KOMPLEKSILUVUT C Luonnolliset luvut N Kokonaisluvut Z Rationaaliluvut Q Reaaliluvut R Kompleksi luvut C Negat kokonaisluvut Murtoluvut Irrationaaliluvut Imaginaariluvut Erilaisten yhtälöiden ratkaiseminen on johtanut lukualueen laajentamiseenesimerkiksi: Yhtälön x + 7 = ratkaisu ei ole luonnollinen luku, vaan se kuuluu luonnollisia lukuja laajempaan kokonaislukujen joukkoon Yhtälön x = 3 ratkaisu taas ei ole kokonaisluku, vaan se on murtoluku, joka kuuluu kokonaislukuja laajempaan rationaalilukujen joukkoon Edelleen yhtälön x = ratkaiseminen edellyttää rationaalilukujen joukon laajentamista reaalilukujen joukoksi Jotta voitaisiin ratkaista vaikkapa yhtälö x = 1, on reaalilukujen joukkoa laajennettava Imaginaariyksikkö i i = 1 eli 1 = i Yhtälön x = 1 ratkaisu on x = ± 1 = ± i Yhtälön x 4x + 8 = 0 ratkaisu on Kompleksiluvut x = ± 4 ( 4) 4 1 8 1 4 i = ± 16 4 = ± 4 = ± i Kompleksiluvut ovat muotoa z = a + bi, missä a, b R Kompleksiluvun z reaaliosa Re z = a ja imaginaariosa Im z = b Kompleksiluku z = a + bi on reaalinen, jos b = 0, imaginaarinen, jos b 0, puhtaasti imaginaarinen, jos a = 0 ja b 0 Kompleksilukujen yhtäsuuruus Kompleksiluvut z 1 ja z ovat samat eli z 1 = z joss Re z 1 = Re z ja Im z 1 = Im z Kompleksiluvun vastaluku ja liittoluku Olkoon z = a + bi Silloin z:n vastaluku z = a bi, z:n liittoluku z = a bi Lahden Lyseon lukio 1 HL/005
Laskutoimitukset Kompleksiluvuilla lasketaan vastaavasti kuin polynomeilla muistaen tietenkin, että i = 1 Seuraavassa joitakin esimerkkejä kompleksilukujen yhteen-, vähennys-, kerto- ja jakolaskuista 1 Laske kompleksilukujen 5i ja 3 + i summa, erotus, tulo ja osamäärä ( 5i ) + ( 3 + i) = + 3 5i + i = 5 3i ( 5i) ( 3 + i) = 3 5i i = 1 7i ( 5i)( 3 + i) = 6 + 4i 15i 10i = 6 11i 10( 1) = 6 11i + 10 = 16 11i 5i lasketaan poistamalla imaginaariyksikkö i nimittäjästä laventamalla nimittäjän 3 + i liittoluvulla, siis 5i ( 5i )( 3 i) 6 4 15 10 6 19 10 4 19 4 19 = = i i + i = i = i = i 3 + i ( 3 + i)( 3 i) 3 ( i) 9 + 4 13 13 13 Olkoon z = + 3 i Mikä on z:n käänteisluku 1 1 z eli z esitettynä muodossa a + bi? 3 Osoita, että kompleksiluvun ja sen liittoluvun summa ja tulo ovat aina reaalisia 1 i 4 Määritä kompleksiluvun z = reaali- ja imaginaariosat + i 5 Olkoon z1, z C Osoita, että z + z = z + z 1 1 6 Määritä sellainen reaaliluku a, että a 1 + on reaalinen 1 i ai Kompleksilukuyhtälöitä Tarkastellaan yhtälöiden ratkaisua parin esimerkin avulla 1 Ratkaise z yhtälöstä iz( 3 i) = z + 3 i 3iz i z = z + 3 i 3iz + z = z + 3 i 3iz = 3 i 3 i i i i z = ( 3 )( ) = = 1 3 = 1 i 3i 3i ( i) 3 3 Ratkaise z yhtälöstä z z = iz + 4 Koska yhtälössä esiintyy sekä kompleksiluku z että sen liittoluku z, on yhtälö ratkaistava esittämällä z muodossa z = a + bi, jolloin z = a bi a bi ( a + bi) = i( a bi) + 4 a bi a bi = ai bi + 4 bi = b + 4 + ai Kompleksiluvut samat, joss reaali- ja imaginaariosat samat 0 = b + 4 ja b = a Lahden Lyseon lukio HL/005
b = 4 ja a = 8 Täten z = 8 4 i 3 Ratkaise z:n suhteen yhtälö 3z iz = i 4 Ratkaise z:n suhteen yhtälö z 1 1 z = 3 i Kompleksitaso Jokaista kompleksilukua z = a + bi ( a, b R ) vastaa täsmälleen yksi järjestetty reaalilukupari ( a, b) ja kääntäen Näin ollen jokainen kompleksiluku voidaan esittää xy-tason pisteenä ja jokainen xy-tason piste on jokin kompleksiluku Koordinaatistoa sanotaan tässä yhteydessä kompleksitasoksi Alla olevaan kompleksitasoon on merkitty kompleksiluku + 4i 1 Merkitse kompleksitasoon luvut 1 i ja 3 1 i Missä kompleksitason pisteissä z + z =? Olkoon z = x + yi ja z = x yi z + z = x + yi + x yi = x Täten x = x = 1 Pisteet ovat suoralla x = 1 3 Missä kompleksitason pisteissä zz = z + z? Olkoon z = x + yi ja z = x yi ( x + yi)( x yi) = x + yi + x yi x + y = x x x + 1 + y = 1 ( x 1) + ( y 0) = 1 Pisteet ovat ympyrällä, jonka keskipiste on (1,0) ja säde 1 4 Missä kompleksitason pisteissä luku z + z 1 on reaalinen? Lahden Lyseon lukio 3 HL/005
Kompleksiluvun itseisarvo eli moduli Kompleksiluvun z itseisarvo z ilmoittaa luvun etäisyyden origosta Jos z = a + bi, niin itseisarvo z = a + b 1 3i = + ( 3) = 13 ( ) 5i = 0 + 5 = 5 1+ i 1 i 3 Missä kompleksitason pisteissä z i z = x + yi ( ) z i = x + yi i = x + ( y 1) i = x + y 1 Täten on siis x ( y ) + 1 Koska molemmat puolet positiivisia, niin neliöönkorotuksessa järjestys säilyy, joten ( y ) x + 1 4 Ympyrällä, jonka keskipiste on (0,1) ja säde sekä sen sisäpuolella 4 Esitä kompleksitasossa yhtälön z + 1 = z i ratkaisut 5 Missä sijaitsevat kompleksitasossa ne pisteet, jotka toteuttavat ehdon z z + 6? Lahden Lyseon lukio 4 HL/005
Polynomien jaollisuus ja nollakohdat Tarkastellaan n-asteista polynomifunktiota ( n 1) n n 1 p ( z) = an z + an 1z + + a1z + a0, an,, a0 C, an 0 Polynomi p (z) on jaollinen binomilla ( z a) silloin ja vain silloin, kun z = a on polynomin p (z) nollakohta k Kompleksiluku z = a on polynomin p (z) k-kertainen nollakohta, jos p( z) = ( z a) q( z) ja q (z) ei ole enää jaollinen binomilla ( z a), ts q ( a) 0 Polynomilla p (z) on kompleksilukujen joukossa C täsmälleen n nollakohtaa, kun jokainen nollakohta otetaan mukaan niin monta kertaa kuin sen kertaluku osoittaa Jos nollakohdat ovat z 1, z,,, niin p( z) = a ( z z )( z z ) L ( z z ) z n n 1 n 1 Jaa polynomi p ( z) = z 3 7 ensimmäisen asteen tekijöihin Ratkaistaan polynomin nollakohdat helposti huomataan, että z = 3 on yksi nollakohta, joten binomi ( z 3) on yksi tekijä Suorittamalla jakolasku jakokulmassa saadaan 3 z 7 = z + 3z + 9 z 3 3 Täten z 7 = ( z 3)( z + 3z + 9) Muut nollakohdat saadaan ratkaisemalla yhtälö 3 3 z + 3z + 9 = 0 Ratkaisut ovat z = ± 3 i Täten 3 3 3 3 3 z 7 = ( z 3) z + 3 i z + + 3 i Kompleksiluvun esitys polaarimuodossa Tarkastellaan kompleksilukua z = x + yi kompleksitasossa Olkoon z = r Silloin on x = r cosθ, y = r sinθ Lahden Lyseon lukio 5 HL/005
Kompleksiluvun z = x + yi polaariesitys on z = r(cosθ + i sinθ ), missä θ on kompleksiluvun z argumentti, ts θ = arg z ja r = z 1 Muuta kompleksiluku z = 1+ i polaarimuotoon Mikä on kompleksiluvun argumentti? Muuta kompleksiluku z = 3 + 3 3 i polaarimuotoon Mikä on kompleksiluvun argumentti? Lahden Lyseon lukio 6 HL/005
Joitakin ylioppilastehtäviä YO-S98/7: Kompleksiluku z = x + yi on myös vektori xi + y j Määritä kaikki kompleksiluvut z 1 ja z, joille pätee z1 z = z1z Tässä z1 z tarkoittaa vektoreiden z 1 ja z skalaarituloa ja z 1 z kompleksilukujen z 1 ja z tuloa YO-K97/6 Millä kompleksiluvuilla z luku ( z ) i z on positiivinen? Piirrä kuvio YO-K95/9 Ajanhetkellä t 0 ovat pisteet z = z ( t) ja z = z ( t) kompleksitasolla paikoissa 1 1 t t z1( t) = t + ie, z ( t) = 3 + t + ie Määritä pisteiden välinen etäisyys z z hetkellä t Milloin etäisyys on suurin? Määritä lim z ( t) z ( t) t YO-K94/4 Määritä kompleksiluvut z = x + yi, joille z = i 1 PR-99/9 Mikä on kompleksitason pistejoukon z ( 1 i) = pienin etäisyys origosta? 1 Lahden Lyseon lukio 7 HL/005