10 Suran vektrimutinen htälö J aluki tarkatellaan -tan kuuluvaa, rign kautta kulkevaa uraa, niin ura n täin määrätt, mikäli tunnetaan en uunta. Tavallieti tämä annetaan uuntakulman tangentin = kulmakertimen k avulla. Suran uunta vidaan antaa mö uuntavektrin avulla. Tällainen (ei -akelin uuntainen) ura = k kulkee iten eim. piteen (1,k) kautta, jten uuntavektriki vidaan valita î + kĵ tai mikä tahana tämän kana hdenuuntainen vektri. Merkitään tällaita vektria = î + ĵ. P O Välttämätön ja riittävä eht ille, että pite P = (,) n uralla L, n e, että löt reaaliluku t iten, että OP = r = t. Kun r n piteen P paikkavektri, ii r = î + ĵ, niin em. htälö kmpnenttimuda n î + ĵ = t î t ĵ, jta aadaan uran htälön n. parametrimut Niiä tapaukia, jia 0, aadaan eliminimalla t parametrimutieta htälötä uui htälö =, jta edelleen merkitemällä muuttujan kerrinta = k, pullahtaa ennetäänkin hvin tuttu htälö = k. Kannattaa tietenkin humata, että merkitemällä uuntavektria = î ĵ kelpaa mikä tahana tämän kana hdenuuntainen vektri uuntavektriki. Tällaieki 1 kelpaa vaikkapa vektri = î + ĵ = î + kĵ. Tällöin n = tan = k, miä n uran L ja pitiivien -akelin välinen terävä kulma. Tämä kulma tetaan + +
negatiiviena, mikäli en ikea klki n ntnt vektrin î kierteä mötäpäivään eli negatiivieen kiertuuntaan. Orign kautta kulkevaan avaruuuraan eitett tarkatelu pätee täin hvin. Kuitenkaan tällaielle uralle ei määritellä uuntakulmaa ja uuntavektriin tulee klmakin kmpnentti. Tällöin = î + ĵ kˆ, ja rign kautta kulkevan + uran parametrihtälöki aadaan klmen htälön rhmä miä t n mikä tahana reaaliluku. = t = t, = t Olktpa itten L1: r = t rign kautta kulkeva -tan kuuluva ura ja L 2 tämän uran uuntainen ura, jka kulkee piteen P = (, ) kautta. Jälkimmäien uran uuntavektriki vidaan ilman muuta valita vektri. r 0 P = (, ) r P = (, ) Välttämätön ja riittävä eht ille, että P = (,) n uran L 2 pite, n e, että löt reaaliluku t iten, että OP = OP + t, mikä merkitee vektrihtälöä minkä kmpnenttieit n r = r + t î + ĵ = î + ĵ+ tî + t ĵ, jta edelleen päätään parametrieitkeen
= + t = + t Mikäli n keeä erikitapau = 0, aadaan tätä -akelin uuntainen ura = 0, jnka uuntavektriki kä paiti ĵ, mö pelkkä ĵ. Ellei le keeä käitelt erikitapau, parametri t n helpp eliminida ja aadaan 0 = 0 = ( 0) 0 = k( 0). 0 Kun jhdettiin piteen etäittä urata, tdettiin, että uran nrmaalivektriki vitiin valita n = aî + bĵ ja uuntavektriki = bî + aĵ, ja aadaan ijituken nnä ievennken jälkeen jälleen kerran Laue 18 Mikä tahana -tan ura vidaan aina eittää muda a + b + c = 0 mikäli ainakin tinen kertimita a ja b eraa nllata. Olkt nt P = (,, ) avaruuden kiinteä pite ja = ai + bj + ck nllata erava vektri. Pite P = (,,) n P :n kautta kulkevalla, vektrin uuntaiella uralla tämälleen illin, kun löt reaaliluku t iten, että
P P OP = OP + t r = r + t Tätä päätään parametrimutn = = = + ta + tb + tc ja parametrin elimininnin jälkeen n. krdinaattimutn: Laue 19 Piteen P = (,, ) kautta kulkevan, vektrin = ai + b j+ ck uuntaien uran htälö vidaan eittää muda a edellttäen, että abc 0. = = b c Parametrimutinen eit ei tätä rajituta iällä, mutta vaatii en, että ainakin ki uuntavektrin kalaarikmpnenteita pitää lla nllata erava, kka nllavektrilla ei le uuntaa. Eim. 1 Sura kulkee piteiden A = (4, 3, 1) ja B = (6, 7, 5) kautta. Määritä uran htälö, ekä pite, ja ura khtaa -tan.
Tan uuntavektriki vidaan valita = AB = OB OA. = (6 4)î + (7 3) ĵ + ( 5 1)kˆ = 2î + 4ĵ 6kˆ. Sura kulkee piteen A kautta ja en uuntavektri n. Laue 5.19 antaa: 4 3 1 = =. 2 4 6 Sura leikkaa -taa piteeä, jnka -krdinaatti n nlla. Muiden krdinaattien määräämieki tarvitaan uran parametrimutita = + ta htälöä: = + tb = + tc Sijitetaan tähän uuntavektrin kalaarikmpnentit ja piteen A krdinaatit (htä hvin B:n krdit) = 4 + 2t = 3 + 4t = 1 6t J = 0, niin t = 2. Sijittamalla tämä muiden krdinaattien lauekkeiiin, päätään tietämään uran ja -tan leikkaupite: = 0 = 3 + 4( 2) = 5 = 1 6( 2) = 13 Vatau: Ktn uran htälö 4 3 nrmaalimuda = = 2 4 = 4 + 2t parametrimuda = 3 + 4t = 1 6t 1 6 Sura leikkaa -tan piteeä (0, 5, 13).