Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Samankaltaiset tiedostot
Salausmenetelmät LUKUTEORIAA JA ALGORITMEJA. Veikko Keränen, Jouko Teeriaho (RAMK, 2006) 3. Kongruenssit. à 3.4 Kongruenssien laskusääntöjä

3. Kongruenssit. 3.1 Jakojäännös ja kongruenssi

R : renkaan R kääntyvien alkioiden joukko; R kertolaskulla varustettuna on

Ekvivalenssirelaatio. Määritelmä 2 Joukon A binäärinen relaatio R on ekvivalenssirelaatio, mikäli. Jos R on ekvivalenssirelaatio ja a A, niin joukkoa

Lukuteorian kertausta

LUKUTEORIA johdantoa

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara

Johdatus lukuteoriaan Harjoitus 2 syksy 2008 Eemeli Blåsten. Ratkaisuehdotelma

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Jäännösluokat. Alkupala Aiemmin on tullut sana jäännösluokka vastaan. Tarkastellaan

6 Relaatiot. 6.1 Relaation määritelmä

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko

2017 = = = = = = 26 1

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

1 Lukujen jaollisuudesta

Tekijä Pitkä Matematiikka 11 ratkaisut luku 2

(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.

Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.

2 j =

Salausmenetelmät / Osa I Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

4. Eulerin ja Fermat'n lauseet

Esitetään tehtävälle kaksi hieman erilaista ratkaisua. Ratkaisutapa 1. Lähdetään sieventämään epäyhtälön vasenta puolta:

Valitse kuusi tehtävää! Kaikki tehtävät ovat 6 pisteen arvoisia.

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx

MS-A0402 Diskreetin matematiikan perusteet

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 6 (8 sivua) OT. 1. a) Määritä seuraavat summat:

Matematiikassa väitelauseet ovat usein muotoa: jos P on totta, niin Q on totta.

Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Diofantoksen yhtälön ratkaisut

Testaa taitosi 1: Lauseen totuusarvo

811120P Diskreetit rakenteet

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.

Juuri 11 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Johdatus yliopistomatematiikkaan. JYM, Syksy2015 1/195

a b 1 c b n c n

Lineaariset kongruenssiyhtälöryhmät

j(j 1) = n(n2 1) 3 + (k + 1)k = (k + 1)(k2 k + 3k) 3 = (k + 1)(k2 + 2k + 1 1)

ja jäännösluokkien joukkoa

JOHDATUS LUKUTEORIAAN (syksy 2017) HARJOITUS 3, MALLIRATKAISUT

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Relaatioista. 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde.

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8

Luonnollisten lukujen ja kokonaislukujen määritteleminen

2. Eukleideen algoritmi

Esko Turunen Luku 3. Ryhmät

Esimerkki A1. Jaetaan ryhmä G = Z 17 H = 4 = {1, 4, 4 2 = 16 = 1, 4 3 = 4 = 13, 4 4 = 16 = 1}.

802328A LUKUTEORIAN PERUSTEET OSA II BASICS OF NUMBER THEORY PART II

(d) 29 4 (mod 7) (e) ( ) 49 (mod 10) (f) (mod 9)

X R Matematiikan johdantokurssi, syksy 2016 Harjoitus 5, ratkaisuista

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Liite 1. Laajennettu Eukleideen algoritmi suoraviivainen tapa

Johdatus matemaattiseen päättelyyn

MS-A0402 Diskreetin matematiikan perusteet

6. Tekijäryhmät ja aliryhmät

on Abelin ryhmä kertolaskun suhteen. Tämän joukon alkioiden lukumäärää merkitään

a ord 13 (a)

Salausmenetelmät. Veikko Keränen, Jouko Teeriaho (RAMK, 2006)

Algebra I, harjoitus 5,

Johdatus matemaattiseen päättelyyn

Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne.

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton.

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Liisa Ilonen. Primitiiviset juuret

Miten osoitetaan joukot samoiksi?

4 Matemaattinen induktio

Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista

811120P Diskreetit rakenteet

TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Ville-Matti Erkintalo. Lukuteoria ja RSA

Matematiikan mestariluokka, syksy

Yhtäpitävyys. Aikaisemmin osoitettiin, että n on parillinen (oletus) n 2 on parillinen (väite).

HN = {hn h H, n N} on G:n aliryhmä.

LUKUTEORIAN ALKEET HELI TUOMINEN

Teema 4. Homomorfismeista Ihanne ja tekijärengas. Teema 4 1 / 32

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

= 3 = 1. Induktioaskel. Induktio-oletus: Tehtävän summakaava pätee jollakin luonnollisella luvulla n 1. Induktioväite: n+1

LUKUTEORIA 1 JYVÄSKYLÄN YLIOPISTO

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

kaikille a R. 1 (R, +) on kommutatiivinen ryhmä, 2 a(b + c) = ab + ac ja (b + c)a = ba + ca kaikilla a, b, c R, ja

! 7! = N! x 8. x x 4 x + 1 = 6.

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja.

Similaarisuus. Määritelmä. Huom.

Todistusmenetelmiä Miksi pitää todistaa?

Rationaaliluvun desimaaliesitys algebrallisesta ja lukuteoreettisesta näkökulmasta

1 Kertaus. Lineaarinen optimointitehtävä on muotoa:

TIETOTEKNIIKAN MATEMATIIKKA

Induktiota käyttäen voidaan todistaa luonnollisia lukuja koskevia väitteitä, jotka ovat muotoa. väite P(n) on totta kaikille n = 0,1,2,...

Todistus. Eliminoidaan Euleideen algoritmissa jakojäännökset alhaaltaylöspäin.

Johdatus diskreettiin matematiikkaan Harjoitus 1,

Johdatus matematiikkaan

33. pohjoismainen matematiikkakilpailu 2019 Ratkaisut

(2n 1) = n 2

Algebra I Matematiikan ja tilastotieteen laitos Ratkaisuehdotuksia harjoituksiin 9 (6 sivua) OT

Vastaoletuksen muodostaminen

Vastaus 1. Lasketaan joukkojen alkiot, ja todetaan, että niitä on 3 molemmissa.

a) Mitkä seuraavista ovat samassa ekvivalenssiluokassa kuin (3, 8), eli kuuluvat joukkoon

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

MAT Algebra I (s) periodilla IV 2012 Esko Turunen

Diskreetin Matematiikan Paja Tehtäviä viikolle 2. ( ) Jeremias Berg

Transkriptio:

Salausmenetelmät Veikko Keränen, Jouko Teeriaho (RAMK, 2006) LUKUTEORIAA JA ALGORITMEJA 3. Kongruenssit à 3.1 Jakojäännös ja kongruenssi Määritelmä 3.1 Kaksi lukua a ja b ovat keskenään kongruentteja (tai a on kongruentti luvun b kanssa) modulo m, jos m jakaa niiden erotuksen a - b, ts. a - b = q m, eräälle q œ. Tätä merkitään kirjoittamalla a ª b Hmod ml. Jakoalgoritmin (Lause 1.1) mukaan luvut a ja b voidaan esittää yksikäsitteisesti muodossa a = q 1 m + r 1 ja b = q 2 m + r 2, 0 r 1, r 2 < m. Tässä a - r 1 = q 1 m ja b - r 2 = q 2 m, joten Määritelmän 3.1 nojalla luku a on kongruentti jakojäännöksen r 1 kanssa ja luku b jakojäännöksen r 2 kanssa. Toisin sanoen on voimassa a ª r 1 Hmod ml ja b ª r 2 Hmod ml, missä r 1 ja r 2 ovat ko. jakojäännökset modulo m. Lisäksi (3.1) a ª b Hmod ml jos ja vain jos jakojäännökset r 1 ja r 2 ovat samat. Perustellaan (3.1) käyttäen edellä esitettyjä merkintöjä seuraavasti: a ª b Hmod ml ñ a - b = q m ñ ( q 1 m + r 1 ) ( q 2 m + r 2 ) = q m ñ r 1 r 2 = (q q 1 + q 2 ) m (tässä kerroin (q q 1 + q 2 ) œ ) ñ r 1 r 2 = 0 (koska 0 r 1, r 2 < m) ñ r 1 = r 2 Näin ollen a ª b Hmod ml täsmälleen silloin, kun luvuilla a ja b on sama jakojäännös modulo m. Mathematica-funktio Mod@a, md antaa jakoalgoritmin a = q 1 m + r 1 mukaisen jakojäännöksen r 1 modulo m.

Salakirjoitus 2 Esimerkki 3.1 a = 36; m = 17; Mod@a, md 2 a = 17015; m = 17; Mod@a, md 15 Todellakin 36 = 2*17 + 2 ja 17015 = 1000*17 + 15. Seuraavassa esimerkissä testataan ovatko kaksi suurehkoa lukua a ja b keskenään kongruentteja modulo m ( = 17): Esimerkki 3.2 m = 17; a = 3456789; b = 34567894; Mod@a b, md == 0 H vp op palauttaa arvon True jos vp ja op ovat samat L True Vastauksena saatiin siis, että nämä luvut a = 3456789 ja b = 34567894 todella ovat kongruentteja keskenään modulo m = 17, ts. a ª b Hmod ml. Näin on koska jakojäännös on = 0, kun a - b jaetaan luvulla m = 17 (ks. Määritelmä 3.1). Osoittautuu, että tässä tapauksessa a - b = -1830065*17. Tarkistetaan vielä toisella tavalla, että lukujen a ja b jakojäännökset ovat samat, kun ne jaetaan luvulla m = 17: Mod@a, 17D Mod@b, 17D 9 9 Molemmat jakojäännökset ovat siis = 9. Vielä voidaan laskemalla todeta, että a = 203340*17 + 9 ja b = 2033405*17 + 9. Yleisesti jakojäännökset (mod m) ovat 0, 1, 2,..., m - 1. Jokainen kokonaisluku on siis kongruentti (mod m) täsmälleen yhden luvun 0, 1, 2,..., m - 1 kanssa. Kuten aiemmin kohdassa (3.1) todettiin, a ª b Hmod ml täsmälleen silloin, kun luvuilla a ja b on sama jakojäännös r (mod m).

Salakirjoitus 3 Harjoituksia 13 Mitkä seuraavista kongruensseista ovat tosia? a) 19 ª 1 (mod 9) b) 19 ª 8 (mod 9) c) 18 ª 0 (mod 9) d) 29 ª 2 (mod 9) 14 Osoita, että a ª b Hmod ml täsmälleen silloin, kun kokonaisluvuilla a ja b on sama jakojäännös modulo m. à 3.2 Jäännösluokka Kokonaislukujen joukon alkiot jakautuvat erillisiin luokkiin siten, että samaan luokkaan kuuluvat luvut ovat kongruentteja keskenään (mod m) - toisin sanoen niillä on sama jakojäännös (mod m). Määritelmä 3.2 (Jäännösluokka) Luvun a määräämä jäännösluokka (mod m), merkitään [a], on joukko [a] = { x œ» x ª a Hmod ml } = { x œ» x - a = qm, q œ } = { x œ» x = a + qm, q œ }. Esimerkki 3.3 Jäännösluokat (mod 2) ovat [0] = { x œ» x ª 0 Hmod 2L } = { x œ» x - 0 = q 2, q œ } = { x œ» x = 2 q, q œ } = parilliset kokonaisluvut [1] = { x œ» x ª 1 Hmod 2L } = { x œ» x - 1 = q 2, q œ } = { x œ» x = 2 q + 1, q œ } = parittomat kokonaisluvut Jäännösluokkia (mod m) on m kappaletta ja ne ovat esimerkiksi [0], [1],..., [m - 1]. Huomaa, että [m] = [0], [m+1] = [1], jne. Lisäksi on voimassa: [a] = [b] ó a ª b Hmod ml. Esimerkki 3.4 Tarkastellaan kokonaislukujen jakautumista jäännösluokkiin modulo 5. Tässä tarvitsee kiinnittää huomio ainoastaan jakojäännökseen. Viidellä jaolliset luvut..., -10, -5, 0, 5, 10,... muodostavat jäännösluokan [0], koska niiden jakojäännös on nolla. Niiden lukujen esiintymistä lukusuoralla, joiden jakojäännös on 2, ts. jotka muodostavat jäännösluokan [2], on hahmoteltu alla:

Salakirjoitus 4..., -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,....... @2D.... @2D.... @2D.... @2D.... @2D.... Kaikkiaan on viisi erilaista jäännösluokkaa. Ne ovat seuraavat: [0] = {..., -10, -5, 0, 5, 10,... } [1] = {..., -9, -4, 1, 6, 11,... } [2] = {..., -8, -3, 2, 7, 12,... } [3] = {..., -7, -2, 3, 8, 13,... } [4] = {..., -6, -1, 4, 9, 14,... } Määritelmä 3.3 Jäännösluokkien (mod m) muodostamasta joukkosta käytetään merkintää m. Esimerkki 3.5 2 = {[0], [1]} jakojäännökset (mod 2) ovat 0 ja 1 3 = {[0], [1], [2]} jakojäännökset (mod 3) ovat 0, 1 ja 2 4 = {[0], [1], [2], [3]} jakojäännökset (mod 4) ovat 0, 1, 2 ja 3 Harjoituksia 15 Tarkastellaan kokonaislukujen jakautumista jäännösluokkiin modulo 4, ts. tarkastellaan joukkoa 4 = {[0], [1], [2], [3]}. Esitä Esimerkin 3.4 tavalla, mitkä luvut kuuluvat seuraaviin jäännösluokkiin. a) [0] b) [1] c) [2] d) [3]. à 3.3 Täydellinen jäännössysteemi Määritelmä 3.4 Kokonaislukujen joukko {a 1, a 2,,a m } (m kpl) on täydellinen jäännössysteemi (complete residue system) modulo m, jos jokainen kokonaisluku on kongruentti täsmälleen yhden alkion a i, 1 i m, kanssa modulo m. Toisisin sanoen, joukko {a 1, a 2,,a m } on saatu ottamalla yksi luku kustakin jäännösluokkien (mod m) muodostaman joukkon m alkiosta. Muistin virkistämiseksi kerrataan vielä, että m = {@a 1 D, @a 2 D,,@a m D}. Yleisimmin käytettyjä täydellisiä jäännössysteemejä modulo m ovat joukot 80, 1,, m - 1< ja 81, 2,, m<. Yhtä hyvin voitaisiin valita esim. 8m, m + 1,, 2 m - 1<. Selvästi m kokonaislukua a i, 1 i m, muodostavat täydellisen jäännössysteemin modulo m jos ja vain jos jokaista paria (i, j), 1 i, j m, kohti pätee (3.2) a i ª a j Hmod ml ï i = j. Kongruenssirelaatio ª (modulo m) määrittelee ekvivalenssirelaation (refleksiivinen, symmetrinen ja transitiivinen relaatio) kokonaislukujen joukossa. Täydellinen jäännössysteemi on ekvivalenssiluokkien (m kpl) edustajien muodostama joukko.

Salakirjoitus 5 Lemma 3.1 Olkoon kaª kbhmod ml ja sythk, ml = d (> 0), missä k, m > 0. Tällöin a ª b Hmod m ê dl. Todistus: Kirjoitetaan k = k ' d ja m = m' d, missä d = syt(k, m) ja siis sythk ', m'l = 1. Oletuksesta kaª kbhmod ml seuraa Määritelmän 3.1 nojalla, että ka-kb= xm, jollekin x œ. Toisin sanoen Hk ' dl a - Hk ' dl b = x Hm' dl. Ottamalla d puolittain tekijäksi, saadaan d Hk ' a - k ' bl = d Hxm'L, ts. k ' Ha - bl = xm'. Koska sythm', k 'L = 1, seuraa Lemmasta 1.5, että m'»ha-bl, ts. a ª b Hmod m'l. Lemma 3.2 Olkoon {a 1, a 2,,a m } täydellinen jäännössysteemi modulo m ja olkoon sythk, ml = 1. Tällöin {ka 1, ka 2,,ka m } on myös täydellinen jäännössysteemi modulo m. Todistus: Käytetään kriteeriä (3.2). Lemman 3.1 nojalla ehdosta ka i ª ka j Hmod ml seuraa, että a i ª a j Hmod ml, josta edelleen seuraa, että i = j. Harjoituksia 16 Kertaa Lemman 3.1 todistus: Olkoon kaª kbhmod ml ja sythk, ml = d. Tällöin a ª b Hmod m ê dl. 17 Kertaa Lemman 3.2 todistus: Olkoon {a 1, a 2,,a m } täydellinen jäännössysteemi modulo m ja olkoon sythk, ml = 1. Tällöin {ka 1, ka 2,,ka m } on myös täydellinen jäännössysteemi modulo m. à 3.4 Kongruenssien laskusääntöjä Seuraavassa lauseessa saamme kongruensseille mukavia laskusääntöjä. Erityisesti kohtaa 4) tarvitaan hyvin usein tässä kurssissa. Lause 3.3 Olkoon m annettu positiivinen kokonaisluku. Kongruenssi (mod m) toteuttaa seuraavat ehdot: 1) a ª a (mod m) (refleksiivisyys) 2) Jos a ª b (mod m), niin b ª a (mod m) (symmetrisyys) 3) Jos a ª b (mod m) ja b ª c (mod m), niin a ª c (mod m) (transitiivisuus) 4) Jos a ª b (mod m), c ª d (mod m), r œ ja n œ +, niin seuraavat kongruenssit ovat voimassa: (i) (a c) ª (b d) (mod m) (ii) r a ª r b (mod m) (iii) a c ª b d (mod m) (iv) a n ª b n (mod m) 5) Jos k a ª k b (mod m) ja syt(k, m) = 1, niin a ª b (mod m). Todistus: 1) Koska a a = 0 = 0 ÿ m, niin määritelmän nojalla a ª a (mod m).

Salakirjoitus 6 2) Jos a ª b (mod m), niin m» a b, ts. a b = k ÿ m Hk œ L. Siis b a = H kl ÿ m, ts. m» b a, ts. b ª a (mod m). 3) Jos a ª b (mod m) ja b ª c (mod m), niin eräille k, l œ pätee a b = k ÿ m ja b c = l ÿ m. Nyt a c = (a b) + (b c) = H k + l L ÿ m, jossa ( k + l ) œ. Siis a ª c (mod m). 4) Olkoon a ª b (mod m), c ª d (mod m), r œ ja n œ +. Tällöin eräille k, l œ pätee a b = k ÿ m ja c d = l ÿ m. (i) Meillä on Ha cl Hb dl = Ha bl Hc dl = k ÿ m l ÿ m = H k l L ÿ m, missä ( k ± l ) œ. Siis Ha cl ª Hb dl (mod m). (ii) Tässä ra rb = r ÿ Ha bl = r ÿ Hk ÿ ml = Hr ÿ kl ÿ m, ja siis ra ª rb (mod m). (iii) Luvut a ja c voidaan kirjoittaa myös muotoon a = b + k ÿ m ja c = d + l ÿ m. Näin ollen ac = Hb + k ÿ ml Hd + l ÿ ml = bd + Hbl + kd + klml ÿ m, joten ac bd = Hbl + kd + klml ÿ m, ja siis ac ª bd (mod m). (iv) Kun n = 1, on oletuksen a ª b (mod m) nojalla a n = a 1 = a ª b = b 1 = b n (mod m). Tehdään induktio-oletus, että a k ª b k (mod m), ts. oletetaan, että väite on tosi, kun n = k. Valitaan nyt kohdassa (iii) c = a k ja d = b k. Tällöin kohdan (iii) ja induktio-oletuksen nojalla saadaan: a k+1 = a(a k ) = ac ª bd = b(b k ) = b k+1 (mod m). Näin ollen väite on induktioperiaatteen nojalla tosi aina kun n œ +. 5) Tulos seuraa suoraan Lemmasta 3.1, koska tässä tapauksessa on d = sythk, ml = 1. Kun [a] ja [b] œ m, voidaan määritellä (3.3) [a] + [b] = [a+b] [a]ÿ[b] = [a ÿ b] Osoitetaan, että nämä yhteen- ja kertolaskuoperaatiot ovat hyvin määriteltyjä, toisin sanoen laskutoimitukset kohdassa (3.3) ovat riippumattomia jäännösluokkien edustajista. Todistus: Edustakoot a 1 ja a keskenään samaa jäännösluokkaa, samoin b 1 ja b. Tällöin siis [a 1 ] = [a] ja [b 1 ] = [b], ts. a 1 ª a (mod m) ja b 1 ª b (mod m). Lauseen 3.3 (kohta 4) nojalla a 1 + b 1 ª a + b (mod m) a 1 ÿ b 1 ª a ÿ b (mod m). Näin ollen @a 1 + b 1 D = @a + bd @a 1 ÿ b 1 D = @a ÿ bd

Salakirjoitus 7 ja siis HMäär. 3.3L HMäär. 3.3L @a 1 D + @b 1 D = @a1 + b 1 D = @a + bd = @ad + @bd HMäär. 3.3L HMäär. 3.3L @a 1 D ÿ @b 1 D = @a1 ÿ b 1 D = @a ÿ bd = @ad ÿ @bd. Täten laskutoimitukset kohdassa (3.3) ovat riippumattomia jäännösluokkien edustajista ja määritely (3.3) on ristiriidattomasti tehty. Esimerkki 3.6 Esitetään jäännösluokkien avulla joukkojen 2 ja 5 yhteen- ja kertolaskutaulut: 2 : +» @0D @1D -» - - @0D» @0D @1D @1D» @1D @0D ÿ» @0D @1D -» - - @0D» @0D @0D @1D» @0D @1D 5 : +» @0D @1D @2D @3D @4D -» - - - - - @0D» @0D @1D @2D @3D @4D @1D» @1D @2D @3D @4D @0D @2D» @2D @3D @4D @0D @1D @3D» @3D @4D @0D @1D @2D @4D» @4D @0D @1D @2D @3D ÿ» @0D @1D @2D @3D @4D -» - - - - - @0D» @0D @0D @0D @0D @0D @1D» @0D @1D @2D @3D @4D @2D» @0D @2D @4D @1D @3D @3D» @0D @3D @1D @4D @2D @4D» @0D @4D @3D @2D @1D Esimerkki 3.7 Ratkaise joukossa 5 = {[0], [1], [2], [3], [4]} yhtälö [3] x + [2] = [4]. Ratkaisu: [3] x + [2] = [4] + [3] ó [3] x + [2] + [3] = [4] + [3] Tässä [2] + [3] = [5] = [0] ja [4] + [3] = [7] = [2]. ó [3] x + [0] = [2] ó [3] x = [2] Edellisen Esimerkin 3.6 kertotaulun neljännen rivin mukaisesti on jäännösluokalla [3] kerrottaessa voimassa: ÿ» @0D @1D @2D @3D @4D -» - - - - - @3D» @0D @3D @1D @4D @2D Näin ollen [3] ÿ[4] = [2], toisin sanoen [3] x = [2] täsmälleen silloin kun x = [4].

Salakirjoitus 8 Huomautus Olkoon m anettu positiivinen kokonaisluku. Kirjallisuudessa luvun a œ edustamasta jäänösluokasta [a] œ m käytetään myös merkintää @ad m. Usein käytetään myös lyhyempiä alle- tai päälleviivausmerkintöjä a tai ā ( modulo m). Kun jäännösluokilla lasketaan jatkuvasti, eikä sekaannuksen vaaraa ole, voidaan pelkällä luvulla merkitä sen edustamaa jäännösluokkaa. Siis esimerkiksi näin: (3.4) 4 + 4 = 3 (mod 5). Tämän salakirjoituskurssin Osassa 2 onkin usein käytännöllistä laskea kuten kohdassa (3.4). Tässä osassa kuitenkin merkitsemme mieluummin näin: 4 + 4 = 8 ª 3 (mod 5) tai näin: [4] + [4] = [8] = [3] (mod 5). Esimerkki 3.8 Etsi jakojäännös, kun a) 2 2002 jaetaan luvulla 5 b) 2 2007 jaetaan luvulla 11 c) 3 3003 jaetaan luvulla 6 d) 44( 2 200 + 3 3333 ) jaetaan luvulla 7 Ratkaisu: Käytetään Lauseen 3.3 kohtaa 4). Usein on mahdollista laskea myös hieman eri tavoilla. a) 2 2 ª 1 (mod 5) Siis 2 2002 = H2 2 L 1001 ª H 1L 1001 = 1 ª 4 (mod 5). Jakojäännös on 4. Huomaa, että jakojäännös ei määritelmän mukaan ole koskaan negatiivinen, b) 2 2 = 4 (mod 11) 2 3 = 8 ª 3 (mod 11) 2 4 = 2 ÿ 2 3 ª 2 ( 3) ª 6 ª 5 (mod 11) Huom: 6 + 11 = 5. 2 5 = 2 ÿ 2 4 ª 2 5 = 10 ª 1 (mod 11) Siis 2 2007 = 2 5ÿ401+2 = 2 2 ÿh2 5 L 401 ª 4 ÿ H 1L 401 = 4 ( 1) = 4 ª 7 (mod 5). Huom: 4 + 11 = 7. Jakojäännös on 7. c) 3 2 = 9 ª 3 (mod 6) 3 3 = 3 ÿ 3 2 ª 3ÿ3 ª 3 (mod 6)

Salakirjoitus 9 Koska 3 n = 3 ÿ 3 n-1, näemme induktiivisesti, että 3 n ª 3 (mod 6). Siis 3 3003 ª 3 (mod 6). Jakojäännös on 3. d) Tässä siis 44( 2 200 + 3 3333 ) jaetaan luvulla 7. 44 = 6ÿ7 + 2 ª 2 (mod 7) 2 3 ª 1 (mod 7) 2 200 = 2 2 ÿ2 3ÿ66 = 2 2 ÿ H2 3 L 66 ª 4ÿ1 = 4 (mod 7) 3 3 = 27 ª 6 ª 1 (mod 7) 3 3333 = H3 3 L 1111 ª H 1L 1111 ª 1 (mod 7) Siis 44( 2 200 + 3 3333 ) ª 2(4 1) = 2ÿ3 = 6 (mod 7). Jakojäännös on 6. Harjoituksia 18 Kertaa Lauseen 3.3 kohdan 4 (iii) todistus: Olkoon m annettu positiivinen kokonaisluku, a ª b (mod m) ja c ª d (mod m). Tällöin a c ª b d (mod m). 19 Esitä joukkojen 8 ja 9 yhteen- ja kertolaskutaulut. 20 Ratkaise joukossa 7 = {[0], [1], [2], [3], [4], [5], [6]} yhtälö [2] x + [3] = [4]. 21 Etsi jakojäännös, kun a) 10 515 jaetaan luvulla 7 (5) b) 8 391 jaetaan luvulla 5 (2) c) 7 348 jaetaan luvulla 11 (9) d) 3 323 jaetaan luvulla 7 (5) e) 127 ÿ H10 515 + 3 323 L jaetaan luvulla 7(3) Laske sopivasti jakojäännöksillä ja merkitse kaikki välivaiheet näkyviin. Oikea vastaus on merkitty valmiiksi sulkeiden sisään. 22 Etsi jakojäännös, kun a) 2 203 jaetaan luvulla 5 (3) b) 3 4567 jaetaan luvulla 6 (3) c) 55 ÿ H 2 203 + 3 4567 L jaetaan luvulla 7(0) Laske sopivasti jakojäännöksillä ja merkitse välivaiheet näkyviin. Oikea vastaus on tässäkin merkitty valmiiksi sulkeiden sisään. 23 Oletetaan tunnetuksi tulos P(b) ª P(c) (mod m), kun P(x) = a 0 x n + a 1 x n-1 + + a n-1 x + a n ; a i œ ; ja b ª c (mod m). Olkoon lisäksi q n-numeroinen kokonaisluku ja sen peräkkäiset numerot

Salakirjoitus 10 a 1, a 2,..., a n ; a i œ {0, 1,..., 9}. Osoita, että 9» q jos ja vain jos 9» (a 1 + a 2 + + a n ). Onko luku 987654321 jaollinen 9:llä? Kaikki etätehtävät kappaleeseen 3 3. Kongruenssit 3.1 Jakojäännös ja kongruenssi 13 Mitkä seuraavista kongruensseista ovat tosia? a) 19 ª 1 (mod 9) b) 19 ª 8 (mod 9) c) 18 ª 0 (mod 9) d) 29 ª 2 (mod 9) 14 Osoita, että a ª b Hmod ml täsmälleen silloin, kun kokonaisluvuilla a ja b on sama jakojäännös modulo m. 3.2 Jäännösluokka 15 Tarkastellaan kokonaislukujen jakautumista jäännösluokkiin modulo 4, ts. tarkastellaan joukkoa 4 = {[0], [1], [2], [3]}. Esitä Esimerkin 3.4 tavalla, mitkä luvut kuuluvat seuraaviin jäännösluokkiin. a) [0] b) [1] c) [2] d) [3]. 3.3 Täydellinen jäännössysteemi 16 Kertaa Lemman 3.1 todistus: Olkoon kaª kbhmod ml ja sythk, ml = d. Tällöin a ª b Hmod m ê dl. 17 Kertaa Lemman 3.2 todistus: Olkoon {a 1, a 2,,a m } täydellinen jäännössysteemi modulo m ja olkoon sythk, ml = 1. Tällöin {ka 1, ka 2,,ka m } on myös täydellinen jäännössysteemi modulo m. 3.4 Kongruenssien laskusääntöjä 18 Kertaa Lauseen 3.3 kohdan 4 (iii) todistus: Olkoon m annettu positiivinen kokonaisluku, a ª b (mod m) ja c ª d (mod m). Tällöin a c ª b d (mod m). 19 Esitä joukkojen 8 ja 9 yhteen- ja kertolaskutaulut. 20 Ratkaise joukossa 7 = {[0], [1], [2], [3], [4], [5], [6]} yhtälö [2] x + [3] = [4].

Salakirjoitus 11 21 Etsi jakojäännös, kun a) 10 515 jaetaan luvulla 7 (5) b) 8 391 jaetaan luvulla 5 (2) c) 7 348 jaetaan luvulla 11 (9) d) 3 323 jaetaan luvulla 7 (5) e) 127 ÿ H10 515 + 3 323 L jaetaan luvulla 7(3) Laske sopivasti jakojäännöksillä ja merkitse kaikki välivaiheet näkyviin. Oikea vastaus on merkitty valmiiksi sulkeiden sisään. 22 Etsi jakojäännös, kun a) 2 203 jaetaan luvulla 5 (3) b) 3 4567 jaetaan luvulla 6 (3) c) 55 ÿ H 2 203 + 3 4567 L jaetaan luvulla 7(0) Laske sopivasti jakojäännöksillä ja merkitse välivaiheet näkyviin. Oikea vastaus on tässäkin merkitty valmiiksi sulkeiden sisään. 23 Oletetaan tunnetuksi tulos P(b) ª P(c) (mod m), kun P(x) = a 0 x n + a 1 x n-1 + + a n-1 x + a n ; a i œ ; ja b ª c (mod m). Olkoon lisäksi q n-numeroinen kokonaisluku ja sen peräkkäiset numerot a 1, a 2,..., a n ; a i œ {0, 1,..., 9}. Osoita, että 9» q jos ja vain jos 9» (a 1 + a 2 + + a n ). Onko luku 987654321 jaollinen 9:llä?