Matemaatiikan tukikurssi

Samankaltaiset tiedostot
Matematiikan tukikurssi

Matematiikan tukikurssi, kurssikerta 2

Matematiikan tukikurssi, kurssikerta 1

Matematiikan tukikurssi

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä.

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.

Kuvaus eli funktio f joukolta X joukkoon Y tarkoittaa havainnollisesti vastaavuutta, joka liittää joukon X jokaiseen alkioon joukon Y tietyn alkion.

Diskreetin Matematiikan Paja Ratkaisuehdotuksia viikolle 2. ( ) Jeremias Berg

Huom. muista ilmoittautua kokeeseen ajoissa. Ilmoittautumisohjeet kurssin kotisivuilla.

Sanomme, että kuvaus f : X Y on injektio, jos. x 1 x 2 f (x 1 ) f (x 2 ) eli f (x 1 ) = f (x 2 ) x 1 = x 2.

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

Joukot. Georg Cantor ( )

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

MS-A0402 Diskreetin matematiikan perusteet

Matematiikan tukikurssi

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Tenttiin valmentavia harjoituksia

1 Peruslaskuvalmiudet

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Matematiikan tukikurssi, kurssikerta 3

Matematiikan tukikurssi

Matematiikan tukikurssi

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara

Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 2, malliratkaisut

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.

Matemaattisen analyysin tukikurssi

Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38

Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei.

Johdatus matemaattiseen päättelyyn

Tehtävä 1. Arvioi mitkä seuraavista väitteistä pitävät paikkansa. Vihje: voit aloittaa kokeilemalla sopivia lukuarvoja.

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä.

Johdatus diskreettiin matematiikkaan Harjoitus 1,

Olkoon R X Y. Sen käänteisrelaatio R 1 on joukosta Y joukkoon X määritelty relaatio, jonka laki on. yr 1 x xry.

Olkoon R X Y. Sen käänteisrelaatio R 1 on joukosta Y joukkoon X määritelty relaatio, jonka laki on. yr 1 x xry.

Matematiikan tukikurssi

Kuvaus. Määritelmä. LM2, Kesä /160

811120P Diskreetit rakenteet

Luonnollisten lukujen ja kokonaislukujen määritteleminen

Johdatus matematiikkaan

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon.

Funktio 1. a) Mikä on funktion f (x) = x lähtöjoukko eli määrittelyjoukko, kun 0 x 5?

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

MATP153 Approbatur 1B Harjoitus 5 Maanantai

Relaation ominaisuuksia. Ominaisuuksia koskevia lauseita Sulkeumat. Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,

Matematiikan tukikurssi, kurssikerta 4

Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne.

Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,

Matematiikan tukikurssi

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

MATP153 Approbatur 1B Ohjaus 2 Keskiviikko torstai

Matematiikan peruskurssi 2

8 Joukoista. 8.1 Määritelmiä

Relaatioista. 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde.

Ratkaisu: a) Kahden joukon yhdisteseen poimitaan kaikki alkiot jotka ovat jommassakummassa joukossa (eikä mitään muuta).

isomeerejä yhteensä yhdeksän kappaletta.

Funktioista. Esimerkki 1

6 Relaatiot. 6.1 Relaation määritelmä

Diskreetin Matematiikan Paja Tehtäviä viikolle 2. ( ) Jeremias Berg

Matematiikan tukikurssi, kurssikerta 5

Topologia Syksy 2010 Harjoitus 11

1. Logiikan ja joukko-opin alkeet

Matematiikan tukikurssi

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Matematiikan tukikurssi

Matematiikan tukikurssi

missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

Injektio. Funktiota sanotaan injektioksi, mikäli lähtöjoukon eri alkiot kuvautuvat maalijoukon eri alkioille. Esim.

811120P Diskreetit rakenteet

811120P Diskreetit rakenteet

5.6 Yhdistetty kuvaus

Matematiikan tukikurssi

Reaaliluvuista. Yleistä funktio-oppia. Trigonometriset funktiot. Eksponentti- ja logaritmifunktiot. LaMa 1U syksyllä 2011

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.

Funktion. Käänteisfunktio. Testi 3. Kauhava Aiheet. Funktio ja funktion kuvaaja. Funktion kasvaminen ja väheneminen.

Linkkejä kurssi2 / Etälukio (edu.) kurssi8 / Etälukio (edu.) (Suurinta osaa tämän linkin takana olevasta materiaalista pohdimme vasta huomenna!

1.1 Funktion määritelmä

HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 5 Ratkaisuehdotuksia

POHDIN - projekti. Funktio. Vektoriarvoinen funktio

MS-A0401 Diskreetin matematiikan perusteet

Toispuoleiset raja-arvot

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

3. Kirjoita seuraavat joukot luettelemalla niiden alkiot, jos mahdollista. Onko jokin joukoista tyhjä joukko?

X R Matematiikan johdantokurssi, syksy 2016 Harjoitus 5, ratkaisuista

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.

Matematiikan tukikurssi

Reaalilukuvälit, leikkaus ja unioni (1/2)

TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011

1. Otetaan perusjoukoksi X := {0, 1, 2, 3, 4, 5, 6, 7}. Piirrä seuraaville kolmelle joukolle Venn-diagrammi ja asettele alkiot siihen.

x > y : y < x x y : x < y tai x = y x y : x > y tai x = y.

Johdatus yliopistomatematiikkaan. JYM, Syksy2015 1/195

Matemaattisen analyysin tukikurssi. 1. Kurssikerta ( )

Matematiikan tukikurssi: kurssikerta 12

Differentiaali- ja integraalilaskenta 1 Ratkaisut 2. viikolle /

y z = (x, y) Kuva 1: Euklidinen taso R 2

Matematiikan tukikurssi

Matematiikan tukikurssi: kurssikerta 10

Matematiikan tukikurssi

Transkriptio:

Matemaatiikan tukikurssi Kurssikerta 1 1 Funktiot Funktion määritelmä Funktio on sääntö, joka liittää kahden eri joukon alkioita toisiinsa. Ollakseen funktio tämän säännön on liitettävä jokaiseen lähtöjoukon A alkioon tasan yksi maalijoukon B alkio. Merkitsemme sitä, että f on funktio lähtöjoukosta A maalijoukkoon B seuraavasti: f : A B eli f on funktio lähtöjoukosta A maalijoukkoon B Esimerkki 1.1 (Funktio) Lähtöjoukko voi olla A = {1, 2, 3} ja maalijoukko B reaalilukujen joukko R. Eräs funktio f : A B voidaan määritellä kaavalla f (x) = 2x. Tässä x on siis lähtöjoukon A alkio eli x on 1,2 tai 3. Toinen funktio voisi olla g(x) = 1, joka liittää jokaiseen A:n alkioon numeron 1. Eli esimerkiksi g(3) = 1 ja f (2) = 4. Huomaa edellisessä esimerkissä, että funktio liittää aina jokaiseen lähtöjoukon alkioon jonkin maalijoukon alkion. Voimme sanoa, että f on funktio f : A B, jos kaikille alkioille lähtöjoukossa A on olemassa tasan yksi alkio y maalijoukossa B siten että f (x) = y. Esimerkki 1.2 (Funktio) Sääntö f : R R, f (x) = 1 on funktio, sillä se toteuttaa edellä mainitun määritelmän: se liittää kaikkiin lähtöjoukon alkioihin yhden maalijoukon alkion (numeron 1). Lähtöjoukko on tässä koko reaalilukujen joukko, kuten maalijoukkokin. Huomaa, että maalijoukko voi sisältää arvoja y joita funktio ei saa millään x:n arvolla. Esimerkki 1.3 ( Epäfunktio ) f : R R, f (x) = 1/x ei ole funktio, sillä se ei liitä jokaiseen lähtöjoukon R alkioon maalijoukon alkiota: kyseinen lauseke ei ole arvolla x = 0 määritelty, joten kaikille lähtöjoukon alkioille (nimenomaan nollalle) se ei liitä maalijoukon alkiota. Esimerkki 1.4 (Funktio) Sen sijaan jos edellisen esimerkin lähtöjoukosta 1

poistetaan nolla, saamme funktion: f : R \ {0} R, f (x) = 1/x. Funktion määrittelyjoukko Funktion määrittelyjoukko on sama asia kuin funktion lähtöjoukko. Laajin mahdollinen määrittelyjoukko taas sisältää kaikki ne arvot, joilla funktion lauseke on määritelty. Se on siis laajin mahdollinen lähtöjoukko, joka funktiolle voidaan muodostaa. Esimerkiksi funktio f (x) = 1/x ei ole määritelty nollassa, koska nollalla ei saa jakaa. Se on kuitenkin määritelty kaikilla muilla x-arvoilla, joten sen laajin määrittelyjoukko sisältää kaikki reaaliluvut, paitsi nollan: tätä määrittelyjoukkoa voi merkitä A = {x : x R, x = 0}. Puolestaan x ei ole määritelty kun x < 0, mutta on määritelty muulloin. Tällöin tämän funktion laajin mahdollinen määrittelyjoukko on A = {x : x R, x 0}. Esimerkki 1.5 (Lähtöjoukko) Lähtöjoukon saa määrittää vapaasti, kunhan funktio on lähtöjoukon alkioilla määritelty. Esimerkiksi f : Z + R, f (x) = 1/x on eri funktio kuin g : R \ {0} R, g(x) = 1/x, koska niiden lähtöjoukot ei ole samoja. Tämä osoittaa, kuinka pelkkä funktion lauseke f (x) ei määritä funktiota, vaan myös lähtö- ja maalijoukot on mainittava. Funktion laajin mahdollinen määrittelyjoukko on siis sellainen joukko A, joka sisältää kaikki mahdolliset x-arvot, joilla tämä funktio on määritelty. Esimerkki 1.6 (Laajin mahdollinen määrittelyjoukko) Funktio g(x) = 1/x on määritelty kaikilla reaaliluvuilla, paitsi nollalla. Täten sen laajin mahdollinen määrittelyjoukko on R \ {0}. Esimerkki 1.7 (Laajin mahdollinen määrittelyjoukko) Funktio g(x) = 1/(x + 1) on määritelty aina, kun sen nimittäjä ei ole nolla. Täten se on määritelty, kun x + 1 = 0 x = 1. Täten laajinta mahdollista määrittelyjoukkoa voidaan merkitä A = {x : x R, x = 1} Funktion injektiivisyys Funktio on injektio, jos se antaa eri lähtöjoukon alkioille (x-arvoille) eri maalijoukon alkiot (y-arvot). Eli f on injektio, jos x 1 = x 2 = f (x 1 ) = f (x 2 ) eli jos x 1 on erisuuri kuin x 2, niin f (x 1 ) on erisuuri kuin f (x 2 ). 2

Esimerkki 1.8 (Injektio) Funktio f : R R, f (x) = x + 1 on on injektio: jos x 1 = x 2, niin x 1 + 1 = x 2 + 1 eli f (x 1 ) = f (x 2 ). Esimerkki 1.9 (Injektio) Olkoon lähtöjoukko A = {1, 2, 3} ja maalijoukko B = {10, 11, 12}. Funktio f : A B, joka saa arvot f (1) = 12, f (2) = 10 ja f (3) = 11 on injektio, sillä eri x arvoille kuvautuvat eri y arvot. Alla on kuvattu injektion idea tämän funktion kohdalla: 1 10 2 11 3 12 Injektiivisyyden havaitsee tässä siitä, että jokaiseen maalijoukon alkioon menee vain yksi nuoli. Esimerkki 1.10 (Ei-injektiivinen funktio) Funktio f : R R, f (x) = x 2 ei ole injektio, sillä se kuvaa eri lähtöjoukon alkioille saman maalijoukon alkion. Esimerkiksi f (1) = 1 ja f ( 1) = 1. Injektion määritelmä ei siis toteudu: x 1 = 1 ja x 2 = 1 ovat eri alkioita, mutta funktio antaa näistä molemmille arvon f (x 1 ) = f (x 2 ) = 1. Tietyn funktion injektiivisyyden voi todistaa valitsemalla kaksi eri lähtöjoukon arvoa, x 1 ja x 2, ja osoittamalle että funktio saa näissä pisteissä eri arvot, eli että f (x 1 ) = f (x 2 ). Toinen tapa todistaa injektiivisyys on valita kaksi pistettä, x 1 ja x 2 siten että f (x 1 ) = f (x 2 ) ja todistaa, että tästä seuraa x 1 = x 2. Injektiivisyys graafisesti Helppo tapa tarkistaa onko jokin funktio injektio on piirtää sen kuvaaja ja katsoa leikkaako mikään vaakasuora viiva funktion kuvaajaa useammin kuin kerran. Jos leikkaa, funktio ei ole injektio. Alla olevassa kuvassa on kuvattu injektio f (x) = x 3 : 3

Jos tähän kuvaan yrittää piirtää vaakasuoran viivan, niin tämä vaakasuora viiva leikkaa funktion kuvaajan korkeintaan kerran, eikä esimerkiksi kahta kertaa. Tällöin kyseessä on injektio. Alla on puolestaan kuvattu ei-injektiivinen funktio f (x) = x 2 : Tähän kuvaan voi piirtää vaakasuoran viivan, joka leikkaa funktion f (x) = x 2 kahteen kertaan. Täten kyseessä ei ole injektiivinen funktio. 2 Relaatiot Relaation määritelmä Tarkastellaan kahta alkiota a ja b. Näistä kumpikin kuuluu johonkin tiettyyn joukkoon. Merkitään a A ja b B. Voidaan ajatella a:n ja b:n välillä olevan relaation, jota merkitään arb ja joka luetaan a relaatio b. Mitä tämä tarkoittaa? Osoittautuu, että relaatio R voi olla melkein mikä tahansa, kuten seuraavat esimerkit osoittavat. Esimerkki 2.1 (Relaatio) Oletetaan, että A ja B ovat reaalilukujoukkoja. Merkitään xry, jos x > y. Eli kyseessä on relaatio, suurempi kuin relaatio. Huomaa, että xry ei tarkoita samaa kuin yrx: edellinen tarkoittaa tässä esimerkissä x > y, jälkimmäinen y > x. Relaation xry x > y voi myös piirtää x y koordinaatistoon: 4

y x Tässä harmaaksi värjätty alue koostuu niistä lukupareista (x, y) joilla pätee xry eli x > y. Huomaa, että katkoviiva x = y ei kuulu tähän alueeseen. Relaatio R on siis tässä tapauksessa joukko R = {(x, y) : x, y R, x > y} Esimerkki 2.2 (Relaatio) Voidaan ajatella, että a ja b eivät ole numeroita, vaan esimerkiksi ihmisiä (eli a I ja b I, jossa I on ihmisten joukko). Tällöin voidaan määritellä relaatio arb tarkoittamaan, että a on sukua b:lle. Nyt IlkkaRTomi tarkoittaa, että Ilkka on sukua Tomille. Relaatiota a:sta b:hen voidaan ilmaista arb, mutta myös lukuparina (a, b), joka siis tarkoittaa samaa kuin arb. Kyseessä on ainoastaan eri merkintätapa. Relaation virallinen määritelmä löytyy alta: Relaatio R lukujoukkojen A ja B välillä on yksinkertaisesti joukko lukupareja, jonka ensimmäinen alkio kuuluu joukkoon A ja toinen joukkoon B. Toisin sanottuna: R A B Relaatio on siis mikä tahansa A B:n osajoukko. Yllä olevassa sukulaisuusesimerkissä A oli sama kuin B eli kaikkien ihmisten joukko I (siis A = B = I). Esimerkki 2.3 (Relaatio) Jos A = {1, 2, 3} ja B = {4, 5, 6}, niin yksi relaatio näiden välillä on R = {(1, 4), (2, 6)}, koska R A B. R on joukon A B osajoukko, koska sen kummankin jäsenen ensimmäinen koordinaatti kuuluu joukkoon A ja toinen koordinaatti joukkoon B. Relaation täydellisyys ja transitiivisuus Relaatio joukossa A B on täydellinen, jos se on määritelty kaikkien A:n ja B:n alkioiden välillä. Eli: kaikilla a A ja b B, joko arb tai bra. Lukuparimerkinnöin tämä menee seuraavasti: joko (a, b) tai (b, a). Esimerkki 2.4 (Ei-täydellinen relaatio) Esimerkin 1 relaatio > ei ole täydellinen, sillä kaikilla luvuilla a, b ei päde a > b tai b > a. (Tämä ei päde, 5

jos a = b.) Esimerkki 2.5 (Ei-täydellinen relaatio) Esimerkin 2 relaatio joukossa I I ei ole täydellinen, sillä jos se olisi, tarkoittaisi tämä että kaikki ihmiset ovat toisilleen sukua. Esimerkki 2.6 (Täydellinen relaatio) Relaatio joukossa R R on täydellinen sillä kaikilla luvuilla x, y pätee, joko x y tai y x (yritä perustella tämä itsellesi). Toinen tärkeä relaatioiden mahdollinen ominaisuus on transitiivisuus. Alla määritelmä: Relaatio joukossa A B on transitiivinen jos siitä, että arb ja brc, seuraa että arc. Eli: tiedetään arb ja että brc. Jos tästä voi päätellä, että a:sta c:hen on relaatio eli arc, niin on R transitiivinen relaatio. Alla on kuvattu transitiivisen relaation idea: arb brc a b c arc Esimerkki 2.7 (Transitiivinen relaatio) Tutkitaan relaatiota >. Valitaan kolme mielivaltaista lukua: a, b ja c. Oletetaan, että tiedämme että arb ja brc eli että a > b ja b > c. Laittamalla nämä yhteen saadaan a > b > c, mistä luonnollisesti seuraa, että a > c. Eli arc. Joten > on transitiivinen. Edellisessä esimerkissä lähdettiin olettamalla relaatio a:sta b:hen eli arb ja relaatio b:stä c:hen eli brc. Tästä pääteltiin relaatio a:sta c:hen eli arc. Vastaavalla tavalla relaatio voidaan osoittaa transitiiviseksi. Toisaalta relaation voi osoittaa ei-transitiiviseksi löytämällä kolme alkiota, a, b ja c, jolla yllä oleva implikaatio arb ja brc arc ei päde. Esimerkki 2.8 (Ei-transitiivinen relaatio) Jos jälleen tarkastellaan kaikkien ihmisten joukkoa I, voidaan määritellä arb, jos a on b ystävä. Nyt jos a ja b on ystäviä ja b ja c on ystäviä arb ja brc, ei voida päätellä, että arc, eli että a on c:n ystävä. Joten R ei ole transitiivinen. Relaatiot lukuparien välillä Yllä joukot A ja B koostuivat yksiulotteisista alkioista, kuten luvuista 1,2 tai 3. Nämä joukot voivat kuitenkin koostua myös lukupareista. Merkitään 6

joukon A jäsentä (x, y) ja joukon B jäsentä (u, v). Nyt voimme merkitä relaatiota R A B merkinnällä (x, y)r(u, v). Esimerkki 2.9 (Relaatio lukuparien välillä) Oletetaan, että A koostuu kaikista reaalilukupareista eli A = R R. Olkoon myös B = R R. Yksi relaatio näiden joukkojen välillä voidaan määrittää (x, y)r(u, v) x + y > u + v. Nyt esimerkiksi (1, 1)R(1, 0), koska 1 + 1 > 1 + 0. Voit yrittää todistaa, että tämä relaatio on transitiivinen, muttei täydellinen. Esimerkki 2.10 (Leksikografinen relaatio) Olkoon edelleen A = B = R R. Määritellään eräs relaatio näiden joukkojen välillä kaavalla (x, y)r(u, v) x > u tai x = u ja y v Tämä on hieman monimutkaisempi relaatio, nimeltään sanakirjarelaatio tai leksikografinen relaatio. Kyseessä on täydellinen ja transitiivinen relaatio. Tämän relaation voi ymmärtää siten, että siinä ensimmäinen koordinaatti (x tai u) dominoi ja toinen koordinaatti (y tai v) vaikuttaa ainoastaan silloin kun lukuparien ensimmäiset koordinaatit ovat yhtäsuuret. 7