KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 1 IDEAALIKAASU Ideaalikaasu Koostuu pistemäisistä hiukkasista Ei vuorovaikutuksia hiukkasten välillä Hiukkasten liike satunnaista Hiukkasten liike-energia riippuu kaasun lämpötilasta Reaalikaasu Hiukkasilla (atomeilla ja/tai molekyyleillä) äärellinen koko Hiukkasten välillä vuorovaikutuksia Puhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p Tilanyhtälö Ainemäärä n Lämpötila T p = f(t,v,n) Tilavuus V 1 KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 2 Paine = Voima / Pinta-ala p = F / A (SI-yksikkö 1 Pascal) Mekaanisessa tasapainossa systeemin eri osissa vallitsee sama paine Standardipaine = p = 1 bar 2
KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 3 Paineen mittaaminen perustuu mekaaniseen tasapainoon Esim. manometri Esimerkki: mikä on oheisen kuvan esittämän vinon nestepatsaan pohjalla vallitseva hydrostaattinen paine? ( v: p = ρ g l cosθ ) 3 KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 4 Lämpötilasta Lämpötila (kuten paine tai massatiheys) on intensiivinen suure (vrt. ekstensiivinen suure, esim. tilavuus, massa) Lämpötila kertoo systeemin energiavirran suunnan (energia virtaa spontaanisti kuumemmasta kylmempään, so. lämpotilaero pyrkii tasoittumaan) Diaterminen rajapinta sallii energian virtauksen kappaleesta toiseen Adiabaattinen rajapinta ei salli energian virtausta Termisessä tasapainossa energiaa ei virtaa diatermisen rajapinnan läpi Termodynamiikan nollas pääsääntö: Jos A on termisessä tasapainossa B:n kanssa ja B C:n kanssa, myös A ja C ovat tasapainossa keskenään (sovellus: elohopealämpömittari!) 4
KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 5 KAASULAIT (ASYMPTOOTTISIA LAKEJA) Boylen laki: Charlesin laki: (vaihtoehtoisesti) Avogadron periaate: pv = vakio, kun n, T vakioita V = vakio x T, kun n, p vakioita p = vakio x T, kun n, V vakioita V = vakio x n, kun p, T vakioita 5 KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 6 EMPIIRISET KAASULAIT YHDISTETTYNÄ pv = vakio x nt eli IDEAALIKAASUN TILANYHTÄLÖ R = kaasuvakio = 8.31447 J / Kmol pv = nrt tai p = nrt / V 6
KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 7 Kineettinen kaasumalli 7 KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 8 KAASUSEOKSET Mooliosuus: Aineosan J mooliosuus kaasuseoksessa x J = n J / n Osapaine: p J = x J p, p = kaasuseoksen kokonaispaine Daltonin osapainelaki: p A + p B + = (x A + x B + )p = p Sanallisesti: kaasuseoksen kokonaispaine on osapaineitten summa Esimerkki: Laske typen, hapen ja argonin osapaineet ilmassa käyttäen taulukon tietoja. 8
KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 9 STP = standard temperature and pressure = 0 o C ja 1 atm SATP = standard ambient temperature and pressure = 25 o C ja 1 bar Esimerkki: Jos STP olosuhteissa ideaalikaasun moolitilavuus on 22.414 dm 3 /mol, kuinka paljon se on SATP olosuhteissa? 9 KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 10 REAALIKAASUT Vuorovaikutukset Repulsiiviset, lyhyen kantaman Attraktiiviset, pitkän kantaman Puristumistekijä Z on reaalikaasun moolitilavuuden suhde vastaavan ideaalikaasun tilavuuteen (samassa lämpötilassa ja paineessa) Z = V m / V o m Reaalikaasun tilanyhtälö voidaan kirjoittaa ideaalikaasua vastaavaan muotoon käyttäen puristumistekijää pv m = RTZ 10
KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 11 Z =1 ideaalikaasulle Z 1 kun p 0 kaikille kaasuille Z > 1 suuressa paineessa (repulsio dominoi) Z < 1 pienessä paineessa (attraktio dominoi) VIRIAALIKERTOIMET Z on paineen funktio: Z = Z(p) Kehitetään Z p:n sarjana VIRIAALITILANYHTÄLÖ pv m = RT(1 + B p + C p 2 + ) TAI pv m = RT(1 + B / V m + C / V m 2 + ) 11 KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 12 REAALIKAASUN KONDENSAATIO Esim. CO 2 :n p-v isotermit Korkeassa lämpötilassa p-v käyrät lähellä ideaalikaasua Matalassa lämpötilassa kaasu kondensoituu nesteeksi (esim. C-D-E) Kriittinen piste (p C, V C, T C ) merkitty tähdellä Kriittisen pisteen yläpuolella kaasu on ylikriittisessä fluiditilassa 12
KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 13 T B = Boylen lämpötila 13 KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 14 VAN DER WAALS - TILANYHTÄLÖ Reaalikaasun atomeilla tai molekyyleillä on äärellinen tilavuus paine suurempi kuin vastaavan tilavuuden ideaalikaasulla ( b = tilavuus / mol) p rep nrt = V nb Attraktiiviset vuorovaikutukset paine pienempi kuin ideaalikaasulla vastaavassa tilavuudessa p attr 2 n = a V Yhdistetään van der Waals tilanyhtälöksi nrt n p = a V nb V 2 14
KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 15 Van der Waals ideaalikaasu 15 KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 16 16