Ilkka Mellin (2005) 59