PHYS-A0120 Termodynamiikka syksy 2016
|
|
- Ari-Pekka Niemelä
- 7 vuotta sitten
- Katselukertoja:
Transkriptio
1 PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 1: Lämpötila ja lämpö Maanantai ja tiistai 1.11.
2 Yleistä kurssista Luennot maanantaisin ja tiistaisin ( ) 6 laskuharjoitusta, tehtäviä lasketaan sekä harjoituksissa että itsenäisesti; ratkaisut myöhemmin MyCourses-sivulla Arvostelu: laskuharjoitukset 1/3, projektityö 1/3, kotitentti 1/3 Huom! Projektityö ja kotitentti ovat pakollisia; niistä kummastakin on saatava erikseen hyväksytty suoritus (minimipisteet)
3 Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan 1. pääsääntö 3. Lämpövoimakoneet ja termodynamiikan 2. pääsääntö 4. Entropia 5. Termodynaamiset potentiaalit 6. Faasimuutokset
4 Kurssin oppimistavoitteet Osaat määritellä ja selittää termodynamiikan peruskäsitteet, joita ovat mm. sisäenergiä, lämpö, työ, entropia ja kemiallinen potentiaali (näistä koostetaan kurssin edetessä erikseen lista MyCourses-sivuille) Osaat soveltaa termodynamiikan pääsääntöjä ja laskea siirtyneen lämmön, tehdyn työn ja tilanfunktioiden muutoksia erilaisissa termodynaamisissa prosesseissa Osaat selittää termodynaamisen potentiaalin käsitteen sekä soveltaa käsitettä tarkastellun systeemin tasapainotilan määrittämisessä Olet harjoitellut ryhmätyötaitoja ja tieteellisen raportin tekemistä
5 Oppikirja Ensimmäisen vuoden virallinen oppikirja, tälle termodynamiikan kurssille kuitenkin aivan liian suppea (lähinnä luku 11) Perusteellinen ja uusi termofysiikan oppikirja, käytetään 2. vuoden kurssilla PHYS-C0220 Termodynamiikka ja statistinen fysiikka Saatavana e-kirjana (kts. MyCourses)
6 Aiheet tällä viikolla Termodynamiikka: mitä se on? Termodynaaminen tila ja tilanmuuttujat Lämpötila Lämpö
7 Tavoitteet Osaat selittää termodynamiikan peruskäsitteitä: systeemi (eristetty/suljettu/avoin), tila, tilanmuuttuja, tilanyhtälö, kvasistaattinen prosessi, lämpötila, lämpö, lämpökapasiteetti Osaat laskea siirtynyttä lämpöä ja lämpötilan muutoksia yksinkertaisissa eristetyissä/suljetuissa systeemeissä (kalorimetria)
8 Termodynamiikka
9 Termodynamiikka Käsittelee makroskooppisia ainemääriä, ei oleta mitään tarkasteltujen fysikaalisten kokonaisuuksien mikroskooppisista vuorovaikutuksista tai rakenteista Termodynamiikan ytimen muodostavat neljä pääsääntöä (engl. laws of thermodynamics), joiden voima pohjautuu valtavaan määrään kokeellista tutkimusta Yleisesti ottaen kaikki fysiikka, jossa lämpötila ja lämpö ovat keskeisessä osassa kuuluvat termodynamiikan piiriin
10 Historia Termodynamiikan teorian kehittyminen liittyy suurelta osin höyrykoneiden ja muiden lämpövoimakoneiden tutkimukseen ja kehittämiseen: miten muutetaan lämpöä työksi? Tekniikan alan sovelluksia, mutta valtava vaikutus lähestulkoon kaikkiin fysiikan osa-alueisiin Monia erikoisia ideoita (jälkikäteen todeten) ja teorioita, joiden vuoksi termistö saattaa olla sekavaa tai jopa harhaanjohtavaa... Mikä tekee systeemistä termodynaamisen?
11 Richard Feynmanin miete If, in some cataclysm, all scientific knowledge were to be destroyed, and only one sentence passed on to the next generation of creatures, what statement would contain the most information in the fewest words? I believe it is the atomic hypothesis (or atomic fact, or whatever you wish to call it) that all things are made of atoms little particles that move around in perpetual motion, attracting each other when they are a little distance apart, but repelling upon being squeezed into one another. In that one sentence you will see an enormous amount of information about the world, if just a little imagination and thinking are applied.
12 Energia, hieman historiaa It is important to realize that in physics today, we have no knowledge of what energy is. -- Richard Feynman, Feynman Lectures on Physics (1964) Isaac Newton, Gottfried Leibniz ja vis viva (1600-luvun loppu) Antoine Lavoisier ja kalorikki (1700-luvun loppu) Julius von Mayer ja James Joule: lämmön mekaaninen ekvivalenssi (1840-luku) Hermann von Helmholtz: yleinen energian säilymislaki (1847)
13 Albert E. A theory is the more impressive the greater the simplicity of its premises is, the more different kinds of things it relates, and the more extended is its area of applicability. Therefore the deep impression which classical thermodynamics made upon me. It is the only physical theory of universal content concerning which I am convinced that, within the framework of the applicability of its basic concepts, it will never be overthrown (for the special attention of those who are skeptics on principle).
14 Makroskooppinen vs. mikroskooppinen Klassinen termodynamiikka Statistinen mekaniikka Sadi Carnot J. Willard Gibbs Ludwig Boltzmann James Clerk Maxwell
15 Esimerkki: lämpövoimakoneet
16 Esimerkki: faasimuutokset
17 Esimerkki: tähtitiede
18 Esimerkki: pehmeä aine Kuminauhan lämmitys, entrooppinen jousi
19 Esimerkki: molekyylimoottorit YouTube: Kinesin protein walking on microtubule
20 Pohdintaa Mikä on lämpötila? Mitä on lämpö?
21 Termodynaaminen tila
22 Systeemi ja ympäristö Systeemi, tarkastelun alla oleva fysikaalinen kokonaisuus Systeemiä ympäröivä fysikaalinen kokonaisuus, joka voi vaikuttaa systeemin tilaan, muodostaa sen ympäristön Systeemi + ympäristö = universumi
23 Erityyppisiä systeemejä Eristetty. Ei vuorovaikuta ympäristön kanssa (ei energian eikä hiukkasten vaihtoa) de Suljettu. Vaihtaa energiaa ympäristön kanssa, mutta ei hiukkasia. Erillisinä rajoituksina voidaan käyttää adiabaattista rajapintaa (ei lämmönsiirtoa) tai mekaanista työtä estävää rajapintaa. dn de Avoin. Vaihtaa sekä energiaa että hiukkasia ympäristön kanssa. Systeemi ja ympäristö muodostavat eristetyn systeemin
24 Pohdintaa Minkätyyppisiä systeemejä näet kuvissa?
25 Termodynaaminen tila Alussa systeemissä esiintyy makroskooppisesti havaittavia muutoksia (fysikaalisten suureiden gradienteista seuraavia virtauksia jne.) Kun systeemin annetaan kehittyä ajassa kyllin pitkään, se saavuttaa tilan, jossa ei enää esiinny makroskooppisesti havaittavia muutoksia ajassa. Tällöin se on saavuttanut termodynaamisen tasapainotilan. Palaamme myöhemmin tarkemmin termodynaamisen tasapainotilan ehtoihin
26 Tilanmuuttujat V, p, T, N, U, S, μ,... Termodynaamisen tilaa karakterisoi joukko makroskooppisia, kokeellisesti havaittavia ja hyvin määriteltyjä suureita (esim. V, p, T, N,...) Tilan yksikäsitteiseen määrittelemiseen tarvitaan vain rajoitettu määrä näitä suureita, joita kutsutaan tilanmuuttujiksi Muut termodynaamista tilaa karakterisoivat suureet ovat tällöin tilanmuuttujien määräämiä tilanfunktioita
27 Intensiiviset ja ekstensiiviset V, p, T, N, U, S, μ,... Tilanmuuttujat, jotka eivät riipu systeemin koosta, ainemäärästä tai massasta ovat intensiivisiä Vastaavasti tilanmuuttujat, jotka riippuvat systeemin koosta intensiivisten tilanmuuttujien pysyessä vakioina ovat ekstensiivisiä Ekstensiivisen tilanmuuttujan voi tarpeen mukaan muuttaa uudeksi intensiiviseksi tilanmuuttujaksi jakamalla sen systeemin kokoa karakterisoivalla suureella (ts. toisella ekstensiivisellä tilanmuuttujalla) Esim. hiukkastiheys
28 Termodynaaminen prosessi Systeemin tilan muuttamista/muuttumista kutsutaan termodynaamiseksi prosessiksi Riippuen siitä, miten prosessi tapahtuu tilanmuuttujat ovat tai eivät ole hyvin määriteltyjä V 1, p 1, T 1,... 1 V 2, p 2, T 2,... 2
29 Tilanfunktioiden ominaisuuksia Koska tilanfunktio on tilan yksikäsitteisesti määrittelemä, sen muutos tilasta toiseen ei voi riippua valitusta prosessista (integroimistiestä), vaan ainoastaan prosessin alku- ja lopputiloista Tilanfunktion differentiaalin sanotaan tällöin olevan eksakti Epäeksaktin differentiaalin integraalin arvo vuorostaan riippuu integroimistiestä Integroimistiestä käytetään usein yksinkertaisempaa nimitystä polku
30 Makroskooppinen vs. mikroskooppinen* Makrotila: systeemin makroskooppinen, klassisen termodynamiikan käsittelemä tila Mikrotila: systeemin tarkka (hetkellinen) mikroskooppinen kuvaus; nämä kuuluvat tilastollisen mekaniikan piiriin
31 Lämpötila
32 Termodynamiikan 0. pääsääntö A 1) Jos B on A:n kanssa termisessä (* tasapainossa... B C 2)... ja C on A:n kanssa termisessä tasapainossa... 3) niin B on C:n kanssa termisessä tasapainossa *) systeemit vuorovaikuttavat, mutta eivät tee mekaanista työtä toisiinsa
33 Termodynamiikan 0. pääsääntö Tarkastellaan kahta yksinkertaista fluidia, joiden tilat vakio ainemäärällä määrittävät täysin niiden paine p ja tilavuus V p 0, V 0 kiinnitetty Kun systeemit asettuvat termiseen tasapainoon, tiettyä (valittua) p 1 :n arvoa vastaa tietty V 1 :n arvo Vaihdetaan nyt paineen arvoksi p 1. Termisessä tasapainossa tätä vastaa tietty tilavuuden arvo V 1 p 1, V 1 Kaikki (p,v)-parit, jotka ovat termisessä tasapainossa vertailusysteemin kanssa muodostavat tarkastellun systeemin isotermin
34 Ideaalikaasun isotermi Mikä tahansa isotermin pisteistä on termisessä tasapainossa valitun vertailusysteemin kanssa a Vaihtamalla vertailusysteemi voidaan tarkastellulle systeemille määrittää uusia isotermejä b c
35 Tilanyhtälö Kts. moniste
36 Ideaalikaasun tilanyhtälö 1. Robert Boyle (1662): Tietylle määrälle kaasua vakiolämpötilassa pätee likimäärin 2. Jacques Charles (1780-luvulla): Tietylle määrälle kaasua vakiopaineessa pätee likimäärin 3. Joseph Louis Gay-Lussac (1802): Tietylle määrälle kaasua vakiotilavuudessa pätee likimäärin
37 Ideaalikaasun tilanyhtälö Avogadron hypoteesi (nyk. laki), 1814: Samassa lämpötilassa ja paineessa tietty tilavuus kaasua sisältää yhtä suuren määrän hiukkasia (ts. ainemäärän) Tilanyhtälö saa täten muodon R = 8,314 J K -1 mol -1 kaasuvakio Tai vaihtoehtoisesti Boltzmannin vakio
38 Muita tilanyhtälöitä Van der Waalsin tilanyhtälö Reaalikaasujen viriaalikehitelmä Useimmiten tilanfunktio ei ole näin siisti : se pitää määrittää kokeellisesti ja mahdollisesti paloittain eri termodynaamisten parametrien arvoille
39 Erilaisia lämpömittareita Tarkasteltavan systeemin ja lämpömittarin välinen lämpötilaero saa aikaan jonkin fysikaalisesti mitattavan muutoksen Käytännössä kuitenkin huomaamme, että erityyppiset lämpömittarit eivät tarkalleen anna samoja lukemia miksi?
40 Muita lämpömittareita Pt 4 He:n kylläisen höyryn paine RuO 2 Sensorin resistanssi lämpötilan funktiona Lämpötilaa heijastavan termometrisen suhteen ei välttämättä täydy käyttäytyä lineaarisesti lämpötilan funktiona; pääasia on, että tiedämme miten tätä ominaisuutta tulkitaan lämpötilan määrityksessä
41 Kaasulämpömittari Manometrin oikeaa jalkaa liikutetaan niin, että kaasun tilavuus pysyy vakiona Kaasun paine saadaan elohopeapatsaan korkeudesta (hydrostaattinen paine) + periaatteessa tarkka (kaasu käyttäytyy kuin ideaalikaasu alhaisessa paineessa) - epäkäytännöllinen, vaatii laitteiston huolellista mekaanista säätämistä
42 Veden kolmoispiste Nykyinen kansainvälinen lämpötilastandardi (1954) T tr = 273,16 K p tr = 0,61 kpa Kolmoispiste on se termodynaaminen (p,t)-piste, jossa aineen kaikki kolme perusolomuotoa kiinteä, neste ja kaasu ovat samanaikaisesti termodynaamisessa tasapainossa toistensa kanssa
43 Lämpö
44 Lämpötilaero ja lämpö Q T 1 T 2 (> T 1 ) T 1 Q T 2 (> T 1 ) T 3 T 3 Tämän me kaikki tiedämme: lämpö virtaa kuumemmasta kappaleesta kylmempään. Mutta miksi juuri näin? Energia kuitenkin säilyy prosessissa
45 Kalorikki Antoine Lavoisierin kalorikkiteoria (1783): lämpö on tuhoutumatonta, itseään hylkivää ainetta, kalorikkia, joka virtaa kuumemmasta kappaleesta kylmempään (lat. calor, lämpö) Selitti esim. lämpötilojen tasoittumisen, tunnettuja kaasulakeja, aineen olomuodon muutokset Kreivi Rumford osoitti kuitenkin, että kappaleesta voitiin kitkan avulla saada ulos käytännössä rajaton määrä kalorikkia teoria ei voinut olla oikein Tästä huolimatta teorialla oli kannattajansa vielä lähes 100 vuotta...
46 Lämmönsiirron muotoja Lämmön johtuminen Lämmön kuljettuminen (konvektio) Säteily
47 Sisäenergia U Makroskooppisen systeemin kokonaisenergia U Sisäenergia on systeemin kokonaisenergia, poislukien sen kineettinen ja potentiaalienergia ulkoisessa kentässä makroskooppisena kokonaisuutena; ts. kaikki systeemin mikroskooppisiin vapausasteisiin varastoitunut energia Sisäenergia on systeemin tilanmuuttujien määrittelemä ja näin ollen tilanfunktio, jonka muutos riippuu ainoastaan prosessin alku- ja lopputiloista
48 Lämpö Q T 1 Q T 2 (> T 1 ) Lämpö on lämpötilaerosta johtuvaa energian siirtoa, joka johtaa systeemin sisäenergian muutokseen. Näin ollen kun prosessissa ei tehdä mekaanista työtä
49 Lämpökapasiteetti Kertoo kuinka suuri lämpö tarvitaan muuttamaan lämpötilaa tietty määrä dt Voidaan määritellä materiaalille ominainen ominaislämpö(kapasiteetti) c tai molaarinen ominaislämpö(kapasiteetti) Huono nimitys! Systeemillä ei ole lämpösisältöä, ainoastaan sisäenergiaa
50 Lämpökapasiteetti Yleisesti ottaen C on lämpötilan funktio Mutta esim. nestemäiselle vedelle suhteellinen vaihtelu on ~1% sulamisja kiehumispisteiden välillä c w 4186 J kg -1 K -1 (vrt. energian yksikkö kalori: 1 cal = 4,186 J)
51 Esimerkki Lämpötilojen tasoittuminen eristetyssä systeemissä ƩQ = 0 Kts. moniste
52 Latentti lämpö Tiettyihin faasimuutoksiin (esim. tavalliset olomuodon muutokset) liittyy lämpömäärä, jonka systeemi absorboi muutoksen aikana vakiolämpötilassa Koska systeemin siirretään lämpöä, mutta sen lämpötila ei muutu, tästä käytetään nimitystä latentti (piilevä) lämpö
53 Esimerkki: vesi
54 Kertaus: ainemäärä Mooli (mol) Sama ainemäärä hiukkasia kuin 12 g:ssa 12 C:a on atomeita Avogadron luku Hiukkasten lukumäärä yhdessä moolissa (Perrin 1908; Rutherford 1909) Määritelmän mukaan hiiliatomin 12 C massa on 12 u, jossa u = 1, kg, ja 1 u = 1 g/mol
55 Lopuksi: Avogadron luku à la Kelvin 1. Otetaan lasi vettä ja merkitään kukin vesimolekyyli taikakynällä. 2. Kaadetaan vesi lasista mereen ja annetaan molekyylien sekoittua täydellisesti. 3. Otetaan merestä lasi vettä. Kuinka monta taikakynällä merkittyä vesimolekyyliä lasissa on?
PHYS-A0120 Termodynamiikka syksy 2017
PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 1: Lämpötila ja lämpö Maanantai 30.10. ja tiistai 31.10. A theory is the more impressive the greater the simplicity of its
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 Emppu Salonen Lasse Laurson Toni Mäkelä Touko Herranen Luento 1: lämpötila, Boltzmannin jakauma Ke 22.2.2017 1 Richard Feynmanin miete If,
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 2: Kaasujen kineettistä teoriaa Pe 26.2.2016 1 AIHEET 1. Maxwellin-Boltzmannin
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 1: Lämpötila ja Boltzmannin jakauma Ke 24.2.2016 1 YLEISTÄ KURSSISTA Esitietovaatimuksena
LisätiedotPHYS-A0120 Termodynamiikka syksy 2017
PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 2: Työ ja termodynamiikan 1. pääsääntö Maanantai 6.11. ja tiistai 7.11. Pohdintaa Mitä tai mikä ominaisuus lämpömittarilla
LisätiedotPHYS-A0120 Termodynamiikka syksy 2016
PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 2: Työ ja termodynamiikan 1. pääsääntö Maanantai 7.11. ja tiistai 8.11. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan
LisätiedotPHYS-A0120 Termodynamiikka syksy 2017
PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 27.11. ja tiistai 28.11. Kotitentti Julkaistaan ti 5.12., palautus viim. ke 20.12.
LisätiedotPHYS-A0120 Termodynamiikka syksy 2016
PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 5: Termodynaamiset potentiaalit Maanantai 28.11. ja tiistai 29.11. Kotitentti Julkaistaan to 8.12., palautus viim. to 22.12.
LisätiedotPHYS-A0120 Termodynamiikka syksy 2016
PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 6: Faasimuutokset Maanantai 5.12. Kurssin aiheet 1. Lämpötila ja lämpö 2. Työ ja termodynamiikan 1. pääsääntö 3. Lämpövoimakoneet
LisätiedotPHYS-A0120 Termodynamiikka syksy 2016
PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 4: Entropia Maanantai 21.11. ja tiistai 22.11. Ideaalikaasun isoterminen laajeneminen Kaasuun tuodaan määrä Q lämpöä......
Lisätiedot1 Eksergia ja termodynaamiset potentiaalit
1 PHYS-C0220 Termodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Eksergia ja termodynaamiset potentiaalit 1.1 Suurin mahdollinen hyödyllinen työ Tähän mennessä olemme tarkastelleet sisäenergian
LisätiedotLämpöoppi. Termodynaaminen systeemi. Tilanmuuttujat (suureet) Eristetty systeemi. Suljettu systeemi. Avoin systeemi.
Lämpöoppi Termodynaaminen systeemi Tilanmuuttujat (suureet) Lämpötila T (K) Absoluuttinen asteikko eli Kelvinasteikko! Paine p (Pa, bar) Tilavuus V (l, m 3, ) Ainemäärä n (mol) Eristetty systeemi Ei ole
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 5: Termodynaamiset potentiaalit Ke 9.3.2016 1 AIHEET 1. Muut työn laadut sisäenergiassa
LisätiedotPHYS-A0120 Termodynamiikka syksy 2017
PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 6: Faasimuutokset Maanantai 4.12. ja tiistai 5.12. Metallilangan venytys Metallilankaan tehty työ menee atomien välisten
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 6: Vapaaenergia Pe 11.3.2016 1 AIHEET 1. Kemiallinen potentiaali 2. Maxwellin
LisätiedotPuhtaan kaasun fysikaalista tilaa määrittävät seuraavat 4 ominaisuutta, jotka tilanyhtälö sitoo toisiinsa: Paine p
KEMA221 2009 KERTAUSTA IDEAALIKAASU JA REAALIKAASU ATKINS LUKU 1 1 IDEAALIKAASU Ideaalikaasu Koostuu pistemäisistä hiukkasista Ei vuorovaikutuksia hiukkasten välillä Hiukkasten liike satunnaista Hiukkasten
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 Emppu Salonen Lasse Laurson Toni Mäkelä Touko Herranen Luento 4: entropia Pe 3.3.2017 1 Aiheet tänään 1. Klassisen termodynamiikan entropia
LisätiedotMolaariset ominaislämpökapasiteetit
Molaariset ominaislämpökapasiteetit Yleensä, kun systeemiin tuodaan lämpöä, sen lämpötila nousee. (Ei kuitenkaan aina, kannattaa muistaa, että työllä voi olla osuutta asiaan.) Lämmön ja lämpötilan muutoksen
LisätiedotTermodynamiikka. Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt. ...jotka ovat kaikki abstraktioita
Termodynamiikka Termodynamiikka on outo teoria. Siihen kuuluvat keskeisinä: Systeemit Tilanmuuttujat Tilanyhtälöt...jotka ovat kaikki abstraktioita Miksi kukaan siis haluaisi oppia termodynamiikkaa? Koska
LisätiedotT F = T C ( 24,6) F = 12,28 F 12,3 F T K = (273,15 24,6) K = 248,55 K T F = 87,8 F T K = 4,15 K T F = 452,2 F. P = α T α = P T = P 3 T 3
76628A Termofysiikka Harjoitus no. 1, ratkaisut (syyslukukausi 2014) 1. Muunnokset Fahrenheit- (T F ), Celsius- (T C ) ja Kelvin-asteikkojen (T K ) välillä: T F = 2 + 9 5 T C T C = 5 9 (T F 2) T K = 27,15
LisätiedotLuento 4. Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit
Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2. pääsääntö Termodynaamiset potentiaalit Luento 4 Termodynamiikka Termodynaamiset prosessit ja 1. pääsääntö Entropia ja 2.
LisätiedotIdeaalikaasulaki. Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua
Ideaalikaasulaki Ideaalikaasulaki on esimerkki tilanyhtälöstä, systeemi on nyt tietty määrä (kuvitteellista) kaasua ja tilanmuuttujat (yhä) paine, tilavuus ja lämpötila Isobaari, kun paine on vakio Kaksi
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 8: Kemiallinen potentiaali, suurkanoninen ensemble Pe 18.3.2016 1 AIHEET 1. Kanoninen
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2017 Emppu Salonen Lasse Laurson Toni Mäkelä Touko Herranen Luento 2: kineettistä kaasuteoriaa Pe 24.2.2017 1 Aiheet tänään 1. Maxwellin ja Boltzmannin
LisätiedotP = kv. (a) Kaasun lämpötila saadaan ideaalikaasun tilanyhtälön avulla, PV = nrt
766328A Termofysiikka Harjoitus no. 2, ratkaisut (syyslukukausi 204). Kun sylinterissä oleva n moolia ideaalikaasua laajenee reversiibelissä prosessissa kolminkertaiseen tilavuuteen 3,lämpötilamuuttuuprosessinaikanasiten,ettäyhtälö
LisätiedotLämmityksen lämpökerroin: Jäähdytin ja lämmitin ovat itse asiassa sama laite, mutta niiden hyötytuote on eri, jäähdytyksessä QL ja lämmityksessä QH
Muita lämpökoneita Nämäkin vaativat työtä toimiakseen sillä termodynamiikan toinen pääsääntö Lämpökoneita ovat lämpövoimakoneiden lisäksi laitteet, jotka tekevät on Clausiuksen mukaan: Mikään laite ei
LisätiedotMuita lämpökoneita. matalammasta lämpötilasta korkeampaan. Jäähdytyksen tehokerroin: Lämmityksen lämpökerroin:
Muita lämpökoneita Nämäkin vaativat ovat työtälämpövoimakoneiden toimiakseen sillä termodynamiikan pääsääntö Lämpökoneita lisäksi laitteet,toinen jotka tekevät on Clausiuksen mukaan: laiteilmalämpöpumppu
LisätiedotTässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen
KEMA221 2009 PUHTAAN AINEEN FAASIMUUTOKSET ATKINS LUKU 4 1 PUHTAAN AINEEN FAASIMUUTOKSET Esimerkkejä faasimuutoksista? Tässä luvussa keskitytään faasimuutosten termodynaamiseen kuvaukseen Faasi = aineen
LisätiedotPHYS-A0120 Termodynamiikka syksy 2017
PHYS-A0120 Termodynamiikka syksy 2017 Emppu Salonen Prof. Peter Liljeroth Viikko 3: Lämpövoimakoneet ja termodynamiikan 2. pääsääntö Maanantai 13.11. ja tiistai 14.11. Milloin prosessi on adiabaattinen?
LisätiedotPalautus yhtenä tiedostona PDF-muodossa viimeistään torstaina
PHYS-A0120 Termodynamiikka, syksy 2018 Kotitentti Vastaa tehtäviin 1/2/3, 4, 5/6, 7/8, 9 (yhteensä viisi vastausta). Tehtävissä 1, 2, 3 ja 9 on annettu ohjeellinen pituus, joka viittaa 12 pisteen fontilla
LisätiedotSpontaanissa prosessissa Energian jakautuminen eri vapausasteiden kesken lisääntyy Energia ja materia tulevat epäjärjestyneemmäksi
KEMA221 2009 TERMODYNAMIIKAN 2. PÄÄSÄÄNTÖ ATKINS LUKU 3 1 1. TERMODYNAMIIKAN TOINEN PÄÄSÄÄNTÖ Lord Kelvin: Lämpöenergian täydellinen muuttaminen työksi ei ole mahdollista 2. pääsääntö kertoo systeemissä
Lisätiedotkuonasula metallisula Avoin Suljettu Eristetty S / Korkealämpötilakemia Termodynamiikan peruskäsitteitä
Termodynamiikan peruskäsitteitä The Laws of thermodynamics: (1) You can t win (2) You can t break even (3) You can t get out of the game. - Ginsberg s theorem - Masamune Shirow: Ghost in the shell Systeemillä
LisätiedotOhjeellinen pituus: 2 3 sivua. Vastaa joko tehtävään 2 tai 3
PHYS-A0120 Termodynamiikka, syksy 2017 Kotitentti Vastaa tehtäviin 1, 2/3, 4/5, 6/7, 8 (yhteensä viisi vastausta). Tehtävissä 1 ja 7 on annettu ohjeellinen pituus, joka viittaa 12 pisteen fontilla sekä
LisätiedotTermodynamiikan suureita ja vähän muutakin mikko rahikka
Termodynamiikan suureita ja vähän muutakin mikko rahikka 2006 m@hyl.fi 1 Lämpötila Suure lämpötila kuvaa kappaleen/systeemin lämpimyyttä (huono ilmaisu). Ihmisen aisteilla on hankala tuntea lämpötilaa,
LisätiedotCh 19-1&2 Lämpö ja sisäenergia
Ch 19-1&2 Lämpö ja sisäenergia Esimerkki 19-1 Olet syönyt liikaa täytekakkua ja havaitset, että sen energiasisältö oli 500 kcal. Arvioi kuinka korkealle mäelle sinun pitää pitää kiivetä, jotta kuluttaisit
Lisätiedot= P 0 (V 2 V 1 ) + nrt 0. nrt 0 ln V ]
766328A Termofysiikka Harjoitus no. 7, ratkaisut (syyslukukausi 2014) 1. Sylinteri on ympäristössä, jonka paine on P 0 ja lämpötila T 0. Sylinterin sisällä on n moolia ideaalikaasua ja sen tilavuutta kasvatetaan
LisätiedotENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!
ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! Luento 14.9.2015 / T. Paloposki / v. 03 Tämän päivän ohjelma: Aineen tilan kuvaaminen pt-piirroksella ja muilla piirroksilla, faasimuutokset Käsitteitä
Lisätiedotvetyteknologia Polttokennon termodynamiikkaa 1 DEE Risto Mikkonen
DEE-5400 olttokennot ja vetyteknologia olttokennon termodynamiikkaa 1 DEE-5400 Risto Mikkonen ermodynamiikan ensimmäinen pääsääntö aseraja Ympäristö asetila Q W Suljettuun systeemiin tuotu lämpö + systeemiin
LisätiedotPHYS-A0120 Termodynamiikka. Emppu Salonen
PHYS-A0120 Termodynamiikka Emppu Salonen 27. lokakuuta 2017 Termodynamiikka, syksy 2017 1 Thermodynamics is easy I ve learned it many times. Harvey S. Leff 1 Johdanto Tässä luvussa teemme yleiskatsauksen
LisätiedotTämän päivän ohjelma: ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA!
ENY-C2001 Termodynamiikka ja lämmönsiirto TERVETULOA! Luento 28.9.2015 / T. Paloposki / v. 01 Tämän päivän ohjelma: Tilanyhtälöt (kertaus) Termodynamiikan 1. pääsääntö (energian häviämättömyyden laki)
LisätiedotEkvipartitioteoreema. Entropia MB-jakaumassa. Entropia tilastollisessa mekaniikassa
Ekvipartitioteoreema lämpötilan ollessa riittävän korkea, kukin molekyylin liikkeen vapausaste tuo energian ½ kt sekä keskimääräiseen liike-energiaan ja kineettiseen energiaan energian lisäys ja riittävän
LisätiedotEkvipartitioteoreema
Ekvipartitioteoreema lämpötilan ollessa riittävän korkea, kukin molekyylin liikkeen vapausaste tuo energian ½ kt sekä keskimääräiseen liike-energiaan ja kineettiseen energiaan energian lisäys ja riittävän
LisätiedotI PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ
I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ 1.1 Tilastollisen fysiikan ja termodynamiikan tutkimuskohde... 2 1.2 Mikroskooppiset ja makroskooppiset teoriat... 3 1.3 Terminen tasapaino ja lämpötila... 5 1.4 Termodynamiikan
LisätiedotPHYS-A0120 Termodynamiikka syksy 2016
PHYS-A0120 Termodynamiikka syksy 2016 Emppu Salonen Prof. Peter Liljeroth Viikko 3: Lämpövoimakoneet ja termodynamiikan 2. pääsääntö Maanantai 14.11. ja tiistai 15.11. Kurssin aiheet 1. Lämpötila ja lämpö
LisätiedotLämpötila ja lämpö. 2.1 Terminen tasapaino
2 Lämpötila ja lämpö Lämpötila ja lämpö ovat meille arkipäivästä tuttuja käsitteitä jo oman aistimaailmamme kautta. Me tunnemme "lämmön"ja "kylmän"ja lämpömittareiden lukemat säätelevät päivittäistä toimintaamme:
LisätiedotLuku 20. Kertausta: Termodynamiikan 2. pääsääntö Lämpövoimakoneen hyötysuhde
Luku 20 Kertausta: Termodynamiikan 2. pääsääntö Lämpövoimakoneen hyötysuhde Uutta: Termodynamiikan 2. pääsääntö Jäähdytyskoneen hyötykerroin ja lämpöpumpun lämpökerroin Entropia Tilastollista termodynamiikkaa
LisätiedotClausiuksen epäyhtälö
1 Kuva 1: Clausiuksen epäyhtälön johtaminen. Clausiuksen epäyhtälö otesimme Carnot n koneelle, että syklissä lämpötiloissa H ja L vastaanotetuille lämmöille Q H ja Q L pätee Q H H oisin ilmaistuna, Carnot
Lisätiedot6. Yhteenvetoa kurssista
Statistinen fysiikka, osa A (FYSA241) Vesa Apaja vesa.apaja@jyu.fi Huone: YN212. Ei kiinteitä vastaanottoaikoja. kl 2016 6. Yhteenvetoa kurssista 1 Keskeisiä käsitteitä I Energia TD1, siirtyminen lämpönä
LisätiedotS , Fysiikka III (Sf) tentti/välikoeuusinta
S-114.45, Fysiikka III (Sf) tentti/välikoeuusinta.11.4 1. välikokeen alue 1. Osoita, että hyvin alhaisissa lämpötiloissa elektronin FD systeemin energia on U = (3/ 5) ε F. Opastus: oleta, että kaikki tilat
LisätiedotElastisuus: Siirtymä
Elastisuus: Siirtymä x Elastisuus: Siirtymä ja jännitys x σ(x) σ(x) u(x) ℓ0 u(x) x ℓ0 x Elastisuus: Lämpövenymä ja -jännitys Jos päät kiinnitetty eli ε = 0 Jos pää vapaa eli σ = 0 Elastisuus: Venymätyypit
Lisätiedot4) Törmäysten lisäksi rakenneosasilla ei ole mitään muuta keskinäistä tai ympäristöön suuntautuvaa vuorovoikutusta.
K i n e e t t i s t ä k a a s u t e o r i a a Kineettisen kaasuteorian perusta on mekaaninen ideaalikaasu, joka on matemaattinen malli kaasulle. Reaalikaasu on todellinen kaasu. Reaalikaasu käyttäytyy
Lisätiedot2. Termodynamiikan perusteet
Statistinen fysiikka, osa A (FYSA241) Tuomas Lappi tuomas.v.v.lappi@jyu.fi Huone: FL249. Ei kiinteitä vastaanottoaikoja. kl 2013 2. Termodynamiikan perusteet 1 TD ja SM Statistisesta fysiikasta voidaan
LisätiedotKAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille]
KAASUJEN YLEISET TILANYHTÄLÖT ELI IDEAALIKAASUJEN TILANYHTÄLÖT (Kaasulait) [pätevät ns. ideaalikaasuille] A) p 1, V 1, T 1 ovat paine tilavuus ja lämpötila tilassa 1 p 2, V 2, T 2 ovat paine tilavuus ja
Lisätiedot- Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka: kappaleiden liike)
KEMA221 2009 TERMODYNAMIIKAN 1. PÄÄSÄÄNTÖ ATKINS LUKU 2 1 1. PERUSKÄSITTEITÄ - Termodynamiikka kuvaa energian siirtoa ( dynamiikkaa ) systeemin sisällä tai systeemien kesken (vrt. klassinen dynamiikka:
LisätiedotT H V 2. Kuva 1: Stirling kiertoprosessi. Ideaalisen Stirlingin koneen sykli koostuu neljästä osaprosessista (kts. kuva 1):
1 c 3 p 2 T H d b T L 4 1 a V Kuva 1: Stirling kiertoprosessi. Stirlingin kone Ideaalisen Stirlingin koneen sykli koostuu neljästä osaprosessista kts. kuva 1: 1. Työaineen ideaalikaasu isoterminen puristus
LisätiedotRATKAISUT: 12. Lämpöenergia ja lämpöopin pääsäännöt
Physica 9 1. painos 1(7) : 12.1 a) Lämpö on siirtyvää energiaa, joka siirtyy kappaleesta (systeemistä) toiseen lämpötilaeron vuoksi. b) Lämpöenergia on kappaleeseen (systeemiin) sitoutunutta energiaa.
LisätiedotPHYS-A0120 Termodynamiikka. Emppu Salonen
PHYS-A0120 ermodynamiikka Emppu Salonen 1. joulukuuta 2016 ermodynamiikka 1 1 Lämpötila ja lämpö 1.1 ilanyhtälö arkastellaan kolmea yksinkertaista fluidisysteemiä 1, jotka koostuvat kukin vain yhdentyyppisistä
LisätiedotTeddy 1. välikoe kevät 2008
Teddy 1. välikoe kevät 2008 Vastausaikaa on 2 tuntia. Kokeessa saa käyttää laskinta ja MAOL-taulukoita. Jokaiseen vastauspaperiin nimi ja opiskelijanumero! 1. Ovatko seuraavat väitteet oikein vai väärin?
LisätiedotREAKTIOT JA ENERGIA, KE3. Kaasut
Kaasut REAKTIOT JA ENERGIA, KE3 Kaasu on yksi aineen olomuodosta. Kaasujen käyttäytymistä kokeellisesti tutkimalla on päädytty yksinkertaiseen malliin, ns. ideaalikaasuun. Määritelmä: Ideaalikaasu on yksinkertainen
LisätiedotTermodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki
Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 7: Ekvipartitioteoreema, partitiofunktio ja ideaalikaasu Ke 16.3.2016 1 KURSSIN
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 206 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 2: BE- ja FD-jakaumat, kvanttikaasut Pe 5.4.206 AIHEET. Kvanttimekaanisesta vaihtosymmetriasta
LisätiedotLämpöopin pääsäännöt
Lämpöopin pääsäännöt 0. Eristetyssä systeemissä lämpötilaerot tasoittuvat. Systeemin sisäenergia U kasvaa systeemin tuodun lämmön ja systeemiin tehdyn työn W verran: ΔU = + W 2. Eristetyn systeemin entropia
Lisätiedot= 1 kg J kg 1 1 kg 8, J mol 1 K 1 373,15 K kg mol 1 1 kg Pa
766328A Termofysiikka Harjoitus no. 8, ratkaisut syyslukukausi 2014 1. 1 kg nestemäistä vettä muuttuu höyryksi lämpötilassa T 100 373,15 K ja paineessa P 1 atm 101325 Pa. Veden tiheys ρ 958 kg/m 3 ja moolimassa
Lisätiedot1 Clausiuksen epäyhtälö
1 PHYS-C0220 ermodynamiikka ja statistinen fysiikka, kevät 2017 Emppu Salonen 1 Clausiuksen epäyhtälö Carnot n koneen syklissä lämpötilassa H ja L vastaanotetuille lämmöille Q H ja Q L pätee oisin ilmaistuna,
LisätiedotENY-C2001 Termodynamiikka ja lämmönsiirto Luento 8 /
ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 8 / 7.11.2016 v. 02 / T. Paloposki Tämän päivän ohjelma: Sisäenergia (kertaus) termodynamiikan 1. pääsääntö Entropia termodynamiikan 2. pääsääntö 1 Termodynamiikan
Lisätiedot1. Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta
766328A Termofysiikka Harjoitus no. 5, ratkaisut syyslukukausi 204). Yksiulotteisen harmonisen oskillaattorin energiatilat saadaan lausekkeesta E n n + ) ω, n 0,, 2,... 2 a) Oskillaattorin partitiofunktio
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 10: Reaalikaasut Pe 1.4.2016 1 AIHEET 1. Malleja, joissa pyritään huomioimaan
LisätiedotI PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ... 2
I PERUSKÄSITTEITÄ JA MÄÄRITELMIÄ... 2 1.1 Tilastollisen fysiikan ja termodynamiikan tutkimuskohde... 2 1.2 Mikroskooppiset ja makroskooppiset teoriat... 3 1.3 Terminen tasapaino ja lämpötila... 5 1.4 Termodynamiikan
LisätiedotIX TOINEN PÄÄSÄÄNTÖ JA ENTROPIA...208
IX OINEN PÄÄSÄÄNÖ JA ENROPIA...08 9. ermodynaamisen systeemin pyrkimys tasapainoon... 08 9. ermodynamiikan toinen pääsääntö... 0 9.3 Entropia termodynamiikassa... 0 9.3. Entropian määritelmä... 0 9.3.
LisätiedotFY9 Fysiikan kokonaiskuva
FY9 Sivu 1 FY9 Fysiikan kokonaiskuva 6. tammikuuta 2014 14:34 Kurssin tavoitteet Kerrata lukion fysiikan oppimäärä Yhdistellä kurssien asioita toisiinsa muodostaen kokonaiskuvan Valmistaa ylioppilaskirjoituksiin
LisätiedotFYSA242 Statistinen fysiikka, Harjoitustentti
FYSA242 Statistinen fysiikka, Harjoitustentti Tehtävä 1 Selitä lyhyesti: a Mikä on Einsteinin ja Debyen kidevärähtelymallien olennainen ero? b Mikä ero vuorovaikutuksessa ympäristön kanssa on kanonisella
LisätiedotLuku 8 EXERGIA: TYÖPOTENTIAALIN MITTA
Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 8 EXERGIA: TYÖPOTENTIAALIN MITTA Copyright The McGraw-Hill Companies, Inc. Permission required
Lisätiedot3Työ. 3.1 Yleinen määritelmä
3Työ Edellisessä luvussa käsittelimme systeemin sisäenergian muutosta termisen energiansiirron myötä, joka tapahtuu spontaanisti kahden eri lämpötilassa olevan kappaleen välillä. Toisena mekanismina systeemin
Lisätiedot1-1 Makroskooppinen fysiikka
1 1 Peruskäsitteitä 1-1 Makroskooppinen fysiikka Statistinen fysiikka tutkii makroskooppisia systeemejä. Systeemi on makroskooppinen, jos se muodostuu hyvin suuresta joukosta atomeja tai molekyylejä. Niiden
LisätiedotLämpöopin pääsäännöt. 0. pääsääntö. I pääsääntö. II pääsääntö
Lämpöopin pääsäännöt 0. pääsääntö Jos systeemit A ja C sekä B ja C ovat termisessä tasapainossa, niin silloin myös A ja B ovat tasapainossa. Eristetyssä systeemissä eri lämpöiset kappaleet asettuvat lopulta
Lisätiedot= 84. Todennäköisin partitio on partitio k = 6,
S-435, Fysiikka III (ES) entti 43 entti / välikoeuusinta I Välikokeen alue Neljän tunnistettavissa olevan hiukkasen mikrokanonisen joukon mahdolliset energiatasot ovat, ε, ε, 3ε, 4ε,, jotka kaikki ovat
LisätiedotTämän päivän ohjelma: ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 3 / Kommentti kotilaskuun 2 Termodynamiikan 1. pääsääntö 9/26/2016
ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 3 / 26.9.2016 v. 03 / T. Paloposki Tämän päivän ohjelma: Kommentti kotilaskuun 2 Termodynamiikan 1. pääsääntö 1 Kotilasku 2 Kotilasku 2 2 Termodynamiikan
Lisätiedotm h = Q l h 8380 J = J kg 1 0, kg Muodostuneen höyryn osuus alkuperäisestä vesimäärästä on m h m 0,200 kg = 0,
76638A Termofysiikka Harjoitus no. 9, ratkaisut syyslukukausi 014) 1. Vesimäärä, jonka massa m 00 g on ylikuumentunut mikroaaltouunissa lämpötilaan T 1 110 383,15 K paineessa P 1 atm 10135 Pa. Veden ominaislämpökapasiteetti
LisätiedotLuku 4 SULJETTUJEN SYSTEEMIEN ENERGIA- ANALYYSI
Thermodynamics: An Engineering Approach, 7 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Luku 4 SULJETTUJEN SYSTEEMIEN ENERGIA- ANALYYSI Copyright The McGraw-Hill Companies, Inc. Permission
LisätiedotLämpötila, lämpö energiana
Matematiikan, fysiikan ja kemian opettajan kandiohjelma Didaktisen fysiikan kokeellisuus I Lämpötila, lämpö energiana Tilanmuuttujien perushahmotus Lämpötila, paine, tasapaino Lämpötilalla tarkoitetaan
LisätiedotLuento 8 6.3.2015. Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit
Luento 8 6.3.2015 1 Entrooppiset voimat Vapaan energian muunoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) 2 Makroskooppisia voimia, jotka syntyvät pyrkimyksestä
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2017 Emppu Salonen Lasse Laurson Touko Herranen Toni Mäkelä Luento 11: Faasitransitiot Ke 29.3.2017 1 AIHEET 1. 1. kertaluvun transitioiden (esim.
LisätiedotTermofysiikan perusteet
Termofysiikan perusteet Ismo Napari ja Hanna Vehkamäki T 2 Q 2 C W Q 1 T 1 (< T 2 ) Helsingin yliopisto, 2013 (Päivitetty 18. joulukuuta 2013) Sisältö 1 Johdanto 1 1.1 Termofysiikan osa-alueet.......................
LisätiedotTämän päivän ohjelma: ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 3 / TERVETULOA! Termodynamiikan 1. pääsääntö 9/25/2017
ENY-C2001 Termodynamiikka ja lämmönsiirto Luento 3 / 25.9.2017 TERVETULOA! v. 03 / T. Paloposki Tämän päivän ohjelma: Termodynamiikan 1. pääsääntö 1 Termodynamiikan 1. pääsääntö (energian säilymisen laki,
Lisätiedot. Veden entropiamuutos lasketaan isobaariselle prosessille yhtälöstä
LH- Kilo vettä, jonka lämpötila on 0 0 asetetaan kosketukseen suuren 00 0 asteisen kappaleen kanssa Kun veden lämpötila on noussut 00 0, mitkä ovat veden, kappaleen ja universumin entropian muutokset?
LisätiedotPHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA
PHYS-C0220 TERMODYNAMIIKKA JA STATISTINEN FYSIIKKA Kevät 2016 Emppu Salonen Lasse Laurson Arttu Lehtinen Toni Mäkelä Luento 9: Fotonit ja relativistiset kaasut Ke 30.3.2016 1 AIHEET 1. Fotonikaasun termodynamiikkaa.
LisätiedotVII LÄMPÖOPIN ENSIMMÄINEN PÄÄSÄÄNTÖ
II LÄMPÖOPIN ENSIMMÄINEN PÄÄSÄÄNTÖ 7. Lämpö ja työ... 70 7.2 Kaasun tekemä laajenemistyö... 7 7.3 Laajenemistyön erityistapauksia... 73 7.3. Työ isobaarisessa tilanmuutoksessa... 73 7.3.2 Työ isotermisessä
LisätiedotPHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016
PHYS-C0220 Termodynamiikka ja statistinen fysiikka Kevät 2016 Emppu Salonen Lasse Laurson Toni Mäkelä Arttu Lehtinen Luento 4: Entropia Pe 4.3.2016 1 AIHEET 1. Klassisen termodynamiikan entropia 2. Entropian
LisätiedotFysiikan maailmankuva 2015 Luento 8. Aika ja ajan nuoli lisää pohdiskelua Termodynamiikka Miten aika ja termodynamiikka liittyvät toisiinsa?
Fysiikan maailmankuva 2015 Luento 8 Aika ja ajan nuoli lisää pohdiskelua Termodynamiikka Miten aika ja termodynamiikka liittyvät toisiinsa? Ajan nuoli Aika on mukana fysiikassa niinkuin jokapäiväisessä
Lisätiedotln2, missä ν = 1mol. ja lopuksi kaasun saama lämpömäärä I pääsäännön perusteella.
S-114.42, Fysiikka III (S 2. välikoe 4.11.2002 1. Yksi mooli yksiatomista ideaalikaasua on alussa lämpötilassa 0. Kaasu laajenee tilavuudesta 0 tilavuuteen 2 0 a isotermisesti, b isobaarisesti ja c adiabaattisesti.
Lisätiedotenergian), systeemi on eristetty (engl. isolated). Tällöin sekä systeemiin siirtynyt
14 2 Ensimmäinen pääsääntö 2-1 Lämpömäärä ja työ Termodynaaminen systeemi on jokin maailmankaikkeuden osa, jota rajoittaa todellinen tai kuviteltu rajapinta (engl. boundary). Systeemi voi olla esimerkiksi
Lisätiedotkertausta Boltzmannin jakauma infoa Ideaalikaasu kertausta Maxwellin ja Boltzmannin vauhtijakauma
infoa kertausta Boltzmannin jakauma Huomenna itsenäisyyspäivänä laitos on kiinni, ei luentoa, ei laskareita. Torstaina laboratoriossa assistentit neuvovat myös laskareissa. Ensi viikolla tiistaina vielä
LisätiedotLämpötila ja lämpöenergia
Matematiikan, fysiikan ja kemian opettajan kandiohjelma Didaktisen fysiikan kokeellisuus I Lämpötila ja lämpöenergia Tilanmuuttujien perushahmotus Lämpötila, paine, tasapaino Lämpötilalla tarkoitetaan
LisätiedotTeddy 7. harjoituksen malliratkaisu syksy 2011
Teddy 7. harjoituksen malliratkaisu syksy 2011 1. Systeemin käyttäytymistä faasirajalla kuvaa Clapeyronin yhtälönä tunnettu keskeinen relaatio dt = S m. (1 V m Koska faasitasapainossa reaktion Gibbsin
LisätiedotKemiallinen reaktio
Kemiallinen reaktio REAKTIOT JA ENERGIA, KE3 Johdantoa: Syömme elääksemme, emme elä syödäksemme! sanonta on totta. Kun elimistömme hyödyntää ravintoaineita metaboliassa eli aineenvaihduntareaktioissa,
LisätiedotPHYS-A3121 Termodynamiikka (ENG1) (5 op)
PHYS-A3121 Termodynamiikka (ENG1) (5 op) Sisältö: Nestevirtaukset Elastiset muodonmuutokset Kineettinen kaasuteoria Termodynamiikan käsitteet Termodynamiikan pääsäännöt Termodynaamiset prosessit Termodynaamiset
LisätiedotFysiikan kurssit. MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka
Fysiikan kurssit MAOL OPS-koulutus Naantali 21.11.2015 Jukka Hatakka Valtakunnalliset kurssit 1. Fysiikka luonnontieteenä 2. Lämpö 3. Sähkö 4. Voima ja liike 5. Jaksollinen liike ja aallot 6. Sähkömagnetismi
Lisätiedot2 Termodynamiikan ensimmäinen pääsääntö (First Law of Thermodynamics)
2 Termodynamiikan ensimmäinen pääsääntö (First Law of Thermodynamics) 1 Tässä luvussa päästää käsittelemään lämmön ja mekaanisen työn välistä suhdetta. 2 Näistä molemmat ovat energiaa eri muodoissa, ja
LisätiedotEntrooppiset voimat. Entrooppiset voimat Vapaan energian muunnoksen hyötysuhde Kahden tilan systeemit
Entrooppiset voimat Entrooppiset voimat Vapaan energian muunnoksen hyötysuhde Kahden tilan systeemit Entrooppiset voimat 3 2 0 0 S k N ln VE S, S f ( N, m) Makroskooppisia voimia, jotka syntyvät pyrkimyksestä
Lisätiedot