Taso 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste, suora

Samankaltaiset tiedostot
Suora 1/5 Sisältö ESITIEDOT: vektori, koordinaatistot, piste

Suorista ja tasoista LaMa 1 syksyllä 2009

Suorat ja tasot, L6. Suuntajana. Suora xy-tasossa. Suora xyzkoordinaatistossa. Taso xyzkoordinaatistossa. Tason koordinaattimuotoinen yhtälö.

3 Suorat ja tasot. 3.1 Suora. Tässä luvussa käsitellään avaruuksien R 2 ja R 3 suoria ja tasoja vektoreiden näkökulmasta.

Taso. Hannu Lehto. Lahden Lyseon lukio

Vektorit, suorat ja tasot

Suorien ja tasojen geometriaa Suorien ja tasojen yhtälöt

Tekijä Pitkä matematiikka Suoran pisteitä ovat esimerkiksi ( 5, 2), ( 2,1), (1, 0), (4, 1) ja ( 11, 4).

Avaruuden kolme sellaista pistettä, jotka eivät sijaitse samalla suoralla, määräävät

Tekijä Pitkä matematiikka Poistetaan yhtälöparista muuttuja s ja ratkaistaan muuttuja r.

TASON YHTÄLÖT. Tason esitystapoja ovat: vektoriyhtälö, parametriesitys (2 parametria), normaalimuotoinen yhtälö ja koordinaattiyhtälö.

Insinöörimatematiikka D, laskuharjoituksien esimerkkiratkaisut

Vektorien pistetulo on aina reaaliluku. Esimerkiksi vektorien v = (3, 2, 0) ja w = (1, 2, 3) pistetulo on

Vanhoja koetehtäviä. Analyyttinen geometria 2016

BM20A5800 Funktiot, lineaarialgebra ja vektorit Harjoitus 4, Syksy 2016

VEKTORIT paikkavektori OA

Insinöörimatematiikka D

Ota tämä paperi mukaan, merkkaa siihen omat vastauksesi ja tarkista oikeat vastaukset klo 11:30 jälkeen osoitteesta

Tekijä Pitkä matematiikka b) Kuvasta nähdään, että b = i 4 j. c) Käytetään a- ja b-kohtien tuloksia ja muokataan lauseketta.

Juuri Kertaus Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty

Ensimmäisen asteen polynomifunktio

Suora. Määritelmä. Oletetaan, että n = 2 tai n = 3. Avaruuden R n suora on joukko. { p + t v t R},

Suora. Hannu Lehto. Lahden Lyseon lukio

Geometriset avaruudet Pisteavaruus, vektoriavaruus ja koordinaattiavaruus

MAA15 Vektorilaskennan jatkokurssi, tehtävämoniste

1.1 Vektorit. MS-A0007 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n. 1. Vektorit ja kompleksiluvut

Yleistä vektoreista GeoGebralla

9. Vektorit. 9.1 Skalaarit ja vektorit. 9.2 Vektorit tasossa

Kahden suoran leikkauspiste ja välinen kulma (suoraparvia)

MATEMATIIKKA 5 VIIKKOTUNTIA. PÄIVÄMÄÄRÄ: 8. kesäkuuta 2009

Yhteenlaskun ja skalaarilla kertomisen ominaisuuksia

Lauseen erikoistapaus on ollut kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa seuraavassa muodossa:

Vektorialgebra 1/5 Sisältö ESITIEDOT: vektori

Lineaarialgebra MATH.1040 / voima

MS-A0002 Matriisilaskenta Luento 1:Vektorit ja lineaariyhdistelyt

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

HARJOITUSTEHTÄVIÄ. Millä vektorin c arvoilla voidaan vektoreita a + b, a + c ja b +2 c siirtelemällä muodostaa kolmio?

1. Olkoot vektorit a, b ja c seuraavasti määritelty: a) Määritä vektori. sekä laske sen pituus.

Tekijä Pitkä matematiikka Pisteen (x, y) etäisyys pisteestä (0, 2) on ( x 0) Pisteen (x, y) etäisyys x-akselista, eli suorasta y = 0 on y.

Kannan vektorit siis virittävät aliavaruuden, ja lisäksi kanta on vapaa. Lauseesta 7.6 saadaan seuraava hyvin käyttökelpoinen tulos:

GEOMETRIA MAA3 Geometrian perusobjekteja ja suureita

Lineaariavaruudet. Span. Sisätulo. Normi. Matriisinormit. Matriisinormit. aiheita. Aiheet. Reaalinen lineaariavaruus. Span. Sisätulo.

y=-3x+2 y=2x-3 y=3x+2 x = = 6

Toisen asteen käyrien ja pintojen geometriaa Ympyrän ja pallon ominaisuuksia

Koordinaatistot 1/6 Sisältö ESITIEDOT: reaaliluvut

Vektorilla on suunta ja suuruus. Suunta kertoo minne päin ja suuruus kuinka paljon. Se on siinä.

Paraabeli suuntaisia suoria.

Talousmatematiikan perusteet: Luento 9

Insinöörimatematiikka D

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. 8 ( 1)

kaikki ( r, θ )-avaruuden pisteet (0, θ ) - oli θ

Vapaus. Määritelmä. Vektorijono ( v 1, v 2,..., v k ) on vapaa eli lineaarisesti riippumaton, jos seuraava ehto pätee:

Epäeuklidista geometriaa

Juuri 4 Tehtävien ratkaisut Kustannusosakeyhtiö Otava päivitetty Kertaus. b) B = (3, 0, 5) K2. ( )

Muodonmuutostila hum

Kertausta: avaruuden R n vektoreiden pistetulo

Tekijä Pitkä matematiikka

Talousmatematiikan perusteet: Luento 8. Vektoreista ja matriiseista Vektorien peruslaskutoimitukset Lineaarinen riippumattomuus Vektorien sisätulo

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 3: Vektorikentät

A-osio. Tehdään ilman laskinta ja taulukkokirjaa! Valitse tehtävistä A1-A3 kaksi ja vastaa niihin. Maksimissaan tunti aikaa suorittaa A-osiota.

Vapaus. Määritelmä. jos c 1 v 1 + c 2 v c k v k = 0 joillakin c 1,..., c k R, niin c 1 = 0, c 2 = 0,..., c k = 0.

Lineaarikombinaatio, lineaarinen riippuvuus/riippumattomuus

Suoran yhtälöt. Suoran ratkaistu ja yleinen muoto: Suoran yhtälö ratkaistussa, eli eksplisiittisessä muodossa, on

KJR-C1001 Statiikka ja dynamiikka. Luento Susanna Hurme

Ympyrän yhtälö

0, niin vektorit eivät ole kohtisuorassa toisiaan vastaan.

Diplomi-insinööri- ja arkkitehtikoulutuksen yhteisvalinta 2017 Insinöörivalinnan matematiikan koe , Ratkaisut (Sarja A)

Vektoreita GeoGebrassa.

1 Kompleksitason geometriaa ja topologiaa

Lineaarialgebra ja matriisilaskenta II. LM2, Kesä /141

1.1 Vektorit. MS-A0004/A0006 Matriisilaskenta. 1.1 Vektorit. 1.1 Vektorit. Reaalinen n-ulotteinen avaruus on joukko. x 1. R n.

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/81

802120P Matriisilaskenta (5 op)

Vektorin paikalla avaruudessa ei ole merkitystä. Esimerkiksi yllä olevassa kuvassa kaikki kolme vektoria ovat samoja, ts.

Ilkka Mellin Todennäköisyyslaskenta Osa 3: Todennäköisyysjakaumia Moniulotteisia todennäköisyysjakaumia

MS-A0305 Differentiaali- ja integraalilaskenta 3 Luento 4: Taso- ja avaruuskäyrät

Pyramidi 4 Analyyttinen geometria tehtävien ratkaisut sivu 180 Päivitetty Pyramidi 4 Luku Ensimmäinen julkaistu versio

MS-C1340 Lineaarialgebra ja

Vektoreiden A = (A1, A 2, A 3 ) ja B = (B1, B 2, B 3 ) pistetulo on. Edellisestä seuraa

(ks. kuva) ja sen jälkeen x:n ja y:n suhteen yli xy-tasossa olevan alueen projektion G:

MS-A0205/MS-A0206 Differentiaali- ja integraalilaskenta 2 Luento 3: Osittaisderivaatta

Laudatur 4 MAA4 ratkaisut kertausharjoituksiin

Ympyrä 1/6 Sisältö ESITIEDOT: käyrä, kulma, piste, suora

Lineaarinen yhtälöryhmä

Ristitulolle saadaan toinen muistisääntö determinantin avulla. Vektoreiden v ja w ristitulo saadaan laskemalla determinantti

2 Pistejoukko koordinaatistossa

Matikkapaja keskiviikkoisin klo Lineaarialgebra (muut ko) p. 1/210

4. Käyrän lokaaleja ominaisuuksia

9. Lineaaristen differentiaaliyhtälöiden ratkaisuavaruuksista

3x + y + 2z = 5 e) 2x + 3y 2z = 3 x 2y + 4z = 1. x + y 2z + u + 3v = 1 b) 2x y + 2z + 2u + 6v = 2 3x + 2y 4z 3u 9v = 3. { 2x y = k 4x + 2y = h

Tekijä Pitkä matematiikka On osoitettava, että jana DE sivun AB kanssa yhdensuuntainen ja sen pituus on 4 5

6 Vektoriavaruus R n. 6.1 Lineaarikombinaatio

b 1. b m ) + ( 2b Ax) + (b b)

3 Yhtälöryhmä ja pistetulo

Vektoriarvoiset funktiot Vektoriarvoisen funktion jatkuvuus ja derivoituvuus

Transkriptio:

Taso 1/5 Sisältö Taso geometrisena peruskäsitteenä Kolmiulotteisen alkeisgeometrian peruskäsitteisiin kuuluu taso pisteen ja suoran lisäksi. Intuitiivisesti sitä voidaan ajatella joka suunnassa äärettömyyteen ulottuvana tasaisena ja suorana levynä. Tason voidaan katsoa myös syntyvän, kun suora liukuu pitkin kahta kiinteää yhdensuuntaista suoraa. Tason perusominaisuudet ovat samantyyppisiä kuin suoran: piste suora Kolme pistettä määräävät yksikäsitteisesti tason, jos ne eivät ole samalla suoralla. Kaksi toisensa leikkaavaa suoraa tai kaksi yhdensuuntaista suoraa määräävät yksikäsitteisesti tason. Tason ulkopuolella olevan pisteen kautta voidaan asettaa täsmälleen yksi sen suuntainen taso. Kaksi tasoa joko leikkaavat toisensa pitkin suoraa, ovat yhdensuuntaiset tai yhtyvät.

Taso 2/5 Sisältö Tason vektoriesitys Tasolle voidaan muodostaa vektoriesitys samaan tapaan kuin suoralle: lkoon annettuna kolme avaruuden pistettä paikkavektoreidensa avulla: P 1 = r 1, P 2 = r 2, P 3 = r 3. letetaan, että nämä eivät ole samalla suoralla, jolloin ne määräävät yksikäsitteisesti tason. Erotusvektorit s = r 2 r 1 ja t = r 3 r 1 ovat tason suuntaisia. Ne ovat keskenään eri suuntaisia, koska pisteet P 1, P 2, P 3 eivät ole samalla suoralla. Jos vektorit asetetaan alkamaan pisteestä P 1, ne määräävät suorat, jotka puolestaan määräävät tason. Tämän johdosta vektoreita kutsutaan tason virittäjävektoreiksi. vektori paikkavektori s t r 1 r 2 r 3 Jos P = r on mikä tahansa tason piste, sen paikkavektori voidaan kirjoittaa muotoon r = r 1 + a s + b t, kun skalaarit a ja b valitaan sopivasti. Toisaalta jos a ja b ovat mitä tahansa reaalilukuja, antaa eo. lauseke aina jonkin tasossa olevan pisteen paikkavektorin. skalaari t s r 1 r Esitystä r = r 1 + a s + b t, missä a, b R, kutsutaan tason vektoriesitykseksi. Tässä on kaksi parametria, a ja b, joiden arvoja vaihtelemalla saadaan kaikki tason pisteet. Samoin kuin suoran tapauksessa tason vektoriesitys ei ole yksikäsitteinen. Tason vektoriesitys muodostaa vektorialgebrallisen työkalun geometristen ongelmien käsittelyyn. geometria (vektori-)

Taso 3/5 Sisältö Tason yhtälö xy-tasossa muotoa ax + by + c =0oleva yhtälö esittää suoraa. Tämän analogia kolmiulotteisessa xyz-avaruudessa on yhtälö ax + by + cz + d =0; se esittää tasoa. Perustelut ovat hyvin samankaltaiset kuin suoran tapauksessa: lkoon annettuna piste P 0 = r 0, jonka kautta taso kulkee ja tasoa vastaan kohtisuora vektori, sen normaalivektori n. Nämä määräävät tason yksikäsitteisesti. Jotta piste P = r olisi tasossa, on vektoreiden n ja r r 0 oltava toisiaan vastaan kohtisuorat: n (r r 0 )=0. koordinaatisto (xy-) koordinaatisto (xyz-) vektori skalaaritulo n r r 0 r 0 r Kun merkitään r = x i + y j + z k, r 0 = x 0 i + y 0 j + z 0 k, n = a i + b j + c k, saa ehto muodon eli n (r r 0 )=a(x x 0 )+b(y y 0 )+c(z z 0 )=0 ax + by + cz + d =0, missä on merkitty d = ax 0 by 0 cz 0. Tämä on tason yhtälö xyz-koordinaatistossa. Koordinaattien x, y ja z kertoimina ovat normaalivektorin komponentit. Piste (x, y, z) on siis tasossa, jos ja vain jos ehto ax+by +cz +d =0toteutuu. komponentti

Taso 4/5 Sisältö Koordinaattiakseleiden ja -tasojen suuntaiset tasot Tason yhtälön kertoimista a, b ja c voi myös yksi tai kaksi olla =0. Kaikki sen sijaan eivät voi olla nollia, koska tällöin normaalivektori n = a i + b j + c k olisi nollavektori eikä määräisi tason suuntaa. Täten esimerkiksi yhtälöt x+y+z =1, x + y =1ja x =1kaikki esittävät kolmiulotteisen avaruuden tasoja. nollavektori x + y + z =1 x+y=1 x=1 Jos yhtälöstä puuttuu jokin koordinaatti, tason on vastaavan akselin suuntainen. Jos kaksi koordinaattia puuttuu, taso on koordinaattitason suuntainen.

Taso 5/5 Sisältö Suora kolmiulotteisessa avaruudessa Kolmiulotteisen avaruuden suoraa ei voida esittää yhdellä (skalaarisella) yhtälöllä tason esityksen tapaan. Sitä voidaan kuitenkin tarkastella kahden tason leikkaussuorana. Piste (x, y, z) on leikkaussuoralla, jos ja vain jos se toteuttaa kummankin tason yhtälön. Esimerkkinä tällaisesta suoran esityksestä olkoon seuraava: { x + y + z =1, x+y=1. suora Tällainen suoran esitys ei tietenkään ole yksikäsitteinen, koska tasot, joiden leikkauksena suora saadaan, voidaan valita monella eri tavalla. Esimerkin suora voidaan esittää yhtä hyvin muodossa { z =0, x+y=1. Tästä muodosta on helposti nähtävissä, että kyseessä on xy-tason (z =0) suora x + y =1. Yhtälöiden käyttö sekä tasojen että suorien esittämisessä on ns. analyyttisen geometrian menetelmä. geometria (analyyttinen)