M 1 ~M 2, jos monikulmioiden vastinkulmat ovat yhtä suuret ja vastinsivujen pituuksien suhteet ovat yhtä suuret eli vastinsivut ovat verrannolliset

Samankaltaiset tiedostot
Pyramidi 3 Geometria tehtävien ratkaisut sivu a)

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Juuri 3 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Geometrian kertausta. MAB2 Juhani Kaukoranta Raahen lukio

Kartio ja pyramidi

Kolmiot ABC ja DEF ovat keskenään yhdenmuotoisia eli ABC DEF. Ratkaise. 6,0 cm. Koska vastinkulmat ovat yhtä suuret, myös kulman a suuruus on 29.

MAA3 TEHTÄVIEN RATKAISUJA

Tarkastellaan neliötä, jonka sivun pituus on yksi metri. Silloinhan sen pinta-ala on 1m 1m

C. Montako prosenttia pinta-ala kasvaa, jos mittakaava suurenee 5%? a) 5 % b) 7 % c) 9 % d) 10 % e) 15 %

C. Montako prosenttia pinta-ala kasvaa, jos mittakaava suurenee 5%? a) 5 % b) 7 % c) 9 % d) 10 % e) 15 %

2.1 Yhtenevyyden ja yhdenmuotoisuuden käsite

5 TASOGEOMETRIA. ALOITA PERUSTEISTA 190A. Muunnetaan 23,5 m eri yksiköihin. 23,5 m = 235 dm = 2350 cm = mm ja 23,5 m = 0,0235 km

MAA3 HARJOITUSTEHTÄVIÄ

GEOMETRIA MAA3 Geometrian perusobjekteja ja suureita

Avaruusgeometrian perusteita

GEOMETRIAN PERUSTEITA. Maria Lehtonen. Pro gradu -tutkielma Joulukuu 2007 MATEMATIIKAN LAITOS TURUN YLIOPISTO

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Lue ohjeet huolellisesti!

Suorakulmainen kolmio

Apua esimerkeistä Kolmio teoriakirja. nyk/matematiikka/8_luokka/yhtalot_ yksilollisesti. Osio

kartiopinta kartio. kartion pohja, suora ympyräkartio vino pyramidiksi

Klassinen geometria. An elegant weapon for a more civilized age. - Obi-Wan Kenobi. Ville Tilvis, Esa Vesalainen,

2.1 Yhdenmuotoiset suorakulmaiset kolmiot

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella.

Tee konseptiin pisteytysruudukko! Muista kirjata nimesi ja ryhmäsi. Valitse 6 tehtävää!

Monikulmiot. 1. a) Kulman ovat vieruskulmia, joten α = = 155.

5 Kertaus: Geometria. 5.1 Kurssin keskeiset asiat. 1. a) Merkitään suorakulmion sivuja 3x ja 4x. Piirretään mallikuva.

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora

HUOLTOMATEMATIIKKA 2, MATERIAALI

Kappaleiden tilavuus. Suorakulmainensärmiö.

Valitse vain kuusi tehtävää! Tee etusivun yläreunaan pisteytysruudukko! Kaikkiin tehtäviin tarvittavat välivaiheet esille!

4.3 Kehäkulma. Keskuskulma

Ratkaisut vuosien tehtäviin

Tekijä Pitkä matematiikka a) p = 2πr r = 4,5 = 2π 4,5 = 28, piiri on 28 cm. A = πr 2 r = 4,5

Lieriö ja särmiö Tarkastellaan pintaa, joka syntyy, kun tasoa T leikkaava suora s liikkuu suuntansa

4.1 Urakäsite. Ympyräviiva. Ympyrään liittyvät nimitykset

Helsingin seitsemäsluokkalaisten matematiikkakilpailu Ratkaisuita

Vastaukset 1. A = (-4,3) B = (6,1) C = (4,8) D = (-7,-1) E = (-1,0) F = (3,-3) G = (7,-9) 3. tämä on ihan helppoa

MAA03.3 Geometria Annu

a b c d

Tasokuvioita. Monikulmio: Umpinainen eli suljettu, itseään leikkaamaton murtoviivan rajaama tason osa on monikulmio. B

a) Arkistokatu ja Maaherrankatu ovat yhdensuuntaiset. Väite siis pitää paikkansa.

Ympyrä sekä kehä-, keskus- ja tangenttikulmat

Kertausosan ratkaisut. 1. Kulma α on 37 suurempi kuin kulma eli 37. Koska kulmat α ja β ovat vieruskulmia, niiden summa on 180 eli

[MATEMATIIKKA, KURSSI 8]

MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ ESITYS pisteitykseksi

Summa 9 Opettajan materiaali Ratkaisut

Monikulmiot 1/5 Sisältö ESITIEDOT: kolmio

7.lk matematiikka. Geometria 3. Hatanpään koulu 7B ja 7C Kevät 2017 Janne Koponen

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2018 Insinöörivalinnan matematiikan koe, , Ratkaisut (Sarja A)

A-osio. Ilman laskinta. MAOL-taulukkokirja saa olla käytössä. Maksimissaan tunti aikaa. Laske kaikki tehtävät:

YMPYRÄ. Ympyrä opetus.tv:ssä. Määritelmä Kehän pituus Pinta-ala Sektori, kaari, keskuskulma, segmentti ja jänne

KERTAUSHARJOITUKSIA KULMA a) Samankohtaisista kulmista. b) Kolmion kulmien summa on x 2 ( 180 3x) Vastaus: a) 108 o b) 72 o.

Pituus- ja pinta-alayksiköt. m dm cm mm. km hm dam m. a) neljän pienen kohteen pituus millimetreiksi, senttimetreiksi ja desimetreiksi

Geometriaa kuvauksin. Siirto eli translaatio

Preliminäärikoe Tehtävät A-osio Pitkä matematiikka kevät 2016 Sivu 1 / 4

Kolmion merkilliset pisteet ja kulman puolittajalause

2 MONIKULMIOIDEN GEOMETRIAA

Lukion. Calculus. Paavo Jäppinen Alpo Kupiainen Matti Räsänen Otava PIKATESTIN JA KERTAUSKOKEIDEN TEHTÄVÄT RATKAISUINEEN

Ratkaisut vuosien tehtäviin

3 Ympyrä ja kolmion merkilliset pisteet

RATKAISUT a + b 2c = a + b 2 ab = ( a ) 2 2 ab + ( b ) 2 = ( a b ) 2 > 0, koska a b oletuksen perusteella. Väite on todistettu.

MATEMATIIKAN KOE, PITKÄ OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ

2 Kuvioita ja kappaleita

15. Suorakulmaisen kolmion geometria

Lisätehtäviä. Rationaalifunktio. x 2. a b ab. 6u x x x. kx x


Derivaatan sovellukset (ääriarvotehtävät ym.)

Kertausosa. 5. Merkitään sädettä kirjaimella r. Kaaren pituus on tällöin r a) sin = 0, , c) tan = 0,

1.2 Kulma. Kulmien luokittelua. Paralleeliaksiooma

a) Mitkä reaaliluvut x toteuttavat yhtälön x 2 = 7? (1 p.) b) Mitkä reaaliluvut x toteuttavat yhtälön 5 4 x

Lukion geometrian opiskelusta

Cadets Sivu 1 RATKAISUT

1 Kertausta geometriasta

TYÖPAJA 1: Tasogeometriaa GeoGebran piirtoalue ja työvälineet

Mb02 Koe Kuopion Lyseon lukio (KK) sivu 1/1

α + β = 90º β = 62,5º α + β = 180º β 35º+β = 180º +35º β = 107,5º Tekijä MAA3 Geometria Kulma α = β 35º.

{ 2v + 2h + m = 8 v + 3h + m = 7,5 2v + 3m = 7, mistä laskemmalla yhtälöt puolittain yhteen saadaan 5v + 5h + 5m = 22,5 v +

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Arkkitehtimatematiikan koe , Ratkaisut (Sarja A)

3. Piirrä kaksi tasoa siten, että ne jakavat avaruuden neljään osaan.

Kun pallojen keskipisteet yhdistetään, muodostuu neliöpohjainen, suora pyramidi (kuva 3), jonka sivusärmien pituudet ovat 2 pallon säde eli 2 1 = 2.

2. a- ja b-kohdat selviä, kunhan kutakuinkin tarkka, niin a-kohta 1 p b-kohta 1 p

yleisessä muodossa x y ax by c 0. 6p

A-osa. Ratkaise kaikki tämän osan tehtävät. Tehtävät arvostellaan pistein 0-6. Taulukkokirjaa saa käyttää apuna, laskinta ei.

x 5 15 x 25 10x 40 11x x y 36 y sijoitus jompaankumpaan yhtälöön : b)

Kolmion kulmien summa. Maria Sukura

Laudatur 4 MAA4 ratkaisut kertausharjoituksiin

203 Asetetaan neliöt tasoon niin, että niiden keskipisteet yhtyvät ja eräiden sivujen välille muodostuu 45 kulma.

! 7! = N! x 8. x x 4 x + 1 = 6.

( ) ( ) 1.1 Kulmia ja suoria. 1 Peruskäsitteitä. 1. a) epätosi b) tosi c) tosi d) epätosi e) tosi. 2. a) Kulmat ovat vieruskulmia, joten

Pituus on positiivinen, joten kateetin pituus on 12.

Kolmioitten harjoituksia. Säännöllisten monikulmioitten harjoituksia. Pythagoraan lauseeseen liittyviä harjoituksia

Tasogeometriaa GeoGebran piirtoalue ja työvälineet

Transkriptio:

Yhdenmuotoisuus ja mittakaava Tasokuvioiden yhdenmuotoisuus tarkoittaa havainnollisesti sitä, että kuviot ovat samanmuotoiset mutta eivät välttämättä samankokoiset. Kahdella yhdenmuotoisella kuviolla täytyy olla yhtä monta kärkeä voidaan sopia mitkä kärjet ovat toistensa vastinkärkiä. Vastinkärkien avulla määrätään vastinsivut ja vastinkulmat. Vastinkärjet Vastinsivut Vastinkulmat ja O ja OL ja OLK ja L ja LK ja LKM ja K ja KM ja KMN ja M ja MN ja MNO ja N ja NO ja NOL Kärkien vastaavuudet määräävät myös muita vastaavuussuhteita, kuten vastinlävistäjät jne. K GOMTRI M3 M L N O Määritelmä, yhdenmuotoisuus: Monikulmio M 1 on yhdenmuotoinen monikulmion M 2 kanssa, merkitään M 1 ~M 2, jos monikulmioiden vastinkulmat ovat yhtä suuret ja vastinsivujen pituuksien suhteet ovat yhtä suuret eli vastinsivut ovat verrannolliset a 1 M 1 ~M 2 a = a 2 1 a = = a n 2 a n. 1 = 1, 2 = 2,, n = n Yhdenmuotoisten monikulmioiden vastinsivujen pituuksien suhdetta kutsutaan mittakaavaksi k. Huomautus a) Mittakaavan tarkoittama vastinsivujen suhde muodostetaan siinä järjestyksessä, missä järjestyksessä kuviot mainitaan. Siis, jos monikulmiot M 1 ~M 2 mittakaavassa 2: 3, niin tällöin monikulmiot M 2 ~M 1 mittakaavassa 3: 2. b) Yhtenevät monikulmiot ovat myös yhdenmuotoiset, sillä vastinkulmat ovat yhtä suuret ja vastinsivujen pituuksien suhteet ovat samat, eli tällöin mittakaava k = 1. 1

simerkki rkkitehti laatii pienoismallin asuinalueesta, joka on suorakulmion muotoinen. Mallin tulee mahtua 0,80 m 1,80 m kokoiselle pöydälle. Mikä on sopiva pienoismallin mittakaava, kun asuinalueen todellinen koko on 125 m 300 m? Ratkaisu suinalueen leveyden 125 m suhde suurimpaan mahdolliseen pienoismallin leveyteen 0,80 m on 125 m 0,80 m 156. Vastaava pituuksien suhde on 300 m 1,80 m 167. Mallissa alkuperäinen kohde on pienennettävä vähintään suhteessa 1 167. Sopiva mittakaava voisi tässä tapauksessa olla 1 200. Yhdenmuotoisuuden käsite laajenee monikulmioista ympyröihin ja edelleen ympyrän sektoreihin ja segmentteihin. Havaitse, että kaikki ympyrät ovat keskenään yhdenmuotoisia! Ympyrän kehän pituuden ja halkaisijan välinen suhde on tänäpäivänäkin π. Sektorit ja segmentit ovat yhdenmuotoisia, kun niitä vastaavat keskuskulmat ovat yhtä suuret. r 1 r 2 Yhdenmuotoisten kuvioiden pinta-alojen suhde simerkki Mikä on kolmioiden pinta-alojen suhde, kun kolmiot ovat yhdenmuotoiset mittakaavassa k? Ratkaisu Olkoot kolmioiden kannat a ja ka sekä korkeudet h ja kh. Tällöin pinta-alat ovat: 1 = 1 2 ha, 2 = 1 2 kh ka = 1 2 k2 ha. kh Pinta-alojen suhde 1 2 = 2 k2 ha = 1 1 k2 2 ha ka on mittakaavan neliö. Näin ollen, koska monikulmiot voidaan jakaa osakolmioihin, niin keskenään yhdenmuotoisten monikulmioiden pinta-alojen suhde on mittakaavan neliö. Tämä pätee yleisesti. h a 2

Lause, Yhdenmuotoisten kuvioiden pinta-alojen suhde: Yhdenmuotoisten kuvioiden pinta-alojen suhde on mittakaavan neliö. = k2, missä k on mittakaava simerkki a) Kuinka paljon on neliön sivua pidennettävä, jotta neliön pinta-ala kasvaisi kaksinkertaiseksi? b) Kuinka moninkertaiseksi neliön pinta-ala tulee, jos sivun pituus kasvaa kymmenkertaiseksi? a) Pinta-alojen suhde on 2 1, joten k 2 = 2, josta saa- 2. Sivu on siis pidennettävä 2-kertaiseksi. Ratkaisu daan k = b) Mittakaava on k = 10 1 = 10, joten pinta-alojen suhde on k 2 = 10 2 = 100. Pinta-ala tulee näin ollen 100-kertaiseksi. Kolmioiden yhdenmuotoisuus Jokaista kolmioiden yhtenevyyslausetta vastaa kolmioiden yhdenmuotoisuuslause. Yhtenevyyslauseita ksk ja kks vastaa seuraava lause. Lause, kk: Jos kolmion kaksi kulmaa ovat yhtä suuret kuin toisen kolmion kaksi kulmaa, niin kolmiot ovat yhdenmuotoiset. Kolmiot perustellaan yhdenmuotoisiksi useimmiten kk lausetta käyttäen. Yhdenmuotoisuuden voi myös perustella käyttämällä sks, ssk, sss, lauseita, joissa k tarkoittaa vastinkulmien yhtäsuuruutta ja s vastinsivujen pituuksien yhtä suuria suhteita (vastinsivujen verrannollisuutta). Yhdenmuotoisuuslause kk sks ssk sss Yhtenevyyslause ksk kks sks ssk sss GOMTRI M3 3

kk-lause = ja = ~ (kk) b sks-lause b c c = b ja b = c c ~ (sks) ssk-lause b γ b γ c b b = c c ja = c ~ (ssk) γ ja γ samanlaatuiset: molemmat kulmat teräviä, suoria tai tylppiä b c a b sss-lause a c a a = b b = c c ~ (sss) simerkiksi merkintä ~ F (sks) tarkoittaa sitä, että kolmiot ja F on todettu yhdenmuotoisiksi sillä perusteella, että vastinsivuparien pituuksien suhde on sama ja sivujen väliset vastinkulmat ovat yhtä suuret. simerkki Suoran ympyräkartion pohjan säde on R = 10,0 cm ja korkeus h = 14,0 cm. Miltä korkeudelta kartio pitää leikata pohjan suuntaisella tasolla, jotta saataisiin ympyräkartio, jonka pohjan säde r = 7,0 cm? Kun suoraa ympyräkartiota leikataan pohjan suuntaisella tasolla, erottuu sen kanssa yhdenmuotoinen suoraympyräkartio. Tällöin ~ (kk) r ja R = h, josta h r h x hr hr 14,0 10,0 14,0 7,0 x = = R 10,0 x = 4,2 Kartio pitää leikata 4,2 cm:n korkeudelta R pohjasta lukien. 4

Lauseen kk seurauksia Lause 1 Jos kahden terävän kulman samannimiset kyljet tai niiden jatkeet ovat kohtisuorassa toisiaan vastaan, niin kulmat ovat yhtä suuret. Todistus Kulmat voivat sijaita monella eri tavalla toisiinsa nähden. Tarkastellaan tapauksia, joissa ensin kulmien molemmat kyljet leikkaavat ja sitten kylkien jatkeet leikkaavat. Muut tapaukset vastaavasti. Tapaus 1 ~ (kk), sillä kumpikin kolmio on suorakulmainen (oletus) ja kolmioiden toiset terävät kulmat ovat ristikulmina yhtä suuret. Täten myös vastinkulmat ja ovat yhtä suuret. Tapaus 2 ~ (kk), sillä kumpikin kolmio on suorakulmainen ja kulmat ja ovat ristikulmina yhtä suuret. Koska kulmien ja ristikulmat ovat kolmioiden ja vastinkulmina yhtä suuret, ovat myös ja yhtä suuret. 5

Lause 2 Suorakulmaisen kolmion hypotenuusalle piirretty korkeusjana jakaa kolmion kahdeksi kolmioksi, jotka ovat yhdenmuotoisia sekä alkuperäisen kolmion kanssa että keskenään. Todistus Tarkasteltavat kolmiot ovat yhdenmuotoiset kk-lauseen nojalla, sillä jokaisessa kolmiossa on suora kulma ja sen lisäksi jokin yhtä suurista kulmista, tai (samannimiset kyljet joko yhtyvät tai ovat kohtisuorassa). ~ ~ Kuvan merkintöjä käyttäen ~, joten voidaan näin ollen esittää myös muodossa =. Tulos Lause 3 Suorakulmaisessa kolmiossa hypotenuusan vastainen korkeus on kateettien hypotenuusalla olevien projektioiden geometrinen keskiarvo = Kolmion sivun suuntaiset leikkaajat Lause 1 Kolmion kahden sivun keskipisteiden yhdysjana on kolmannen sivun suuntainen ja pituudeltaan puolet siitä. Todistus Merkitään kolmion sivun keskipistettä :llä ja sivun keskipistettä :llä. Koska = = 1 2 ja =, niin ~ (sks). Tällöin myös =, joten. Nyt yhdenmuotoisten kolmioiden ja vastinsivujen suhde on sama, joten = 1 2 = 1 2. 6

Lause 2 Kolmion yhden sivun suuntainen ja kahta muuta sivua leikkaava suora jakaa leikkaamansa sivut verrannollisiin osiin. Todistus Leikatkoon kolmion sivun suuntainen suora sivut ja pisteissä ja. Väitetty osien verrannollisuus voidaan ilmoittaa esimerkiksi verrantona =. Koska, ovat kolmioiden ja kulmat pareittain yhtä suuret, joten ~ (kk). Tällöin eli = + + = + 1 = + 1 =. 7