Merkitys, totuus ja kielto
|
|
- Jussi Seppälä
- 8 vuotta sitten
- Katselukertoja:
Transkriptio
1 Ilmestynyt teoksessa Heta Gylling, S. Albert Kivinen & Risto Vilkko (eds.) Kielto (Yliopistopaino) Merkitys, totuus ja kielto Panu Raatikainen Filosofisessa merkitysteoriassa asetetaan usein vastatusten toisaalta totuusehtoihin nojautuvat teoriat ja toisaalta teoriat, jotka samastavat ilmaisun merkityksen sen käytön kanssa. Yksi suhteellisen täsmällinen paikallinen muunnelma hieman epämääräisestä merkityksen käyttöteoriasta on suosittu ajatus, että loogisten vakioiden merkityksen määräävät niihin liittyvät päättelysäännöt. Tämä ajatus toimii usein myös esimerkkinä yleisemmille merkityksen käyttöteorioille. Filosofisessa totuusteoriassa yksi keskeinen rintamalinja puolestaan on yhtäältä substantiaalisten totuusteorioiden ja toisaalta minimalististen ja deflatoristen teorioiden välillä. Edellisten mukaan totuus on totuudenkantajien aito substantiaalinen ominaisuus, kun taas jälkimmäisten mukaan totuudella ei ole mitään syvempää sisältöä vaan kaikki, mitä totuudesta voidaan sanoa, sisältyy nk. T-ekvivalensseihin ( P on tosi P). Tässä mainittujen merkitys- ja totuusteorioiden välillä ei ole mitään välttämätöntä analyyttista yhteyttä, mutta tiettyjä suhteita niiden välillä on. Tyypillisesti realistit suosivat jonkinlaista totuusehtoihin liittyvää merkitysteoriaa ja substantiaalista totuusteoriaa (korrespondenssiteorian muodossa). Minimalistisen tai deflatorisen totuusteorian kannattajat tyypillisesti kannattavat merkityksen käyttöteoriaa (esim. Horwich). Semanttinen anti-realismi (Dummett, Prawitz jne.) muodostaa mielenkiintoisen välitapauksen. Sen tärkeä lähtökohta on merkityksen käyttöteoria, mutta yleensä se hyväksyy substantiaalisen totuusteorian sillä varauksella, että totuus ymmärretään episteemisenä käsitteenä, jonkinlaisena todennettavuutena. Tällöin voidaan hyväksyä tavallaan myös merkitysten ja totuusehtojen yhteys, ja raja merkityksen totuusehto- ja käyttöteorioiden välillä hämärtyy. Toisaalta erityisesti Dummett on toisinaan kallistunut suosimaan minimalistista totuusteoriaa. Ajatus, että tavanomaiset logiikan päättelysäännöt (tai joskus, yksistään tuontisäännöt) määräävät loogisten vakioiden (konnektiivien ja kvanttoreiden) merkitykset, näkyy todellakin olevan melko suosittu filosofien keskuudessa. Tämä voi ainakin klassisen logiikan osalta vaikuttaa suorastaan kiistattomalta, kun muistetaan, että kaikki tavanomaiset lause- ja (ensimmäisen kertaluvun) predikaattilogiikan päättelysääntöjärjestelmät voidaan todistaa täydellisiksi. Toisin 1
2 sanoen, voidaan todistaa, että niiden avulla voidaan johtaa kaikki semanttisessa mielessä loogisesti todet eli pätevät lauseet. Carnapin unohdettu tulos On kuitenkin olemassa tiettyjä hyvin huonosti tunnettuja 1 loogisia tosiseikkoja, jotka aiheuttavat ongelmia tällaisille käsityksille. Nimittäin, Carnap esitti vähälle huomiolle jääneessä kirjassaan Formalization of Logic (1943) tiettyjä loogisia tarkasteluja, jotka osoittavat kiistattomasti, että tietyssä täsmällisessä mielessä ei yksinkertaisesti pidä paikkaansa, että tavanomaiset päättelysäännöt riittävät määräämään loogisten vakioiden merkitykset. Voidaan näet osoittaa matemaattisen täsmällisesti, että mikään tavallinen logiikan formalisointi, eivätkä mitkään tavalliset päättelysäännöt esimerkiksi luonnollisen päättelyn säännöt ole riittäviä loogisten vakioiden kaikkien olennaisten loogisten ominaisuuksien täyteen formalisointiin. Ne eivät sulje pois mahdollisuutta tulkinta loogiset vakiot tavallisesta poikkeavalla tavalla. Carnap tarkastelee sekä lause- että predikaattilogiikkaa, ja osoittaa että sama tilanne vallitsee molemmissa. Rajoitun seuraavassa yksinkertaisuuden vuoksi pelkkään lauselogiikkaan, joka riittää hyvin valottamaan asiantilaa. Siirtyminen predikaattilogiikkaan ei muuta tilannetta. Tarkastellaan seuraavia periaatteita, jotka näyttäisivät olevan olemuksellisia negaatiolle ja disjunktiolle. Ne seuraavat klassisessa logiikassa suoraan konnektiivien semanttisista määritelmistä (esimerkiksi totuustaulujen avulla), mutta ne pätevät yhtä lailla myös esimerkiksi intuitionistisessa logiikassa, jossa totuus samastetaan todistuvuuden tai verifioituvuuden kanssa (Carnap itse tarkasteli vain klassista logiikkaa). A ja B ovat seuraavassa mielivaltaisia lauseita: (N1) A on tosi A on epätosi. (N2) A on epätosi A on tosi. (D1) A ja B ovat tosia (A B) on tosi. (D2) A on tosi ja B on epätosi (A B) on tosi. (D3) A on epätosi ja B on tosi (A B) on tosi. (D4) A ja B ovat epätosia (A B) on epätosi. Carnap osoitti, että logiikan vakiintuneet formalisoinnit eivät sulje pois sellaisten epänormaalien tulkintojen mahdollisuutta, jotka rikkovat näitä periaatteita. Lauselogiikan puitteissa on olemassa kahdentyyppisiä epänormaaleja tulkintoja: joko voidaan rikkoa periaatetta (N1), tai sitten yhtä aikaa periaatteita (N2) ja (D4) mielenkiintoista kyllä, päättelysäännöt riittävät takaamaan, että periaatteita (D1) (D3) ei voida rikkoa. Ensimmäistä tyyppiä olevassa epänormaalissa tulkinnassa, jossa rikotaan periaatetta (N1), sekä A että A ovat tosia, eli kaikki lauseet ovat tosia. Toista tyyppiä olevassa tulkinnassa, joka rikkoo sekä periaatetta (N2) että periaatetta (D4), 2
3 sekä A että A ovat epätosia, mutta (A A) onkin tosi; tässä tapauksessa on olemassa äärettömän monta totta ja äärettömän monta epätotta lausetta (ks. Carnap 1943, Luku C). Voidaan siis todeta, että vaikka tavanomaiset päättelysäännöt kyllä formalisoivat loogisen totuuden ja loogisen seurauksen täydellisesti, ne eivät esitä täydellisesti kaikkia loogisten vakioiden loogisia ominaisuuksia. Niinpä esimerkiksi disjunktion loogisiin ominaisuuksiin kuuluu, että disjunktiolause, jonka molemmat osalauseet ovat epätosia, on myös epätosi. Logiikan formalisoinnit eivät kuitenkaan millään tavalla esitä tätä ominaisuutta. Samaan tapaan, on osa negaation tarkoitettua merkitystä, että lause ja sen negaatio eivät molemmat voi olla tosia, eivätkä molemmat epätosia. 2 Normaalit päättelysäännöt eivät millään tavalla esitä myöskään tätä ominaisuutta. Nämä Carnapin unohdetut löydökset muodostavat vakavan haasteen kaikille filosofisille kannoille, jotka olettavat, että päättelysäännöt määräävät loogisten vakioiden merkitykset. Päättelysäännöt ja totuus Kuinka oletus, että päättelysäännöt määräävät loogisten vakioiden merkitykset, suhteutuu periaatteisiin (N1) (D4)? Tämä riippuu suuresti yleisemmistä lähtökohdista. Vaihtoehtoja on monia: (a) Jyrkkä formalisti voi kieltää kokonaan totuuden ja epätotuuden käsitteiden ja myös periaatteiden (N1) (D4) mielekkyyden. Tällaista vahvaa kantaa vastaan edellä esitetyt tarkastelut ovat voimattomia. Kanta on kuitenkin itsessään hyvin kiistanalainen ja ongelmallinen. En usko, että kukaan, joka on nykykeskustelussa kannattanut ajatusta päättelysäännöistä loogisten vakioiden merkityksen antajana, hyväksyy tällaisen jyrkän formalismin (eivät ainakaan intuitionistit kuten Dummett, Prawitz ja näiden seuraajat). (b) On mahdollista ottaa käyttöön minimalistinen tai deflatorinen käsitys totuudesta (ja epätotuudesta) ja yrittää argumentoida, että tämä on riittävä Carnapin ongelman välttämiseksi tästä enemmän hieman tuonnempana. (c) Vaihtoehtoisesti on ehkä oletettu, että yhtäältä syntaktisten (todistusteoreettisten) merkitykset määräävien päättelysääntöjen ja toisaalta semanttisten totuuden ja epätotuuden käsitteiden (mahdollisesti ymmärrettynä, kuten intuitionismissa, episteemisesti todistuvuuden kautta määritellyiksi) välillä on vastaavuus, toisin sanoen, että päättelysäännöt määräävät yhtäaikaisesti myös sopivan totuuden ja epätotuuden käsitteet (mahdollisesti ei-realistisen, episteemisen tai verifikationistisen totuuskäsitteen, joka samastaa totuuden todistuvuuteen). Tämä näyttäisikin olleen (ainakin jossain vaiheessa) esimerkiksi Dummettin ja Prawitzin sekä näiden seuraajien käsitys. Tälle oletukselle Carnapin tulokset muodostavat kuitenkin vakavan ongelman. 3
4 Kaksiarvoisuuden periaate ja kolmannen poissuljetun laki Dummettin, Prawitzin ja näiden seuraajien anti-realistisen ohjelman perustavoite on hylätä kolmannen poissuljetun laki kyseenalaistamalla kaksiarvoisuuden periaate. Kaksiarvoisuuden periaate sanoo, että jokainen väittämä on joko tosi tai epätosi. Kolmannen poissuljetun laki puolestaan sanoo, jokainen muotoa A A oleva lause on loogisesti tosi. Kaksiarvoisuuden periaate ja kolmannen poissuljetun laki voidaankin johtaa toinen toisistaan, eli osoittaa yhtäpitäviksi, mutta vain kahden apuoletuksen avulla. Nämä ovat: (i) A on tosi tai B on tosi (A B) on tosi. (ii) A on epätosi A on tosi. Nyt on kuitenkin niin, oletus (i) on vahvempi kuin periaate (D1) edellä, ja viimeksi mainittu voidaan johtaa siitä. Oletus (ii) puolestaan on täsmälleen sama kuin periaate (N2). On kuitenkin erittäin epäselvää, kuinka joku, joka olettaa, että päättelysäännöt tyhjentävät loogisten vakioiden merkitykset (kuten Dummett, Prawitz ja kumppanit), voi vedota näihin periaatteisiin. Kun päättelysäännöt eivät anna niitä, mistä ne oikein saadaan? Minimalismi ja deflationismi Jos merkityksen käyttöteoria ymmärretään totuusehtosemantiikan aidoksi kilpailijaksi, olisi hieman outoa, jos käyttöteorian kannattaja vetoaisi johonkin substantiaaliseen totuusteoriaan tässä tarkasteltujen ongelmien ratkaisemiseksi. Voidaan ehkä kuitenkin ajatella, että minimalistisen totuusteorian käyttö on ongelmatonta (siitä voidaan tosin, tietyillä heikoilla apuoletuksilla, johtaa kaksiarvoisuuden periaate). Minimalismin mukaan totuuden ja epätotuuden merkitys tyhjentyy seuraaviin ilmeisiin T-ekvivalensseihin: (T1) A on tosi A (T2) A on epätosi A Vaihtoehtoisesti, epätotuutta voitaisiin pitää määriteltynä käsitteenä, jolloin pelkkä (T1) on riittävä esimerkiksi seuraavasti: A on epätosi def ( A) on tosi. Ja käyttämällä hieman alkeislogiikkaa, nämä minimalistiset periaatteet näyttäisivät antavan kaiken mitä haluamme (eli periaatteet (N1) (D4)): 4
5 (N1) A on tosi A A A on epätosi (N2) A on epätosi A A on tosi (D1)-(D3) A on tosi tai B on tosi A B (A B) on tosi (D4) A on epätosi ja B on epätosi A B (A B) (A B) on epätosi Lähemmässä tarkastelussa käy kuitenkin ilmi, ettei tästä ole varsinaista apua, sillä ongelma on vain siirtynyt seuraavalle tasolle. Nimittäin, mikään ei sulje pois esimerkiksi sitä mahdollisuutta, että joku lause A, tai jopa kaikki lauseet, ovat sekä tosia että epätosia. Toisin sanoen, ongelma esiintyy nyt totuuden ja epätotuuden tasolla. Varmastikin on oletettava, että totuus ja epätotuus ovat toisensa poissulkevia ominaisuuksia. Tässä asetelmassa mikään ei kuitenkaan nyt takaa tätä. Itse asiassa Russell (1906), jo paljon ennen Carnapia, oli osin tietoinen tässä tarkasteltavasta ongelmasta. Russell pohti negaation määrittelemistä siten, että lauseen negaatio on yhtäpitävä sen kanssa, että negeeratusta lauseesta seuraa, että kaikki on totta. Russellin mukaan negaation määritteleminen ei koskaan mahdollista sen tietämistä, että jokin on epätotta. Jos henkilö on niin hyväuskoinen, että uskoo, että kaikki on totta, tämä metodi on kykenemätön hylkäämään häntä. Tässä tilanteessa joku voisi ehkä ehdottaa, että entäpä jos vain lisäämme teoriaamme vielä oletukset: (E1) A on tosi A ei ole epätosi. (E2) A on epätosi A ei ole tosi. Ensi näkemältä tämä näyttäisi ratkaisevan ongelman. Tosi asiassa tämäkään ei kuitenkaan auta. Formaalisemmin ilmaistuna nämä periaatteet näet ovat: A on tosi (A on epätosi). A on epätosi (A on tosi). Ja koska emme ole onnistuneet kiinnittämään negaation merkitystä tarkoitetulla tavalla, eivät myöskään periaatteet, jotka olennaisesti käyttävät negaatiota, voi olla avuksi. Tämä tulee erityisen näkyväksi kun em. periaatteissa korvataan T-ekvivalenssien avulla A on tosi pelkällä A:lla ja A on epätosi A:lla, joten periaatteet (E1) ja (E2) ovat yhtäpitäviä seuraavien klassisen logiikan tautologioiden kanssa: A A. A A. Nämä olivat kuitenkin jo alun perinkin todistuvia lauselogiikassa, eivätkä näin voi auttaa ongelman ratkaisussa. 5
6 Viitteet 1 Ne ovat todellakin erittäin huonosti tunnettuja. En ole etsimälläkään onnistunut löytämään kirjallisuudesta yhtään substantiaalista viittausta löydöksiin. 2 Carnap (1943, s. 100) kutsuu ensiksi mainittua luontevasti (poissuljetun) ristiriidan periaatteeksi, ja jälkimmäistä, vähemmän onnistuneesti, kolmannen poissuljetun periaatteeksi. Kirjallisuus Carnap, Rudolf (1943), Formalization of Logic, Harvard U. P., Cambridge. Russell, Bertrand (1906), The Theory of Implication, American Journal of Mathematics 28,
-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi
-Matematiikka on aksiomaattinen järjestelmä -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi -mustavalkoinen: asia joko on tai ei (vrt. humanistiset tieteet, ei
Loogiset konnektiivit
Loogiset konnektiivit Tavallisimmat loogiset konnektiivit ovat negaatio ei konjunktio ja disjunktio tai implikaatio jos..., niin... ekvivalenssi... jos ja vain jos... Sulkeita ( ) käytetään selkeyden vuoksi
LAUSELOGIIKKA (1) Sanalliset ilmaisut ovat usein epätarkkoja. On ilmaisuja, joista voidaan sanoa, että ne ovat tosia tai epätosia, mutta eivät molempia. Ilmaisuja, joihin voidaan liittää totuusarvoja (tosi,
LOGIIKKA johdantoa
LOGIIKKA johdantoa LUKUTEORIA JA TO- DISTAMINEN, MAA11 Logiikan tehtävä: Logiikka tutkii ajattelun ja päättelyn sääntöjä ja muodollisten päättelyiden oikeellisuutta, ja pyrkii erottamaan oikeat päättelyt
FI3 Tiedon ja todellisuuden filosofia LOGIIKKA. 1.1 Logiikan ymmärtämiseksi on tärkeää osata erottaa muoto ja sisältö toisistaan:
LOGIIKKA 1 Mitä logiikka on? päättelyn tiede o oppi muodollisesti pätevästä päättelystä 1.1 Logiikan ymmärtämiseksi on tärkeää osata erottaa muoto ja sisältö toisistaan: sisältö, merkitys: onko jokin premissi
Logiikka 1/5 Sisältö ESITIEDOT:
Logiikka 1/5 Sisältö Formaali logiikka Luonnollinen logiikka muodostaa perustan arkielämän päättelyille. Sen käyttö on intuitiivista ja usein tiedostamatonta. Mikäli logiikka halutaan täsmällistää esimerkiksi
Lisää kvanttoreista ja päättelyä sekä predikaattilogiikan totuustaulukot 1. Negaation siirto kvanttorin ohi
Lisää kvanttoreista ja päättelyä sekä predikaattilogiikan totuustaulukot 1. Negaation siirto kvanttorin ohi LUKUTEORIA JA TODISTAMINEN, MAA11 Esimerkki a) Lauseen Kaikki johtajat ovat miehiä negaatio ei
Lauselogiikka Tautologia
Lauselogiikka Tautologia Hannu Lehto Tautologia Annetuista lauseista loogisilla konnektiiveillä saatu yhdistetty lause on on tautologia(pätevä), jos se on aina tosi siis riippumatta annettujen lauseiden
Luonnollisen päättelyn luotettavuus
Luonnollisen päättelyn luotettavuus Luotettavuuden todistamiseksi määrittelemme täsmällisesti, milloin merkkijono on deduktio. Tässä ei ole sisällytetty päättelysääntöihin iteraatiosääntöä, koska sitä
Nimitys Symboli Merkitys Negaatio ei Konjuktio ja Disjunktio tai Implikaatio jos..., niin... Ekvivalenssi... jos ja vain jos...
2 Logiikkaa Tässä luvussa tutustutaan joihinkin logiikan käsitteisiin ja merkintöihin. Lisätietoja ja tarkennuksia löytyy esimerkiksi Jouko Väänäsen kirjasta Logiikka I 2.1 Loogiset konnektiivit Väitelauseen
Logiikan kertausta. TIE303 Formaalit menetelmät, kevät Antti-Juhani Kaijanaho. Jyväskylän yliopisto Tietotekniikan laitos.
TIE303 Formaalit menetelmät, kevät 2005 Logiikan kertausta Antti-Juhani Kaijanaho antkaij@mit.jyu.fi Jyväskylän yliopisto Tietotekniikan laitos TIE303 Formaalit mentetelmät, 2005-01-27 p. 1/17 Luento2Luentomoniste
Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.
Approbatur 3, demo 1, ratkaisut 1.1. A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat. Käydään kaikki vaihtoehdot läpi. Jos A on rehti, niin B on retku, koska muuten
Propositiot: Propositiot ovat väitelauseita. Totuusfunktiot antavat niille totuusarvon T tai E.
Propositiot: Propositiot ovat väitelauseita. Totuusfunktiot antavat niille totuusarvon T tai E. Perusaksioomat: Laki 1: Kukin totuusfunktio antaa kullekin propositiolle totuusarvoksi joko toden T tai epätoden
Ilpo Halonen 2005. 1.3 Päätelmistä ja niiden pätevyydestä. Luonnehdintoja logiikasta 1. Johdatus logiikkaan. Luonnehdintoja logiikasta 2
uonnehdintoja logiikasta 1 Johdatus logiikkaan Ilpo Halonen Syksy 2005 ilpo.halonen@helsinki.fi Filosofian laitos Humanistinen tiedekunta "ogiikka on itse asiassa tiede, johon sisältyy runsaasti mielenkiintoisia
Todistusteoriaa. Kun kielen syntaksi on tarkasti määritelty, voidaan myös määritellä täsmällisesti, mitä pätevällä päättelyllä tarkoitetaan.
Todistusteoriaa Kun kielen syntaksi on tarkasti määritelty, voidaan myös määritellä täsmällisesti, mitä pätevällä päättelyllä tarkoitetaan. Todistusteoriassa annetaan joukko aksioomia ja päättely- sääntöjä,
MS-A0402 Diskreetin matematiikan perusteet
MS-A0402 Diskreetin matematiikan perusteet Osa 1: Joukko-oppi ja logiikka Riikka Kangaslampi 2017 Matematiikan ja systeemianalyysin laitos Aalto-yliopisto Kiitokset Nämä luentokalvot perustuvat Gustaf
Ratkaisu: Käytetään induktiota propositiolauseen A rakenteen suhteen. Alkuaskel. A = p i jollain i N. Koska v(p i ) = 1 kaikilla i N, saadaan
HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 2 Ratkaisuehdotukset 1. Olkoon totuusjakauma v sellainen että v(p i ) = 1 kaikilla i N ja A propositiolause, jossa
Pikapaketti logiikkaan
Pikapaketti logiikkaan Tämän oppimateriaalin tarkoituksena on tutustua pikaisesti matemaattiseen logiikkaan. Oppimateriaalin asioita tarvitaan projektin tekemisessä. Kiinnostuneet voivat lukea lisää myös
Konnektiivit. On myös huomattava, että vain joillakin luonnollisen kielen konnektiiveilla on vastineensa lauselogiikassa.
Johdanto Lauselogiikassa tutkitaan sekä syntaktisella että semanttisella tasolla loogisia konnektiiveja ja niiden avulla muodostettuja kaavoja sekä myös formaalia päättelyä. Tarkastelemme aluksi klassisen
missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!
Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja
T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (opetusmoniste, lauselogiikka )
T-79.144 Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 opetusmoniste, lauselogiikka 2.1-3.5) 21 24.9.2004 1. Määrittele lauselogiikan konnektiivit a) aina epätoden lauseen ja implikaation
TIEA241 Automaatit ja kieliopit, syksy Antti-Juhani Kaijanaho. 8. syyskuuta 2016
TIEA241 Automaatit ja kieliopit, syksy 2016 Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 8. syyskuuta 2016 Sisällys a https://tim.jyu.fi/view/kurssit/tie/ tiea241/2016/videoiden%20hakemisto Matemaattisen
Predikaattilogiikkaa
Predikaattilogiikkaa UKUTEORIA JA TO- DISTAMINEN, MAA11 Kertausta ogiikan tehtävä: ogiikka tutkii ajattelun ja päättelyn sääntöjä ja muodollisten päättelyiden oikeellisuutta, ja pyrkii erottamaan oikeat
5.1 Semanttisten puiden muodostaminen
Luku 5 SEMNTTISET PUUT 51 Semanttisten puiden muodostaminen Esimerkki 80 Tarkastellaan kysymystä, onko kaava = (( p 0 p 1 ) (p 1 p 2 )) toteutuva Tätä voidaan tutkia päättelemällä semanttisesti seuraavaan
811120P Diskreetit rakenteet
811120P Diskreetit rakenteet 2016-2017 3. Logiikka 3.1 Logiikka tietojenkäsittelyssä Pyritään formalisoimaan terveeseen järkeen perustuva päättely Sovelletaan monella alueella tietojenkäsittelyssä, esim.
T Logiikka tietotekniikassa: perusteet Kevät 2008 Laskuharjoitus 5 (lauselogiikka ) A ( B C) A B C.
T-79.3001 Logiikka tietotekniikassa: perusteet Kevät 2008 Laskuharjoitus 5 (lauselogiikka 6.1 7.2) 27. 29.2.2008 Ratkaisuja demotehtäviin Tehtävä 6.1 a) A (B C) Poistetaan lauseesta ensin implikaatiot.
Toinen muotoilu. {A 1,A 2,...,A n,b } 0, Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin kun 1 / 13
2 3 Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin kun {A 1,A 2,...,A n,b } 0, jatkoa jatkoa 1 / 13 2 3 Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin
Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5.
3.4 Kvanttorit Todistamisessa on tärkeää erottaa tapaukset, kun sääntö pätee joillakin tai kun sääntö pätee kaikilla. Esim. On olemassa reaaliluku x, jolle x = 5. Kaikilla reaaliluvuilla x pätee x+1 >
Insinöörimatematiikka A
Insinöörimatematiikka A Mika Hirvensalo mikhirve@utu.fi Matematiikan ja tilastotieteen laitos Turun yliopisto 2018 Mika Hirvensalo mikhirve@utu.fi Luentoruudut 3 1 of 23 Kertausta Määritelmä Predikaattilogiikan
Kesälukio 2000 PK2 Tauluharjoituksia I Mallivastaukset
Kesälukio 2000 PK2 Tauluharjoituksia I Mallivastaukset 2000-08-03T10:30/12:00 Huomaa, että joihinkin kysymyksiin on useampia oikeita vastauksia, joten nämä ovat todellakin vain mallivastaukset. 1 Logiikkaa
Logiikka I. Kaarlo Reipas 17. huhtikuuta 2012 Ψ. Tämä materiaali on vielä keskeneräinen. 1 Johdanto Mitä logiikka on?... 3
Φ Logiikka I Kaarlo Reipas 17. huhtikuuta 2012 Ψ Tämä materiaali on vielä keskeneräinen. Sisältö 1 Johdanto 3 1.1 Mitä logiikka on?.............................. 3 2 ropositiologiikka 4 2.1 Lauseet...................................
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho. 16. maaliskuuta 2011
TIEA241 Automaatit ja kieliopit, kevät 2011 (IV) Antti-Juhani Kaijanaho TIETOTEKNIIKAN LAITOS 16. maaliskuuta 2011 Sisällys Sisällys Väitelauseet lause (tai virke), joka sanoo jonkin asian pitävän paikkaansa
Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua.
HY / Avoin yliopisto Johdatus yliopistomatematiikkaan, kesä 2015 Harjoitus 2 Ratkaisuehdotuksia Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, 15-17
Lause 5. (s. 50). Olkoot A ja B joukkoja. Tällöin seuraavat ehdot ovat
jen Kahden joukon A ja B samuutta todistettaessa kannattaa usein osoittaa, että A on B:n osajoukko ja että B on A:n osajoukko. Tällöin sovelletaan implikaation ja ekvivalenssin yhteyttä. Lause 5. (s. 50).
Todistusmenetelmiä Miksi pitää todistaa?
Todistusmenetelmiä Miksi pitää todistaa? LUKUTEORIA JA TO- DISTAMINEN, MAA11 Todistus on looginen päättelyketju, jossa oletuksista, määritelmistä, aksioomeista sekä aiemmin todistetuista tuloksista lähtien
1 Logiikkaa. 1.1 Logiikan symbolit
1 Logiikkaa Tieteessä ja jokapäiväisessä elämässä joudutaan tekemään päätelmiä. Logiikassa tutkimuskohteena on juuri päättelyt. Sen sijaan päätelmien sisältöön ei niinkäään kiinnitetä huomiota. Päätelmät
LOGIIKAN PERUSKURSSI. Veikko Rantala Ari Virtanen
LOGIIKAN PERUSKURSSI Veikko Rantala Ari Virtanen Matematiikan, tilastotieteen ja filosofian laitos Tampereen yliopisto Kokeilumoniste, elokuu 2003 ESIPUHE Tämä kokeilumoniste perustuu Tampereen yliopistossa
Mitä on totuus? Filosofisia näkökulmia totuuden käsitteeseen
Mitä on totuus? Filosofisia näkökulmia totuuden käsitteeseen Panu Raatikainen Tampereen yliopisto Mikä on totuus? - Pontius Pilatus Filosofiset totuusteoriat: Totuus tässä: ominaisuus (suhde) on tosi -
T Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 12 (opetusmoniste, kappaleet )
T-79.144 Syksy 2004 Logiikka tietotekniikassa: perusteet Laskuharjoitus 12 (opetusmoniste, kappaleet 9.1 9.5) 30.11. 3.12.2004 1. Osoita lauselogiikan avulla oheisten ehtolausekkeiden ekvivalenssi. (a)!(a
Totuusjakaumat. Totuusjakauma eli valuaatio v on kuvaus v : {p 0, p 1, p 2,...} {0, 1}. Käytämme jatkossa joukolle {0, 1} merkintää B.
Totuusjakaumat Totuusjakauma eli valuaatio v on kuvaus v : {p 0, p 1, p 2,...} {0, 1}. Käytämme jatkossa joukolle {0, 1} merkintää B. Totuusjakauma v voidaan aina laajentaa kuvaukseksi V : {A A on L kaava}
Jokaisen parittoman kokonaisluvun toinen potenssi on pariton.
3 Todistustekniikkaa 3.1 Väitteen kumoaminen vastaesimerkillä Monissa tilanteissa kohdataan väitteitä, jotka koskevat esimerkiksi kaikkia kokonaislukuja, kaikkia reaalilukuja tai kaikkia joukkoja. Esimerkkejä
Johdatus logiikkaan I Harjoitus 4 Vihjeet
Johdatus logiikkaan I Harjoitus 4 Vihjeet 1. Etsi lauseen ((p 0 p 1 ) (p 0 p 1 )) kanssa loogisesti ekvivalentti lause joka on (a) disjunktiivisessa normaalimuodossa, (b) konjunktiivisessa normaalimuodossa.
(1) refleksiivinen, (2) symmetrinen ja (3) transitiivinen.
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Tietyn ominaisuuden samuus -relaatio on ekvivalenssi; se on (1) refleksiivinen,
Vastaoletuksen muodostaminen
Vastaoletuksen muodostaminen Vastaoletus (Antiteesi) on väitteen negaatio. Sitä muodostettaessa on mietittävä, mitä tarkoittaa, että väite ei ole totta. Väite ja vastaoletus yhdessä sisältävät kaikki mahdolliset
HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 4 Ratkaisuehdotukset
HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 4 Ratkaisuehdotukset 1. Etsi lauseen (p 0 (p 1 p 0 )) p 1 kanssa loogisesti ekvivalentti lause joka on (a) disjunktiivisessa
T Syksy 2005 Logiikka tietotekniikassa: perusteet Laskuharjoitus 8 (opetusmoniste, kappaleet )
T-79.144 Syksy 2005 Logiikka tietotekniikassa: perusteet Laskuharjoitus 8 (opetusmoniste, kappaleet 2.3-3.4) 2 5.11.2005 1. Olkoon R kaksipaikkainen predikaattisymboli, jonka tulkintana on relaatio R A
Modus Ponens. JosAjaA B ovat tosia, niin välttämättä myösb on tosi 1 / 15. Modus Ponens. Ketjusääntö. Päättelyketju.
JosAjaA B ovat tosia, niin välttämättä myösb on tosi 1 / 15 JosAjaA B ovat tosia, niin välttämättä myösb on tosi (A (A B)) B on tautologia eli (A (A B)) B. 1 / 15 JosAjaA B ovat tosia, niin välttämättä
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus.
Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden kanssa, joiden lakina on tietyn ominaisuuden samuus. Matematiikassa ja muuallakin joudutaan usein tekemisiin sellaisten relaatioiden
Luonnollisten lukujen ja kokonaislukujen määritteleminen
Luonnollisten lukujen ja kokonaislukujen määritteleminen LuK-tutkielma Jussi Piippo Matemaattisten tieteiden yksikkö Oulun yliopisto Kevät 2017 Sisältö 1 Johdanto 2 2 Esitietoja 3 2.1 Joukko-opin perusaksioomat...................
Matematiikan perusteista logiikkaa ja joukko-oppia LaMa 1U syksyllä 2010
Ensimmäisen viikon luennot Matematiikan perusteista logiikkaa ja joukko-oppia LaMa 1U syksyllä 2010 Perustuu osittain kirjan Poole: Linear Algebra lukuihin Appendix A ja Appendix B ja Trench in verkkokirjaan,
b) Määritä myös seuraavat joukot ja anna kussakin tapauksessa lyhyt sanallinen perustelu.
Johdatus yliopistomatematiikkaan Helsingin yliopisto, matematiikan ja tilastotieteen laitos Kurssikoe 23.10.2017 Ohjeita: Vastaa kaikkiin tehtäviin. Ratkaisut voi kirjoittaa samalle konseptiarkille, jos
Ratkaisu: Yksi tapa nähdä, että kaavat A (B C) ja (A B) (A C) ovat loogisesti ekvivalentit, on tehdä totuustaulu lauseelle
HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 3 Ratkaisuehdotukset 1. Olkoot A, B ja C propositiolauseita. Näytä, että A (B C) (A B) (A C). Ratkaisu: Yksi tapa
Logiikka. Kurt Gödel ( )
Logiikka Tutustumme seuraavaksi propositio- eli lauselogiikkaan, jossa tarkastellaan formaalien lauseiden ominaisuuksia, ennenkaikkea niiden totuusarvoja. Formalisoimalla luonnollisen kielen lauseet propositiologiikan
Ensimmäinen induktioperiaate
Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla
Perinnöllinen informaatio ja geneettinen koodi.
Tehtävä A1 Kirjoita essee aiheesta: Perinnöllinen informaatio ja geneettinen koodi. Vastaa esseemuotoisesti, älä käytä ranskalaisia viivoja. Piirroksia voi käyttää. Vastauksessa luetaan ansioksi selkeä
Ensimmäinen induktioperiaate
1 Ensimmäinen induktioperiaate Olkoon P(n) luonnollisilla luvuilla määritelty predikaatti. (P(n) voidaan lukea luvulla n on ominaisuus P.) Todistettava, että P(n) on tosi jokaisella n N. ( Kaikilla luonnollisilla
4 Matemaattinen induktio
4 Matemaattinen induktio Joidenkin väitteiden todistamiseksi pitää näyttää, että kaikilla luonnollisilla luvuilla on jokin ominaisuus P. Esimerkkejä tällaisista väitteistä ovat vaikkapa seuraavat: kaikilla
missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!
Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja
Johdatus logiikkaan (Fte170)
Johdatus logiikkaan (Fte170) Teoreettinen filosofia, 5 op, periodit I ja II, 2010 Markus Pantsar 1. Johdanto 1.1 Filosofinen logiikka Logiikkaa tutkitaan pääasiallisesti kolmen tieteen piirissä: filosofian,
T Kevät 2009 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (lauselogiikka )
T-79.3001 Kevät 2009 Logiikka tietotekniikassa: perusteet Laskuharjoitus 2 (lauselogiikka 2.1 3.4) 5.2. 9.2. 2009 Ratkaisuja demotehtäviin Tehtävä 2.1 Merkitään lausetta φ:llä, ja valitaan atomilauseiden
TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Roosa Niemi. Riippuvuuslogiikkaa
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Roosa Niemi Riippuvuuslogiikkaa Informaatiotieteiden yksikkö Matematiikka Syyskuu 2011 Tampereen yliopisto Informaatiotieteiden yksikkö ROOSA NIEMI: Riippuvuuslogiikkaa
Tietorakenteet, laskuharjoitus 1,
Tietorakenteet, laskuharjoitus 1, 19.-22.1 Huom: laskarit alkavat jo ensimmäisellä luentoviikolla 1. Taustaa http://wiki.helsinki.fi/display/mathstatkurssit/matukurssisivu Halutaan todistaa, että oletuksesta
Diskreetit rakenteet. 3. Logiikka. Oulun yliopisto Tietojenkäsittelytieteiden laitos 2015 / 2016 Periodi 1
811120P 3. 5 op Oulun yliopisto Tietojenkäsittelytieteiden laitos 2015 / 2016 Periodi 1 ja laskenta tarkastelemme terveeseen järkeen perustuvaa päättelyä formaalina järjestelmänä logiikkaa sovelletaan
3. Predikaattilogiikka
3. Predikaattilogiikka Muuttuja mukana lauseessa. Ei yksikäsitteistä totuusarvoa. Muuttujan kiinnittäminen määrän ilmaisulla voi antaa yksikäsitteisen totuusarvon. Esimerkki. Lauseella x 3 8 = 0 ei ole
Valitse vain 6 tehtävää! Kaikkiin tehtäviin tarvittavat välivaiheet esille!
1. Onko lause ( A B) ( A B) tautologia?. Jaa luvut 16 360 ja 8 65 alkutekijöihin. Määrää myös syt(16 360, 8 65) ja pym(16 360, 8 65). 3. a) Laadi totuustaulu lauseelle ( A B) B. Milloin lause on tosi?
Entscheidungsproblem
Entscheidungsproblem Antti-Juhani Kaijanaho 24. kesäkuuta 2013 Entscheidungsproblem eli ratkaisuongelma kysyy, millä mekaanisella menetelmällä voisi selvittää, onko mielivaltainen annettu ensimmäisen kertaluvun
on rekursiivisesti numeroituva, mutta ei rekursiivinen.
6.5 Turingin koneiden pysähtymisongelma Lause 6.9 Kieli H = { M pysähtyy syötteellä w} on rekursiivisesti numeroituva, mutta ei rekursiivinen. Todistus. Todetaan ensin, että kieli H on rekursiivisesti
TAMPEREEN YLIOPISTO Pro gradu -tutkielma. Heidi Luukkonen. Sahlqvistin kaavat
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Heidi Luukkonen Sahlqvistin kaavat Informaatiotieteiden yksikkö Matematiikka Maaliskuu 2013 Tampereen yliopisto Informaatiotieteiden yksikkö LUUKKONEN, HEIDI: Sahlqvistin
T Kevät 2005 Logiikka tietotekniikassa: erityiskysymyksiä I Kertausta Ratkaisut
T-79.146 Kevät 2005 Logiikka tietotekniikassa: erityiskysymyksiä I Kertausta Ratkaisut 1. Jokaiselle toteutuvalle lauselogiikan lauseelle voidaan etsiä malli taulumenetelmällä merkitsemällä lause taulun
13. Loogiset operaatiot 13.1
13. Loogiset operaatiot 13.1 Sisällys Loogiset operaatiot AND, OR, XOR ja NOT. Operaatioiden ehdollisuus. Bittioperaatiot. Loogiset operaatiot ohjausrakenteissa. Loogiset operaatiot ja laskentajärjestys.
T kevät 2007 Laskennallisen logiikan jatkokurssi Laskuharjoitus 1 Ratkaisut
T-79.5101 kevät 2007 Laskennallisen logiikan jatkokurssi Laskuharjoitus 1 Ratkaisut 1. Jokaiselle toteutuvalle lauselogiikan lauseelle voidaan etsiä malli taulumenetelmällä merkitsemällä lause taulun juureen
Entscheidungsproblem
Entscheidungsproblem Antti-Juhani Kaijanaho 10. joulukuuta 2015 Entscheidungsproblem eli ratkaisuongelma kysyy, millä mekaanisella menetelmällä voisi selvittää, onko mielivaltainen annettu ensimmäisen
Tietotekniikka ja diskreetti matematiikka
Tietotekniikka ja diskreetti matematiikka Tietotekniikassa Epäjatkuvan matematiikan (diskreetin matematiikan) välineitä. Ongelmien ja ratkaisujen kuvaus. Tavoite: Perehdytään tavanomaisimpiin käytetyistä
Joukot. Georg Cantor ( )
Joukot Matematiikassa on pyrkimys määritellä monimutkaiset asiat täsmällisesti yksinkertaisempien asioiden avulla. Tarvitaan jokin lähtökohta, muutama yleisesti hyväksytty ja ymmärretty käsite, joista
Predikaattilogiikan malli-teoreettinen semantiikka
Predikaattilogiikan malli-teoreettinen semantiikka February 4, 2013 Muistamme, että predikaattilogiikassa aakkosto L koostuu yksilövakioista c 0, c 1, c 2,... ja predikaattisymboleista P, R,... jne. Ekstensionaalisia
Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia, niin A on rekursiivinen.
Lause: Tyhjyysongelma ei ole osittain ratkeava; ts. kieli ei ole rekursiivisesti lueteltava. L e = { w { 0, 1 } L(M w ) = } Todistus: Aiemmin esitetyn mukaan jos A ja A ovat rekursiivisesti lueteltavia,
Tehtävä 1. Päättele resoluutiolla seuraavista klausuulijoukoista. a. 1 {p 3 } oletus. 4 {p 1, p 2, p 3 } oletus. 5 { p 1 } (1, 2) 7 (4, 6)
Tehtävä 1 Päättele resoluutiolla seuraavista klausuulijoukoista. a. {{p 0 }, {p 1 }, { p 0, p 2 }, {p 1, p 2, p 3 }, { p 2, p 3 }, {p 3 }}, b. {{ p 0, p 2 }, {p 0, p 1 }, {{ p 1, p 2 }, { p 2 }}, c. {{p
Johdatus matematiikkaan
Johdatus matematiikkaan Luento 3 Mikko Salo 1.9.2017 Sisältö 1. Logiikasta 2. Suora ja epäsuora todistus 3. Jaollisuus ja alkuluvut Todistus Tähän asti esitetyt todistukset ovat olleet esimerkinomaisia.
Modaalilogiikan ja predikaattilogiikan kaavojen vastaavuus
TAMPEREEN YLIOPISTO Pro gradu -tutkielma Sanna Kari Modaalilogiikan ja predikaattilogiikan kaavojen vastaavuus Matematiikan, tilastotieteen ja filosofian laitos Matematiikka Toukokuu 2002 Sisältö 1 Johdanto
Esimerkkimodaalilogiikkoja
/ Kevät 2005 ML-4 1 Esimerkkimodaalilogiikkoja / Kevät 2005 ML-4 3 Käsitellään esimerkkeinä kehyslogiikkoja Valitaan joukko L kehyksiä S, R (tyypillisesti antamalla relaatiolle R jokin ominaisuus; esim.
Ratkaisu. Ensimmäinen kuten P Q, toinen kuten P Q. Kolmas kuten P (Q R):
Diskreetti matematiikka, sks 2010 Harjoitus 2, ratkaisuista 1. Seuraavassa on kuvattu kolme virtapiiriä, joissa on paristo, sopiva lamppu L ja katkaisimia P, Q, R, joiden läpi virta kulkee (1) tai ei kulje
Käsitteistä. Reliabiliteetti, validiteetti ja yleistäminen. Reliabiliteetti. Reliabiliteetti ja validiteetti
Käsitteistä Reliabiliteetti, validiteetti ja yleistäminen KE 62 Ilpo Koskinen 28.11.05 empiirisessä tutkimuksessa puhutaan peruskurssien jälkeen harvoin "todesta" ja "väärästä" tiedosta (tai näiden modernimmista
Mikä on tieteenfilosofinen positioni ja miten se vaikuttaa tutkimukseeni?
Mikä on tieteenfilosofinen positioni ja miten se vaikuttaa tutkimukseeni? Jyväskylä 31.5.2017 Petteri Niemi Relativismi ja Sosiaalinen konstruktivismi Relativismi (Swoyer 2010) Relativismi on näkemysten
Kirjoita käyttäen propositiosymboleita, konnektiiveja ja sulkeita propositiologiikan lauseiksi:
1 Logiikan paja, kevät 2011 Ratkaisut viikolle I Thomas Vikberg Merkitään propopositiosymboleilla p i seuraavia atomilauseita: p 0 : vettä sataa p 1 : tänään on perjantai p 2 : olen myöhässä Valitaan konnektiiveiksi,
Esko Turunen Luku 9. Logiikan algebralisointi
Logiikan algebralisointi Tässä viimeisessä luvussa osoitamme, miten algebran peruskäsitteitä käytetään logiikan tutkimuksessa. Käsittelemme vain klassista lauselogiikkaa ja sen suhdetta Boolen algebraan,
7 Vapaus. 7.1 Vapauden määritelmä
7 Vapaus Kuten edellisen luvun lopussa mainittiin, seuraavaksi pyritään ratkaisemaan, onko annetussa aliavaruuden virittäjäjoukossa tarpeettomia vektoreita Jos tällaisia ei ole, virittäjäjoukkoa kutsutaan
Induktio kaavan pituuden suhteen
Induktio kaavan pituuden suhteen Lauselogiikan objektikieli määritellään kurssilla Logiikka 1B seuraavasti: 1. Lausemuuttujat p 1, p 2, p 3,... ovat kaavoja. 2. Jos A on kaava, niin A on kaava. 3. Jos
Rakenteiset päättelyketjut ja avoin lähdekoodi
Rakenteiset päättelyketjut ja avoin lähdekoodi Mia Peltomäki Kupittaan lukio ja Turun yliopiston IT-laitos http://crest.abo.fi /Imped Virtuaalikoulupäivät 24. marraskuuta 2009 1 Taustaa Todistukset muodostavat
Johdatus logiikkaan 1
Johdatus logiikkaan 1 28. elokuuta 2014 Tämän tekstin lähtökohtana on ollut moniste Veikko Rantala - Ari Virtanen: Logiikan peruskurssi, joka on saatavilla netistä http://www.sis.uta.fi/matematiikka/ modaalilogiikka/logpk2003.pdf.
MATEMAATIKON KAKSI VAPAUTTA. Säännön seuraamisen ongelma ja vahva konventionalismi matematiikan filosofiassa
MATEMAATIKON KAKSI VAPAUTTA Säännön seuraamisen ongelma ja vahva konventionalismi matematiikan filosofiassa Antti Heikinheimo Pro gradu - tutkielma Filosofia Yhteiskuntatieteiden ja filosofian laitos Jyväskylän
T Kevät 2006 Logiikka tietotekniikassa: perusteet Laskuharjoitus 8 (opetusmoniste, kappaleet )
T-79.3001 Kevät 2006 Logiikka tietotekniikassa: perusteet Laskuharjoitus 8 (opetusmoniste, kappaleet 2.3 3.4) 21. 24.3.2006 1. Olkoon R kaksipaikkainen predikaattisymboli, jonka tulkintana on relaatio
Kieli merkitys ja logiikka
Luento 8 Kieli merkitys ja logiikka Luento 8: Merkitys ja logiikka Luku 10: Luennon 7 kertaus: propositiologiikka predikaattilogiikka Kvanttorit ja looginen muoto Määritelmät, analyyttisyys ja synteettisyys
Insinöörimatematiikka A
Insinöörimatematiikka A Demonstraatio 3, 3.9.04 Tehtävissä 4 tulee käyttää Gentzenin järjestelmää kaavojen johtamiseen. Johda kaava φ (φ ) tyhjästä oletusjoukosta. ) φ ) φ φ 3) φ 4) φ (E ) (E ) (I, ) (I,
Täydentäviä muistiinpanoja laskennan rajoista
Täydentäviä muistiinpanoja laskennan rajoista Antti-Juhani Kaijanaho 10. joulukuuta 2015 1 Diagonaalikieli Diagonaalikieli on D = { k {0, 1} k L(M k ) }. Lause 1. Päätösongelma Onko k {0, 1} sellaisen
Ratkaisu: (b) A = x 0 (R(x 0 ) x 1 ( Q(x 1 ) (S(x 0, x 1 ) S(x 1, x 1 )))).
HY / Matematiikan ja tilastotieteen laitos Johdatus logiikkaan I, syksy 2018 Harjoitus 3 Ratkaisuehdotukset 1. Palataan Partakylään. Olkoon P partatietokanta ja M tästä saatu malli kuten Harjoitusten 1
Tieteenfilosofia 3/4. Heikki J. Koskinen, FT, Dos. Helsingin yliopisto / Suomen Akatemia
Tieteenfilosofia 3/4 Heikki J. Koskinen, FT, Dos. Helsingin yliopisto / Suomen Akatemia 1 Keskeisiä peruskäsitteitä Päättely on sellaista ajattelutoimintaa, joka etenee premisseistä eli oletuksista johtopäätökseen
Johdatus matemaattiseen päättelyyn
Johdatus matemaattiseen päättelyyn Maarit Järvenpää Oulun yliopisto Matemaattisten tieteiden laitos Syyslukukausi 2015 1 Merkintöjä Luonnollisten lukujen joukko N on joukko N = {1, 2, 3,...} ja kokonaislukujen
MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I
MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I G. Gripenberg Aalto-yliopisto 30. syyskuuta 2015 G. Gripenberg (Aalto-yliopisto) MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, 30.
Matematiikan peruskäsitteitä
2 Matematiikan peruskäsitteitä Kurssilla käsitellään matematiikan peruskäsitteitä, mutta lähinnä vain diskreetin matematiikan näkökulmasta. Lukiostakin tuttuja lineaarialgebran ja analyysin peruskäsitteitä