Bioinformatics. Sequence Analysis: Part III. Pattern Searching and Gene Finding. Fran Lewitter, Ph.D. Head, Biocomputing Whitehead Institute

Samankaltaiset tiedostot
Functional Genomics & Proteomics

FETAL FIBROBLASTS, PASSAGE 10

MALE ADULT FIBROBLAST LINE (82-6hTERT)

Experimental Identification and Computational Characterization of a Novel. Extracellular Metalloproteinase Produced by Clostridium sordellii

tgg agg Supplementary Figure S1.

State of the Union... Functional Genomics Research Stream. Molecular Biology. Genomics. Computational Biology

Chapter 7. Motif finding (week 11) Chapter 8. Sequence binning (week 11)

Eukaryotic Comparative Genomics

Plasmid Name: pmm290. Aliases: none known. Length: bp. Constructed by: Mike Moser/Cristina Swanson. Last updated: 17 August 2009

Efficiency change over time

Genome 373: Genomic Informatics. Professors Elhanan Borenstein and Jay Shendure

CS284A Representations & Algorithms for Molecular Biology. Xiaohui S. Xie University of California, Irvine

Basset: Learning the regulatory code of the accessible genome with deep convolutional neural networks. David R. Kelley

Searching (Sub-)Strings. Ulf Leser

Predicting evolutionarily conserved regions (ECRs) in the Xenopus tropicalis genome using a MultiPipMaker-based bioinformatic strategy

Results on the new polydrug use questions in the Finnish TDI data

Large Scale Sequence Analysis with Applications to Genomics

Methods S1. Sequences relevant to the constructed strains, Related to Figures 1-6.

Alternative DEA Models

Strain or plasmid Description a Reference or source b. 168 trpc2 Laboratory. 1A780 trpc2 sigb::spc BGSC

Returns to Scale II. S ysteemianalyysin. Laboratorio. Esitelmä 8 Timo Salminen. Teknillinen korkeakoulu

Supporting Information for

VIIKKI BIOCENTER University of Helsinki

CSC:n käyttäjätunnukset - myös opiskelijoille

Capacity Utilization

rapid evolution in copy number, location and sequence, with diverse turnover mechanisms.

The CCR Model and Production Correspondence

Supporting information

Other approaches to restrict multipliers

Bounds on non-surjective cellular automata

Manolis Kellis Piotr Indyk

Enseigner l'évolution

7.4 Variability management

Chapter 9 Motif finding. Chaochun Wei Spring 2019

Large Scale Sequence Analysis with Applications to Genomics

RINNAKKAINEN OHJELMOINTI A,

16. Allocation Models

Python Libraries 1 / 14

LYTH-CONS CONSISTENCY TRANSMITTER

7. Product-line architectures

HARJOITUS- PAKETTI A

Constructive Alignment in Specialisation Studies in Industrial Pharmacy in Finland

VIIKKI BIOCENTER University of Helsinki

Capacity utilization

KONEISTUSKOKOONPANON TEKEMINEN NX10-YMPÄRISTÖSSÄ

812336A C++ -kielen perusteet,

1. SIT. The handler and dog stop with the dog sitting at heel. When the dog is sitting, the handler cues the dog to heel forward.

Lampiran 1 Komposisi media pertumbuhan yang digunakan A. Media nutrien agar (NA) - Agar 1.5% - Nutrient broth 0.8%

Supplementary information: Biocatalysis on the surface of Escherichia coli: melanin pigmentation of the cell. exterior

Viral DNA as a model for coil to globule transition

WindPRO version joulu 2012 Printed/Page :47 / 1. SHADOW - Main Result

Kysymys 5 Compared to the workload, the number of credits awarded was (1 credits equals 27 working hours): (4)

11/17/11. Gene Regulation. Gene Regulation. Gene Regulation. Finding Regulatory Motifs in DNA Sequences. Regulatory Proteins

Hankkeen toiminnot työsuunnitelman laatiminen

Bioinformatiikan maisteriohjelma

TM ETRS-TM35FIN-ETRS89 WTG

make and make and make ThinkMath 2017

Työsuojelurahaston Tutkimus tutuksi - PalveluPulssi Peter Michelsson Wallstreet Asset Management Oy

,0 Yes ,0 120, ,8

LX 70. Ominaisuuksien mittaustulokset 1-kerroksinen 2-kerroksinen. Fyysiset ominaisuudet, nimellisarvot. Kalvon ominaisuudet

Increase of opioid use in Finland when is there enough key indicator data to state a trend?

TEST REPORT Nro VTT-S Air tightness and strength tests for Furanflex exhaust air ducts

Information on preparing Presentation

lpar1 IPB004065, IPB002277, and IPB Restriction Enyzme Differences from REBASE Gained in Variant Lost from Reference

Information on Finnish Language Courses Spring Semester 2018 Päivi Paukku & Jenni Laine Centre for Language and Communication Studies

Kaivostoiminnan eri vaiheiden kumulatiivisten vaikutusten huomioimisen kehittäminen suomalaisessa luonnonsuojelulainsäädännössä

TM ETRS-TM35FIN-ETRS89 WTG

Plasmid construction PCR reactions were carried out with Pfu or Pfu turbo polymerases (Stratagene) unless otherwise stated.

BLOCKCHAINS AND ODR: SMART CONTRACTS AS AN ALTERNATIVE TO ENFORCEMENT

On instrument costs in decentralized macroeconomic decision making (Helsingin Kauppakorkeakoulun julkaisuja ; D-31)

MOOC toiveita ja pelkoja. Jaakko Kurhila opintoesimies tietojenkäsittelytieteen laitos Helsingin yliopisto

Paikkatiedon semanttinen mallinnus, integrointi ja julkaiseminen Case Suomalainen ajallinen paikkaontologia SAPO

TM ETRS-TM35FIN-ETRS89 WTG

Yliopisto-opinnoissa karttuvat työelämätaidot. Eila Pajarre, Mira Valkonen ja Sanna Kivimäki TTY

Use of spatial data in the new production environment and in a data warehouse

Bioinformatics in Laboratory of Computer and Information Science

arxiv: v1 [stat.ml] 27 Feb 2011

WP3 Decision Support Technologies

Counting quantities 1-3

Rakennukset Varjostus "real case" h/a 0,5 1,5

MUSEOT KULTTUURIPALVELUINA

TM ETRS-TM35FIN-ETRS89 WTG

Telecommunication Software

Information on Finnish Language Courses Spring Semester 2017 Jenni Laine

TM ETRS-TM35FIN-ETRS89 WTG

Guideline on Similar biological medicinal products containing biotechnology-derived proteins as active substance: non-clinical and clinical issues

VAASAN YLIOPISTO Humanististen tieteiden kandidaatin tutkinto / Filosofian maisterin tutkinto

AKKREDITOITU TESTAUSLABORATORIO ACCREDITED TESTING LABORATORY VERKOTAN OY VERKOTAN LTD.

Alternatives to the DFT

HITSAUKSEN TUOTTAVUUSRATKAISUT

QUALITATIVE COMPARATIVE ANALYSIS

Tilausvahvistus. Anttolan Urheilijat HENNA-RIIKKA HAIKONEN KUMMANNIEMENTIE 5 B RAHULA. Anttolan Urheilijat

Robert S. Broadhead, Ph.D., University of Connecticut Pavlo Smyrnov, Oleksandra Datsenko and Oksana Matiyash International HIV/AIDS Alliance in

Innovation Platform Thinking Jukka P. Saarinen Mika M. Raunio Nadja Nordling Taina Ketola Anniina Heinikangas Petri Räsänen

WindPRO version joulu 2012 Printed/Page :42 / 1. SHADOW - Main Result

TM ETRS-TM35FIN-ETRS89 WTG

S SÄHKÖTEKNIIKKA JA ELEKTRONIIKKA

Poraustyökierrot ja piirteiden tunnistus

TM ETRS-TM35FIN-ETRS89 WTG

TM ETRS-TM35FIN-ETRS89 WTG

Transkriptio:

Bioinformatics Sequence Analysis: Part III. Pattern Searching and Gene Finding Fran Lewitter, Ph.D. Head, Biocomputing Whitehead Institute

Course Syllabus Jan 7 Jan 14 Jan 21 Jan 28 Feb 4 Feb 11 Feb 18 Feb 25 Sequence Analysis I. Pairwise alignments, database searching including BLAST (FL) [1, 2, 3] Sequence Analysis II. Database searching (continued), Pattern searching(fl)[7] No Class - Martin Luther King Holiday Sequence Analysis III. Hidden Markov models, gene finding algorithms (FL)[8] Computational Methods I. Genomic Resources and Unix (GB) Computational Methods II. Sequence analysis with Perl. (GB) No Class - President's Birthday Computational Methods III. Sequence analysis with Perl and BioPerl (GB) Mar 4 Proteins I. Multiple sequence alignments, phylogenetic trees (RL) [4, 6] Mar 11 Proteins II. Profile searches of databases, revealing protein motifs (RL) [9] Mar 18 Proteins III.Structural Genomics:structural comparisons and predictions (RL) Mar 25 Microarrays: designing chips, clustering methods (FL) WIBR Bioinformatics Course, Whitehead Institute, 2002 2

Topics to Cover Pattern searching Gene Finding algorithms WIBR Bioinformatics Course, Whitehead Institute, 2002 3

GGATTGTAAGAGTTACTGTTACATTTTCTGGCCTACTACCTTTAAAATTCCTGTTGCATTTCTTTGTATTTACAAGGAAAAGACTGAACTTTTTCTCATCAAAACTAG CTTTTTTCTCACAGGTTAAACTTGCACCAATGTCTGCTCTTTTTTTTTAATGTTTTTGGTACTCTGGGCAGACTTCAGTTTTTTAAAAAATAAAGATTCTAATGCAGC TATCTTGGCATTCCCTTTAAATACCTGTCTTAACCTCCTACTTTTATTTCCTACTCCTTTCCACACACATGCATACAATCCTTTACCTTTTAAAGAATCATTAAGACT GTCACACATTAGGAACTCTTTCGCTCACTCTTCTGTCATTTGCTGCAATATTGAAATTCTTATTTTGACCATCAATGCCTATTAATTCTTCTAATACATGAAGAAAAT GATTGAGTAGCAGCAGTACTATAGGTGGGAAATACAGTTTAACTGCTGAATTTTTATACCTCTCTGATTTATAGCTTGCTAATTAAATTGCTATTAATAGTTTGTTTG Status of Sequencing GCTTAATTAGACTTAAGAAAACAACAGGGCATGAGGAGAGAATTGTATGTAACCAGTGATATGATTATTCCTGAATGTACAGACAGAAGTAAGCCTGGACATTGTTTA (12/31/2001) ATTTAAAAACTTTAGTCCCTGCTTTAAGGGAATATGATAATGTATACTATGACAAATGTACTTTATTCTTCTAACACAGTAAGAATTACTTGGAACTTTTTCCTGAAA CTAAGTGCAGGAAAGCCCTGTGTGTCTTGGTTTAGTGATGGTTTCATTTCTAGCCATACAACTGATGGATTGTATACAATTTTTGTTAGTGCCAAAATAATCTGTTAT ATGAACAGACTTCTAAAATAATTTCTGTATATTATATATGTAAGAAGGCTTTTATTGAACAGCTTATTTTCCACTTGCAAGTTTATGGAAATATCAATATGTCAAAAT AAAAAGTGGGACAATTCTTTGCTGTTAGAAGAATGTGCTTATTATTTTGATTTCTTAAATGGTACATAATCAAAGTACTGCTGAACTATAGGTGCAGTATTCTACTAA ACATTTCGCTAGTAATACCACTGATTTAGAAACAAAACTGTTTATTTTTGCTTTCTGAATTTAGAATGCTGGGATTACCTGTTTAAATATGTTTTAGGGAATATAGAG ATTAAATCTGTACATACCTGTGCACATATATTCATGCACCCTCTGATTTTGGTTTTCTCGTTTTTGAGTTCTTAGAAAGTATCCACATACTCTTCTTTTAGTAGAAGT AGCTGTTTTAGAGAGAAGAAAAGGATGAGACTTTAAATAGTTGATTCTTTTTGTGTTTTCTACAAACTTTTTTGAATTTTAAATCACAAGCAAACTAATTTTCTGGTT TTTAGAAAGTAGATGATGATTTCAGAGGAGTAAGACATGCCAAACAGCGTGCTCGGTAGGATTTTAGGTAGTCAAATGCAGCTGAGAAAAAGTATTTTCAAGTCATAA GTTGCTAATTGATATGCTATGAACTAGTCAAAATAGGAACCATATGATTCATGTTAGATTTTCCTCTAGAGATGGATCTGAATGTTCAGTTCCAGCCAAGGTAGATTT 2% TACTTTCAACTTTTTAATCAATATCACTTTCTGTGCTTAATCTCTTTGGTGTTACCTTGTCCATTTTCATTTGTCTAAAATTCTGCAGGGATGACTACAATTTGGCAT AATGGTATAAATGAATTGTTAAGGGTAACTTTAAGTTGAAGATTAAAGCAAGATGCCATTTTCCCCATGTCTTTCATTTTGTTTACATTTTTTCCCTTTAAGTTAGTA TACACTACACATACTACAATAAAATATAATAATATGAAAAGGATTGTAAGAGTTACTGTTACATTTTCTGGCCTACTACCTTTAAAATTCCTGTTGCATTTCTTTGTA TTTACAAGGAAAAGACTGAACTTTTTCTCATCAAAACTAGCTTTTTTCTCACAGGTTAAACTTGCACCAATGTCTGCTCTTTTTTTTTAATGTTTTTGGTACTCTGGG CAGACTTCAGTTTTTTAAAAAATAAAGATTCTAATGCAGCTATCTTGGCATTCCCTTTAAATACCTGTCTTAACCTCCTACTTTTATTTCCTACTCCTTTCCACACAC Finished ATGCATACAATCCTTTACCTTTTAAAGAATCATTAAGACTGTCACACATTAGGAACTCTTTCGCTCACTCTTCTGTCATTTGCTGCAATATTGAAATTCTTATTTTGA CCATCAATGCCTATTAATTCTTCTAATACATGAAGAAAATGATTGAGTAGCAGCAGTACTATAGGTGGGAAATACAGTTTAACTGCTGAATTTTTATACCTCTCTGAT Unfinished TTATAGCTTGCTAATTAAATTGCTATTAATAGTTTGTTTGGCTTAATTAGACTTAAGAAAACAACAGGGCATGAGGAGAGAATTGTATGTAACCAGTGATATGATTAT 35% Not Sequenced TCCTGAATGTACAGACAGAAGTAAGCCTGGACATTGTTTAATTTAAAAACTTTAGTCCCTGCTTTAAGGGAATATGATAATGTATACTATGACAAATGTACTTTATTC TTCTAACACAGTAAGAATTACTTGGAACTTTTTCCTGAAACTAAGTGCAGGAAAGCCCTGTGTGTCTTGGTTTAGTGATGGTTTCATTTCTAGCCATACAACTGATGG ATTGTATACAATTTTTGTTAGTGCCAAAATAATCTGTTATATGAACAGACTTCTAAAATAATTTCTGTATATTATATATGTAAGAAGGCTTTTATTGAACAGCTTATT TTCCACTTGCAAGTTTATGGAAATATCAATATGTCAAAATAAAAAGTGGGACAATTCTTTGCTGTTAGAAGAATGTGCTTATTATTTTGATTTCTTAAATGGTACATA ATCAAAGTACTGCTGAACTATAGGTGCAGTATTCTACTAAACATTTCAGCTAGTAATACCACTGATTTAGAAACAAAACTGTTTATTTTTGCTTTCTGAATTTAGAAT GCTGGGATTACCTGTTTAAATATGTTTTAGGGAATATAGAGATTAAATCTGTACATACCTGTGCACATATATTCATGCACCCTCTGATTTTGGTTTTCTCGTTTTTGA GTTCTTAGAAAGTATCCACATACTCTTCTTTTAGTAGAAGTAGCTGTTTTAGAGAGAAGAAAAGGATGAGACTTTAAATAGTTGATTCTTTTTGTGTTTTCTACAAAC TTTTTTGAATTTTAAATCACAAGCAAACTAATTTTCTGGTTTTTAGAAAGTAGATGATGATTTCAGAGGAGTAAGACATGCCAAACAGCGTGCTCGGTAGGATTTTAG GTAGTCAAATGCAGCTGAGAAAAAGTATTTTCAAGTCATAAGTTGCTAATTGATATGCTATGAACTAGTCAAAATAGGAACCATATGATTCATGTTAGATTTTCCTCT 63% AGAGATGGATCTGAATGTTCAGTTCCAGCCAAGGTAGATTTTACTTTCAACTTTTTAATCAATATCACTTTCTGTGCTTAATCTCTTTGGTGTTACCTTGTCCATTTT CATTTGTCTAAAATTCTGCAGGGATGACTACAATTTGGCATAATGGTATAAATGAATTGTTAAGGGTAACTTTAAGTTGAAGATTAAAGCAAGATGCCATTTTCCCCA TGTCTTTCATTTTGTTTACATTTTTTCCCTTTAAGTTAGTATACACTACACATACTACAATAAAATATAATAATATGAAAAGGATTGATTCATGTTAGATTTTCCTCT AGAGATGGATCTGAATGTTCAGTTCCAGCCAAGGTAGATTTTACTTTCAACTTTTTAATCAATATCACTTTCTGTGCTTAATCTCTTTGGTGTTACCTTGTCCATTTT CATTTGTCTAAAATTCTGCAGGGATGACTACAATTTGGCATAATGGTATAAATGAATTGTTAAGGGTAACTTTAAGTTGAAGATTAAAGCAAGATGCCATTTTCCCC ATGTCTTTCATTTTGTTTACATTTTTTCCCTTTAAGTTAGTATACACTACACATACTACAATAAAATATAATAATATGAAAAGGATTGATTCATGTTAGATTTTCCTC TAGAGATGGATCTGAATGTTCAGTTCCAGCCAAGGTAGATTTTACTTTCAACTTTTTAATCAATATCACTTTCTGTGCTTAATCTCTTTGGTGTTACCTTGTCCATTT WIBR Bioinformatics Course, Whitehead Institute, 2002 4

Topics to Cover Pattern searching Gene Finding algorithms WIBR Bioinformatics Course, Whitehead Institute, 2002 5

Pattern Searching RRRRYYYY TATAA[1,0,0] 4 purines followed by 4 pyrimidines TATAA, allowing 1 mismatch p1=6...8 GAGA ~p1 a hairpin with GAGA as the loop p1=6...6 3...8 p1 p1=6...6 3..8 p1[1,1,1] exact 6 character repeat separated by up to 8 allow one mismatch, deletion and insertion WIBR Bioinformatics Course, Whitehead Institute, 2002 6

Pattern Searching Programs Patscan findpatterns fuzznuc, fuzzprot, fuzztrans, dreg scan_for_matches patfile < inputfile gcg; findpatterns EMBOSS programs; web and Unix WIBR Bioinformatics Course, Whitehead Institute, 2002 7

Topics to Cover Pattern searching Gene Finding algorithms WIBR Bioinformatics Course, Whitehead Institute, 2002 8

Problem to Solve WIBR Bioinformatics Course, Whitehead Institute, 2002 9

Types of Signals to Detect Transcriptional TSS TATA box PolyA Translational Kozak (CC A/G CCAUGG) Termination codon (UAA, UAG, UGA) Splicing Introns - GT AG WIBR Bioinformatics Course, Whitehead Institute, 2002 10

Gene Finding Strategies Content-based methods codon usage, compositional complexity Site-based methods presence or absence of specific pattern or sequence Comparative methods determination based on homology WIBR Bioinformatics Course, Whitehead Institute, 2002 11

Evolution of Gene Finding Programs 1980 ORF Codon Usage 1990 Splice Sites/Exons 2000??? Whole genes Multiple genes Alternative splicing Functional RNAs Nested genes WIBR Bioinformatics Course, Whitehead Institute, 2002 12

RepeatMasker WIBR Bioinformatics Course, Whitehead Institute, 2002 13

RepeatMasker WIBR Bioinformatics Course, Whitehead Institute, 2002 14

RepeatMasker Summary: Total length: 8750 bp GC level: 35.61% Bases masked: 6803 bp (77.75%) WIBR Bioinformatics Course, Whitehead Institute, 2002 15

Coding Measures Look at frequencies of codons (e.g. redundancy of genetic code; Leucine = UUA, UUG, CUU, CUC, CUA, CUG) 6-tuple or hexamer approach ACCTCG TACTCG GCCCTC Thr Ser Tyr Ser Ala Leu WIBR Bioinformatics Course, Whitehead Institute, 2002 16

Fifth Order Markov Models Periodic fifth order Markov model. Circles represent consecutive DNA bases, numbers indicate codon position, and the arrows indicate that the next base is generated conditionally on the previous five and on the codon position. Burge and Karlin, Current Opinions in Structural Biology 1998, 8:346-354. WIBR Bioinformatics Course, Whitehead Institute, 2002 17

Hidden Markov Models unobserved or hidden states (e.g. coding or noncoding) states generated according to a first order Markov chain observable DNA bases each base generated conditionally on identity of corresponding hidden state Burge and Karlin, Current Opinions in Structural Biology 1998, 8:346-354. WIBR Bioinformatics Course, Whitehead Institute, 2002 18

GENSCAN MM - prob for a given nuc to occur at position p depends on nuc occupying previous k postions Generalized Hidden Markov Model (GHMM) Optimize module performing signal recognition Incorporates influence of C+G content Considers gene models on both strands Can identify multiple genes Burge and Karlin, JMB:268:78-94, 1997 WIBR Bioinformatics Course, Whitehead Institute, 2002 19

GENSCAN Burge and Karlin, JMB:268:78-94, 1997 WIBR Bioinformatics Course, Whitehead Institute, 2002 20

Gene Finding Programs FGENES - Sanger Center, UK GeneMark HMM - Georgia Tech Genie - UCSC Genscan - Stanford and MIT HMMgene - CBS, Denmark Morgan - John Hopkins MZEF - Cold Spring Harbor WIBR Bioinformatics Course, Whitehead Institute, 2002 21

HMR195 Test Set 103 human, 82 mouse, 10 rat sequences Sequence new since August, 1997 Genomic sequences containing exactly one gene No mrna sequences, pseudogenes or alternatively spliced genes The mean length of sequences is 7,096 bp Rogic, Mackworth and Ouellette, Genome Research 11:817-832, 2001 WIBR Bioinformatics Course, Whitehead Institute, 2002 22

HMR195 Test Set (con t) 43 single-exon genes; 152 multi-exon genes Average number of exons per gene is 4.86 Mean exon length = 208 bp, mean intron length = 678 bp, mean coding length per gene = 1,015 bp (~330 aa) Coding sequence 14%, intronic sequence 46% and intergenic DNA 40%. Rogic, Mackworth and Ouellette, Genome Research 11:817-832, 2001 WIBR Bioinformatics Course, Whitehead Institute, 2002 23

Definitions Sensitivity: the proportion of true sites(e.g., exons or donor splice sites) which are correctly predicted = TP/(TP + FN) Specificity: the proportion of predicted sites which are correct = TP/(TP + FP) WIBR Bioinformatics Course, Whitehead Institute, 2002 24

Results of Program Comparisons Genscan and HMMgene had reliable scores for exons Nucleotide Sn =.95 for Genscan and.93 for HMMgene. Sp =.90 and.93, respectively Accuracy dependent on G+C content Rogic, Mackworth and Ouellette, Genome Research 11:817-832, 2001 WIBR Bioinformatics Course, Whitehead Institute, 2002 25

GenomeScan Combines exon-intron and splice signal models with similarity to know proteins Used to identify genes in human draft sequence Uses GENSCAN and BLASTX Procrustes and Genewise similar but can only predict one gene per genomic sequence Yeh, Lim, and Burge, Genome Research 11:803-816, 2001. WIBR Bioinformatics Course, Whitehead Institute, 2002 26

GenomeScan Yeh, Lim, and Burge, Genome Research 11:803-816, 2001. WIBR Bioinformatics Course, Whitehead Institute, 2002 27

GenomeScan Yeh, Lim, and Burge, Genome Research 11:803-816, 2001. WIBR Bioinformatics Course, Whitehead Institute, 2002 28

GenomeScan Yeh, Lim, and Burge, Genome Research 11:803-816, 2001. WIBR Bioinformatics Course, Whitehead Institute, 2002 29

Other Approaches Use microarrays to identify expressed genes based on the coexpression of sets of adjacent exons as predicted by GENSCAN (Shoemaker, et al, Nature 409:922-927, 2001) RT-PCR with radio-labeled primers targeted to pairs of adjecent predicted exons, followed by sequencing of the amplified product (Burge et al, in preparation) WIBR Bioinformatics Course, Whitehead Institute, 2002 30

Future Challenges Alternative Splicing Gene products functioning at RNA level Nested genes 5' end of genes Other unusual characteristics WIBR Bioinformatics Course, Whitehead Institute, 2002 31

Coming attractions Next section on Computational Methods Unix accounts Course Projects WIBR Bioinformatics Course, Whitehead Institute, 2002 32