Lauselogiikka Tautologia Hannu Lehto
Tautologia Annetuista lauseista loogisilla konnektiiveillä saatu yhdistetty lause on on tautologia(pätevä), jos se on aina tosi siis riippumatta annettujen lauseiden totuusarvoista. Hannu Lehto, 12. joulukuuta 2007 Lahden Lyseon lukio - p. 2/6
Tautologia Annetuista lauseista loogisilla konnektiiveillä saatu yhdistetty lause on on tautologia(pätevä), jos se on aina tosi siis riippumatta annettujen lauseiden totuusarvoista. Tautologiaa voidaan tutkia totuustauluilla. Onko esimerkiksi lause a b a tautologia eli pätevä? Hannu Lehto, 12. joulukuuta 2007 Lahden Lyseon lukio - p. 2/6
Tautologia Annetuista lauseista loogisilla konnektiiveillä saatu yhdistetty lause on on tautologia(pätevä), jos se on aina tosi siis riippumatta annettujen lauseiden totuusarvoista. Tautologiaa voidaan tutkia totuustauluilla. Onko esimerkiksi lause a b a tautologia eli pätevä? a b a b a b a 0 0 0 1 1 0 1 1 Hannu Lehto, 12. joulukuuta 2007 Lahden Lyseon lukio - p. 2/6
Tautologia Annetuista lauseista loogisilla konnektiiveillä saatu yhdistetty lause on on tautologia(pätevä), jos se on aina tosi siis riippumatta annettujen lauseiden totuusarvoista. Tautologiaa voidaan tutkia totuustauluilla. Onko esimerkiksi lause a b a tautologia eli pätevä? a b a b a b a 0 0 0 0 1 1 1 0 1 1 1 1 Hannu Lehto, 12. joulukuuta 2007 Lahden Lyseon lukio - p. 2/6
Tautologia Annetuista lauseista loogisilla konnektiiveillä saatu yhdistetty lause on on tautologia(pätevä), jos se on aina tosi siis riippumatta annettujen lauseiden totuusarvoista. Tautologiaa voidaan tutkia totuustauluilla. Onko esimerkiksi lause a b a tautologia eli pätevä? a b a b a b a 0 0 0 1 0 1 1 0 1 0 1 1 1 1 1 1 Hannu Lehto, 12. joulukuuta 2007 Lahden Lyseon lukio - p. 2/6
Tautologia Annetuista lauseista loogisilla konnektiiveillä saatu yhdistetty lause on on tautologia(pätevä), jos se on aina tosi siis riippumatta annettujen lauseiden totuusarvoista. Tautologiaa voidaan tutkia totuustauluilla. Onko esimerkiksi lause a b a tautologia eli pätevä? a b a b a b a 0 0 0 1 0 1 1 0 1 0 1 1 1 1 1 1 Lause ei ole tautologia. Hannu Lehto, 12. joulukuuta 2007 Lahden Lyseon lukio - p. 2/6
Esimerkki 1 Kirjoita lauselogiikan kielellä seuraavat väitteet: 1. Jos on aamu, niin olen väsynyt. 2. Ei ole totta, että on aamu ja en ole väsynyt. Hannu Lehto, 12. joulukuuta 2007 Lahden Lyseon lukio - p. 3/6
Esimerkki 1 Kirjoita lauselogiikan kielellä seuraavat väitteet: 1. Jos on aamu, niin olen väsynyt. 2. Ei ole totta, että on aamu ja en ole väsynyt. Olkoon p = on aamu ja q = olen väsynyt. Hannu Lehto, 12. joulukuuta 2007 Lahden Lyseon lukio - p. 3/6
Esimerkki 1 Kirjoita lauselogiikan kielellä seuraavat väitteet: 1. Jos on aamu, niin olen väsynyt. 2. Ei ole totta, että on aamu ja en ole väsynyt. Olkoon p = on aamu ja q = olen väsynyt. 1. p q Hannu Lehto, 12. joulukuuta 2007 Lahden Lyseon lukio - p. 3/6
Esimerkki 1 Kirjoita lauselogiikan kielellä seuraavat väitteet: 1. Jos on aamu, niin olen väsynyt. 2. Ei ole totta, että on aamu ja en ole väsynyt. Olkoon p = on aamu ja q = olen väsynyt. 1. p q 2. (p q) Hannu Lehto, 12. joulukuuta 2007 Lahden Lyseon lukio - p. 3/6
Esimerkki 1 Kirjoita lauselogiikan kielellä seuraavat väitteet: 1. Jos on aamu, niin olen väsynyt. 2. Ei ole totta, että on aamu ja en ole väsynyt. Olkoon p = on aamu ja q = olen väsynyt. 1. p q 2. (p q) Ovatko väitteet 1. ja 2. yhtäpitäviä, ts. onko lause (p q) (p q) tautologia? Hannu Lehto, 12. joulukuuta 2007 Lahden Lyseon lukio - p. 3/6
Esimerkki 1 Kirjoita lauselogiikan kielellä seuraavat väitteet: 1. Jos on aamu, niin olen väsynyt. 2. Ei ole totta, että on aamu ja en ole väsynyt. Olkoon p = on aamu ja q = olen väsynyt. 1. p q 2. (p q) Ovatko väitteet 1. ja 2. yhtäpitäviä, ts. onko lause (p q) (p q) tautologia? p q p q q p q (p q) 0 0 0 1 1 0 1 1 Hannu Lehto, 12. joulukuuta 2007 Lahden Lyseon lukio - p. 3/6
Esimerkki 1 Kirjoita lauselogiikan kielellä seuraavat väitteet: 1. Jos on aamu, niin olen väsynyt. 2. Ei ole totta, että on aamu ja en ole väsynyt. Olkoon p = on aamu ja q = olen väsynyt. 1. p q 2. (p q) Ovatko väitteet 1. ja 2. yhtäpitäviä, ts. onko lause (p q) (p q) tautologia? p q p q q p q (p q) 0 0 1 1 0 1 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 0 1 Hannu Lehto, 12. joulukuuta 2007 Lahden Lyseon lukio - p. 3/6
Esimerkki 1 Kirjoita lauselogiikan kielellä seuraavat väitteet: 1. Jos on aamu, niin olen väsynyt. 2. Ei ole totta, että on aamu ja en ole väsynyt. Olkoon p = on aamu ja q = olen väsynyt. 1. p q 2. (p q) Ovatko väitteet 1. ja 2. yhtäpitäviä, ts. onko lause (p q) (p q) tautologia? p q p q q p q (p q) 0 0 1 1 0 1 0 1 1 0 0 1 1 0 0 1 1 0 1 1 1 0 0 1 samat ovat yhtäpitäviä Hannu Lehto, 12. joulukuuta 2007 Lahden Lyseon lukio - p. 3/6
Esimerkki 2 Osoita, että lause (p q) ( q p) on tautologia. Hannu Lehto, 12. joulukuuta 2007 Lahden Lyseon lukio - p. 4/6
Joitakin tautologioita 1. (p p) poissuljetun ristiriidan laki Hannu Lehto, 12. joulukuuta 2007 Lahden Lyseon lukio - p. 5/6
Joitakin tautologioita 1. (p p) poissuljetun ristiriidan laki 2. p p poissuljetun kolmannen laki Hannu Lehto, 12. joulukuuta 2007 Lahden Lyseon lukio - p. 5/6
Joitakin tautologioita 1. (p p) poissuljetun ristiriidan laki 2. p p poissuljetun kolmannen laki 3. p p kaksoisnegaation laki Hannu Lehto, 12. joulukuuta 2007 Lahden Lyseon lukio - p. 5/6
Joitakin tautologioita 1. (p p) poissuljetun ristiriidan laki 2. p p poissuljetun kolmannen laki 3. p p kaksoisnegaation laki 4. p p p Hannu Lehto, 12. joulukuuta 2007 Lahden Lyseon lukio - p. 5/6
Joitakin tautologioita 1. (p p) poissuljetun ristiriidan laki 2. p p poissuljetun kolmannen laki 3. p p kaksoisnegaation laki 4. p p p 5. p p p Hannu Lehto, 12. joulukuuta 2007 Lahden Lyseon lukio - p. 5/6
Joitakin tautologioita 1. (p p) poissuljetun ristiriidan laki 2. p p poissuljetun kolmannen laki 3. p p kaksoisnegaation laki 4. p p p 5. p p p 6. (p q) p q de Morgan Hannu Lehto, 12. joulukuuta 2007 Lahden Lyseon lukio - p. 5/6
Joitakin tautologioita 1. (p p) poissuljetun ristiriidan laki 2. p p poissuljetun kolmannen laki 3. p p kaksoisnegaation laki 4. p p p 5. p p p 6. (p q) p q de Morgan 7. (p q) p q de Morgan Hannu Lehto, 12. joulukuuta 2007 Lahden Lyseon lukio - p. 5/6
Joitakin tautologioita 1. (p p) poissuljetun ristiriidan laki 2. p p poissuljetun kolmannen laki 3. p p kaksoisnegaation laki 4. p p p 5. p p p 6. (p q) p q de Morgan 7. (p q) p q de Morgan 8. (p q) p q implikaation ominaisuus Hannu Lehto, 12. joulukuuta 2007 Lahden Lyseon lukio - p. 5/6
Joitakin tautologioita 1. (p p) poissuljetun ristiriidan laki 2. p p poissuljetun kolmannen laki 3. p p kaksoisnegaation laki 4. p p p 5. p p p 6. (p q) p q de Morgan 7. (p q) p q de Morgan 8. (p q) p q implikaation ominaisuus 9. vaihdantalait Hannu Lehto, 12. joulukuuta 2007 Lahden Lyseon lukio - p. 5/6
Joitakin tautologioita 1. (p p) poissuljetun ristiriidan laki 2. p p poissuljetun kolmannen laki 3. p p kaksoisnegaation laki 4. p p p 5. p p p 6. (p q) p q de Morgan 7. (p q) p q de Morgan 8. (p q) p q implikaation ominaisuus 9. vaihdantalait 10. liitäntälait Hannu Lehto, 12. joulukuuta 2007 Lahden Lyseon lukio - p. 5/6
Joitakin tautologioita 1. (p p) poissuljetun ristiriidan laki 2. p p poissuljetun kolmannen laki 3. p p kaksoisnegaation laki 4. p p p 5. p p p 6. (p q) p q de Morgan 7. (p q) p q de Morgan 8. (p q) p q implikaation ominaisuus 9. vaihdantalait 10. liitäntälait 11. osittelulait Hannu Lehto, 12. joulukuuta 2007 Lahden Lyseon lukio - p. 5/6
Esimerkkejä Esimerkki 1. Osoita käyttämättä totuustauluja, että lauseet a (b c) ja (a ( b c)) ovat yhtäpitäviä eli ekvivalentteja, ts. että lause a (b c) (a ( b c)) on tautologia eli pätevä. Hannu Lehto, 12. joulukuuta 2007 Lahden Lyseon lukio - p. 6/6
Esimerkkejä Esimerkki 1. Osoita käyttämättä totuustauluja, että lauseet a (b c) ja (a ( b c)) ovat yhtäpitäviä eli ekvivalentteja, ts. että lause a (b c) (a ( b c)) on tautologia eli pätevä. Esimerkki 2. Sievennä lause (p q p q). Hannu Lehto, 12. joulukuuta 2007 Lahden Lyseon lukio - p. 6/6