missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

Samankaltaiset tiedostot
missä on myös käytetty monisteen kaavaa 12. Pistä perustelut kohdilleen!

X R Matematiikan johdantokurssi, syksy 2016 Harjoitus 5, ratkaisuista

Johdatus diskreettiin matematiikkaan Harjoitus 1,

Approbatur 3, demo 1, ratkaisut A sanoo: Vähintään yksi meistä on retku. Tehtävänä on päätellä, mitä tyyppiä A ja B ovat.

-Matematiikka on aksiomaattinen järjestelmä. -uusi tieto voidaan perustella edellisten tietojen avulla, tätä kutsutaan todistamiseksi

Matematiikan johdantokurssi, syksy 2016 Harjoitus 11, ratkaisuista

Johdatus matemaattiseen päättelyyn

Diskreetin matematiikan perusteet Malliratkaisut 2 / vko 38

Miten osoitetaan joukot samoiksi?

Loogiset konnektiivit

Karteesinen tulo. Olkoot A = {1, 2, 3, 5} ja B = {a, b, c}. Näiden karteesista tuloa A B voidaan havainnollistaa kuvalla 1 / 21

MS-A0402 Diskreetin matematiikan perusteet

Diskreetin matematiikan perusteet Laskuharjoitus 2 / vko 9

Tehtäväsarja I Seuraavissa tehtävissä harjoitellaan erilaisia todistustekniikoita. Luentokalvoista 11, sekä voi olla apua.

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä, todistuksia ym., osa I

Johdatus diskreettiin matematiikkaan Harjoitus 2, Osoita että A on hyvin määritelty. Tee tämä osoittamalla

Diskreetti matematiikka, syksy 2010 Harjoitus 7, ratkaisuista

67-x x 42-x. Matematiikan johdantokurssi, syksy 2016 Harjoitus 3, ratkaisuista

Joukot. Georg Cantor ( )

Ratkaisu. Ensimmäinen kuten P Q, toinen kuten P Q. Kolmas kuten P (Q R):

b) Määritä myös seuraavat joukot ja anna kussakin tapauksessa lyhyt sanallinen perustelu.

Todistusmenetelmiä Miksi pitää todistaa?

Valitsemalla sopivat alkiot joudutaan tämän määritelmän kanssa vaikeuksiin, jotka voidaan välttää rakentamalla joukko oppi aksiomaattisesti.

6 Relaatiot. 6.1 Relaation määritelmä

a k+1 = 2a k + 1 = 2(2 k 1) + 1 = 2 k+1 1. xxxxxx xxxxxx xxxxxx xxxxxx

1. Logiikan ja joukko-opin alkeet

Sekalaiset tehtävät, 11. syyskuuta 2005, sivu 1 / 13. Tehtäviä

Relaatioista. 1. Relaatiot. Alustava määritelmä: Relaatio on kahden (tai useamman, saman tai eri) joukon alkioiden välinen ominaisuus tai suhde.

[a] ={b 2 A : a b}. Ekvivalenssiluokkien joukko

Diskreetin Matematiikan Paja Tehtäviä viikolle 2. ( ) Jeremias Berg

Jokaisen parittoman kokonaisluvun toinen potenssi on pariton.

(2n 1) = n 2

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä.

Luonnollisten lukujen ja kokonaislukujen määritteleminen

Ensimmäinen induktioperiaate

1. Osoita, että joukon X osajoukoille A ja B on voimassa toinen ns. de Morganin laki (A B) = A B.

1 sup- ja inf-esimerkkejä

Ensimmäinen induktioperiaate

Lisää kvanttoreista ja päättelyä sekä predikaattilogiikan totuustaulukot 1. Negaation siirto kvanttorin ohi

a) Mitkä seuraavista ovat samassa ekvivalenssiluokassa kuin (3, 8), eli kuuluvat joukkoon

Nimitys Symboli Merkitys Negaatio ei Konjuktio ja Disjunktio tai Implikaatio jos..., niin... Ekvivalenssi... jos ja vain jos...

Diskreetin Matematiikan Paja Ratkaisuhahmotelmia viikko 1. ( ) Jeremias Berg

Ekvivalenssirelaatio. Määritelmä 2 Joukon A binäärinen relaatio R on ekvivalenssirelaatio, mikäli. Jos R on ekvivalenssirelaatio ja a A, niin joukkoa

Ratkaisu: Käytetään induktiota propositiolauseen A rakenteen suhteen. Alkuaskel. A = p i jollain i N. Koska v(p i ) = 1 kaikilla i N, saadaan

Matematiikan tukikurssi, kurssikerta 1

Alkioiden x ja y muodostama järjestetty pari on jono (x, y), jossa x on ensimmäisenä ja y toisena jäsenenä.

DIFFERENTIAALI- JA INTEGRAALILASKENTA I.1. Ritva Hurri-Syrjänen/Syksy 1999/Luennot 6. FUNKTION JATKUVUUS

Diskreetin Matematiikan Paja Ratkaisuehdotuksia viikolle 2. ( ) Jeremias Berg

Surjektion käsitteen avulla kuvauksia voidaan luokitella sen mukaan, kuvautuuko kaikille maalin alkioille jokin alkio vai ei.

Matematiikan tukikurssi

MS-A0401 Diskreetin matematiikan perusteet Yhteenveto, osa I

Kuvauksista ja relaatioista. Jonna Makkonen Ilari Vallivaara

MS-A010{3,4} (ELEC*) Differentiaali- ja integraalilaskenta 1 Luento 3: Jatkuvuus

Toinen muotoilu. {A 1,A 2,...,A n,b } 0, Edellinen sääntö toisin: Lause 2.5.{A 1,A 2,...,A n } B täsmälleen silloin kun 1 / 13

Reaalifunktioista 1 / 17. Reaalifunktioista

Diskreetin matematiikan perusteet Laskuharjoitus 1 / vko 8

Vastaoletuksen muodostaminen

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

Vieruskaverisi on tämän päivän luennolla työtoverisi. Jos sinulla ei ole vieruskaveria, siirry jonkun viereen. Esittäytykää toisillenne.

MS-A0402 Diskreetin matematiikan perusteet Esimerkkejä ym., osa I

Insinöörimatematiikka A

8 Joukoista. 8.1 Määritelmiä

3 Lukujonon raja-arvo

MS-A0402 Diskreetin matematiikan perusteet

1 Supremum ja infimum

5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia

Predikaattilogiikan malli-teoreettinen semantiikka

Johdatus matemaattiseen päättelyyn (5 op)

KOMPLEKSIANALYYSI I KURSSI SYKSY 2012

3 Lukujonon raja-arvo

Johdatus yliopistomatematiikkaan. JYM, Syksy2015 1/195

Topologia Syksy 2010 Harjoitus 4. (1) Keksi funktio f ja suljetut välit A i R 1, i = 1, 2,... siten, että f : R 1 R 1, f Ai on jatkuva jokaisella i N,

5 Funktion jatkuvuus ANALYYSI A, HARJOITUSTEHTÄVIÄ, KEVÄT Määritelmä ja perustuloksia. 1. Tarkastellaan väitettä

Injektio (1/3) Funktio f on injektio, joss. f (x 1 ) = f (x 2 ) x 1 = x 2 x 1, x 2 D(f )

Ratkaisu: Yksi tapa nähdä, että kaavat A (B C) ja (A B) (A C) ovat loogisesti ekvivalentit, on tehdä totuustaulu lauseelle

Predikaattilogiikkaa

Funktiot. funktioita f : A R. Yleensä funktion määrittelyjoukko M f = A on jokin väli, muttei aina.

= 5! 2 2!3! = = 10. Edelleen tästä joukosta voidaan valita kolme särmää yhteensä = 10! 3 3!7! = = 120

r > y x z x = z y + y x z y + y x = r y x + y x = r

Lineaarikuvauksen R n R m matriisi

Matematiikan ja tilastotieteen laitos Matematiikka tutuksi Harjoitus 2, malliratkaisut

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Ratkaisu: a) Kahden joukon yhdisteseen poimitaan kaikki alkiot jotka ovat jommassakummassa joukossa (eikä mitään muuta).

(a) Kyllä. Jokainen lähtöjoukon alkio kuvautuu täsmälleen yhteen maalijoukon alkioon.

Täydellisyysaksiooman kertaus

isomeerejä yhteensä yhdeksän kappaletta.

LOGIIKKA johdantoa

saadaan kvanttorien järjestystä vaihtamalla ehto Tarkoittaako tämä ehto mitään järkevää ja jos, niin mitä?

1 Logiikkaa. 1.1 Logiikan symbolit

Tehtävä 1. Päättele resoluutiolla seuraavista klausuulijoukoista. a. 1 {p 3 } oletus. 4 {p 1, p 2, p 3 } oletus. 5 { p 1 } (1, 2) 7 (4, 6)

Kurssikoe on maanantaina Muista ilmoittautua kokeeseen viimeistään 10 päivää ennen koetta! Ilmoittautumisohjeet löytyvät kurssin kotisivuilla.

Relaation ominaisuuksia. Ominaisuuksia koskevia lauseita Sulkeumat. Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,

Joukossa X määritelty relaatio R on. (ir) irrefleksiivinen, jos x Rx kaikilla x X,

Vaihtoehtoinen tapa määritellä funktioita f : N R on

Insinöörimatematiikka A

ja s S : ϕ Υ : M,s ϕ, mutta M,s Q. Erityisesti M, t P kaikilla t S, joten

Kirjoita käyttäen propositiosymboleita, konnektiiveja ja sulkeita propositiologiikan lauseiksi:

Rekursio. Funktio f : N R määritellään yleensä antamalla lauseke funktion arvolle f (n). Vaihtoehtoinen tapa määritellä funktioita f : N R on

Transkriptio:

Matematiikan johdantokurssi Kertausharjoitustehtävien ratkaisuja/vastauksia/vihjeitä. Osoita todeksi logiikan lauseille seuraava: P Q (P Q). Ratkaisuohje. Väite tarkoittaa, että johdetut lauseet P Q ja (P Q) ovat loogisesti ekvivalentit, siis että niillä on samat totuusarvot kaikilla atomilauseiden P ja Q totuusarvoyhdistelmillä. Menetelmä : Tehdään totuusarvotaulukko, jossa noille johdetuille lauseille saadaan identtiset totuusarvosarakkeet, tai muodostetaan noiden ekvivalenssilause ja osoitetaan se tautologiaksi. Menetelmä : Koetetaan muuntaa toinen lause siksi toiseksi käyttäen logiikan peruskaavoja (esim. de Morgan). Siis: (P Q) P ( ( Q)) P Q P Q, missä on myös käytetty monisteen kaavaa. Pistä perustelut kohdilleen!. Mitkä seuraavista ovat loogisesti ekvivalentteja lauseen P Q kanssa? a) (P Q) P, b) (P Q) Q, c) (P Q) E. Ratkaisu. Kaikki ovat ekvivalentteja! Voit tehdä totuusarvotaulukon, johon laitat kaikki esiintyvät lauseet ja verrata sarakkeita. Tai sitten oikein määritelmän mukaisesti: voit tehdä noista pareittain ekvivalenssilauseita ja todeta ne tautologioiksi. 3. Onko seuraava reaalilukuja koskeva päättely johdonmukainen: = tai = y. Jos = y, on = z. z. Siis =. Ratkaisu. Merkitään peruslauseita P := ( = ), Q := ( = y) ja R := ( = z). Premissit A k ja johtopäätös B ovat silloin: A := P Q A := Q R A 3 := R B := P Päättelyn (A A A 3 ) B totuusarvotaulukko: A A A 3 A A A 3 B (A A A 3 ) B P Q R P Q Q R R P T T T T T E E T T T T E T E T E T T T E T T T E E T T T E E T T T T T T E T T T T E E E T E T E T E T E E T E E T E T E E E T E E E E T T E E T Päättely on johdonmukainen, koska päättelylause on tautologia.

4. Onko seuraava päättely johdonmukainen: Happamuusindikaattori fenolftaleiini värjäytyy punaiseksi tai ei värjäydy lainkaan. Jos fenolftaleiini värjäytyy punaiseksi, neste on emäs. Siispä: Jos fenolftaleiini ei värjäydy, neste ei ole emäs. Ratkaisu. Merkitään peruslauseita P := Fenolftaleiini värjäytyy punaiseksi. Q := Fenolftaleiini ei värjäydy. R := Neste on emäs. Premissit A k ja johtopäätös B ovat silloin: A := P Q A := P R B := Q R Päättelyn (A A ) B totuusarvotaulukko: A A A A B (A A ) B P Q R R P Q P R Q Q T T T E T T T E E T T E T T E E T T T E T E T T T T T T E E T T E E T T E T T E T T T E E E T E T T T T T T E E T E E T T T T E E E T E T T T T Päättely ei ole johdonmukainen, koska päättelylause ei ole tautologia. 5. Olkoon A suljettu väli [, 4] ja B avoin väli ], [. Olkoon P joukossa A määritelty lausefunktio P () := ( 3 + > ). Olkoon Q joukossa B määritelty lausefunktio Q(y) := (y y ). Esitä piirroksen avulla ne joukot, joissa ovat tosia a) P () Q(y), b) P () Q(y), c) P () Q(y), d) P () Q(y). Ratkaisu. Ratkaistaan epäyhtälöitä vastaavat yhtälöt: 3 + = = =, y y = = =. Ottamalla huomioon, että ne ovat ylöspäin aukeavia paraabeleja päätellään, että lause P () on tosi välin [, ] ulkopuolella ja Q(y) on tosi välillä [, ]. Ajatellaan aluksi ilman rajoitusta joukkoihin A ja B. Seuraavat kuviot näyttävät mille pareille (, y) tasossa on totta P () ja mille Q(y): - P() tosi pisteissä (, y) Q(y) tosi pisteissä (, y) 3 4 3 4 -

Ajatellaan joukko A koordinaatistoon vaaka-akselille ja B pystyakselille ja rajoitetaan tarkastelu suorakulmioon A B = [, 4] ], [. Seuraavissa kuvissa tuon suorakulmion sisälle jäävät viivoitetut alueet ovat lauseiden ratkaisujoukot, ts. niissä lauseet ovat tosia: - 3 4-3 4-3 4-3 4 6. Muodosta joukossa R R määritellystä lausefunktioista P (, y) := ( y = ) kvanttoreita käyttäen lauseet kaikilla mahdollisilla tavoilla ja selvitä niiden totuusarvot. Ratkaisu. Jos muuttujat pidetään annetussa järjestyksessä, on 4 erilaista tapausta. Jos myös käänteinen järjetys tarkastellaan, kuten tavallista on, erilaisia on periaatteessa 8 kpl. Kuitenkin tapaukset y ja y ovat samanarvoisia, samoin tapaukset y ja y. R, y R: y = ; epätosi, sillä esimerkiksi P (, ) = ( ); siis vastaesimerkillä! R, y R: y = ; epätosi, sillä esimerkiksi P (, y) = ( y ); tämä voitaisiin todeta osoittamalla sen negaatio todeksi, näinhän oikeastaan tehtiinkin löytämällä arvo = niin ettei y mahda mitään... R, y R: y = ; epätosi, sillä sen negaatio on tosi; kutakin R vastaa esimerkiksi y :=, joille P (, ) = ( = ). esimerkiksi P (, y) = ( y ). R, y R: y = ; tosi, sillä esimerkiksi P (, ) = ( = ). y R, R: y = ; tosi; mielivaltaista y R kohti luku := y + on sellainen, että P ( y +, y) = ( y + y = ). y R, R: y = ; epätosi, sillä sen negaatio on tosi; kutakin y R vastaa esimerkiksi := y, joille P (y, y) = (y y = ). 3

7. Osoita: ε >, n ε N: n > n ε 8 < ε, n+ toisin sanoen: Osoita, että valittiinpa ε > kuinka pieneksi hyvänsä, aina on olemassa luonnollinen luku n ε, jota suuremmilla n N pätee 8 n+ < ε. Ratkaisu. Ratkaistaan epäyhtälö aluksi reaalisena (voidaan olettaa ): 8 + < ε + > 8 ε > 8 ε, mikä on reaaliluku. Valitaan sellainen n ε N, että n ε 8 (ainahan voidaan valita ε annettua reaalilukua suurempi luonnollinen luku, vaikkapa luvun kokonaisosa +). Epäyhtälö pätee nyt kaikilla lukua n ε N suuremmilla luonnollisilla luvuilla, siis 8 n+ < ε kaikilla n > n ε. 8. Jatkuvuuden negaatio: siis mitä tarkoittaa olla epäjatkuva? Reaalifunktion jatkuvuus tietyssä pisteessä määritellään seuraavasti: Olkoon reaalifunktio f määritelty avoimella välillä I := ]a, b[, joka sisältää luvun R. Funktio f on jatkuva pisteessä, jos ε >, δ ε >, R : I < δ ε f() f( ) < ε. Miten ilmaistaan se, että f ei ole jatkuva pisteessä? Ratkaisu. Tehtävässä olevassa tilanteessa funktio f ei ole jatkuva pisteessä, jos on totta ( ε >, δ ε >, R : I < δ ε f() f( ) < ε) eli ε >, δ ε >, R : I < δ ε f() f( ) ε Mitäkö se on? Funktion kaikki arvot f() eivät lähesty rajatta arvoa f( ), vaikka lähestyisikin lukua ; on siis olemassa sellainen raja ε >, että funktion arvoja jää välin [f( ) ε, f( )+ε] ulkopuolelle oltiinpa vaikka kuinka lähellä pistettä, siis vaikka kuinka pienellä välillä ] δ, +δ[. Lyhyesti: On olemassa raja ε > niin, että jokaiselta -keskiseltä väliltä löytyy jokin luku I, jossa funktion arvo on ainakin ε:n etäisyydellä luvusta f( ). 9. Olkoot A := {a, b}, B := {c} ja C := {a, c, d}. a) Muodosta A C, C A ja A B C. b) Määritä kaikki sellaiset joukot D, joille C D ja D C. Ratkaisu. a) A C = {a, b} {a, c, d} = {(a, a), (a, c), (a, d), (b, a), (b, c), (b, d)} C A = {a, c, d} {a, b} = {(a, a), (a, b), (c, a), (c, b), (d, a), (d, b)} A B C = {a, b} {c} {a, c, d} = {(a, c, a), (a, c, c), (a, c, d), (b, c, a), (b, c, c), (b, c, d)} b) Itse asiassa voidaan todistaa ihan yleisesti: Lause. Jos A ja B ovat epätyhjiä joukkoja, niin A B = B A jos ja vain jos A = B. Todistus. Jos ja vain jos -lause voidaan todistaa osoittamalla seuraamukset molempiin suuntiin (kerralla tai) erikseen: ) Jos A = B, on tietysti A B = B A. ) Oletetaan, että A B = B A. Huomaa, että oletimme joukot A ja B epätyhjiksi, jolloin tulojoukotkin ovat epätyhjiä. 4

Antiteesi: A B. Silloin joukossa A on joku alkio, joka ei ole joukossa B tai joukossa B on joku alkio, joka ei ole joukossa A. Todistetaan näytteeksi edellinen tapaus: Olkoon a A alkio, joka ei ole joukossa B. Koska B, valitaan sieltä yksi alkio b. Äskeisen oletuksen mukaan se ei voi olla a. Nyt pari (a, b) A B, mutta (a, b) / B A, koska a / B. Siis olisikin A B B A. Tämä on ristiriita oletuksemme kanssa, joten antiteesi ei voi olla totta, eli ei voi olla olematta A = B. Jos A B tapahtuu niin, että joukossa B on joku alkio, joka ei ole joukossa A, toimitaan vastaavalla tavalla (tai sovelletaan yllä olevaa käänteisrelaatioihin... ). Olkoot B k := [k, k+] suljettuja välejä kaikilla k N. Laske joukot a) ( n ) B k n= k= b) ( n B k ). n= k= Ratkaisu. Nyt B = [, ], B = [, 3],..., B n = [n, n+],..., joten n B k = [, ] [, 3] [n, n+] = [, n+], k= ja tämä jono on laajeneva jono sisäkkäisiä joukkoja, kun n kasvaa. Näiden kaikkien leikkaus on siten B = [, ]. Leikkausjoukkojen jono on B = [, ], B B = {} ja muut tyhjiä. Siis (sattumoisin) näiden kaikkien yhdiste on B (B B ) = [, ]. Siis: ( n ) B k = [, ] = n= k= ( n B k ).. Olkoon A perusjoukon X aito epätyhjä osajoukko. Määritellään relaatio n= k= Ry ( A = y) ( A y A). Osoita, että R on ekvivalenssi, mutta ei osittainen järjestys joukossa X. Ratkaisu. Selvästikin ehto on sellainen, että se määrää tarkasti jokaisen parin, y X relaatiossaolon, joten R X X. Ehto suomeksi: kaikki joukon A ulkopuoliset alkiot ovat relaatiossa vain itsensä kanssa, mutta joukon A alkiot kaikki keskenään. Tarkastetaan refleksiivisyys, symmetrisyys ja transitiivisuus. Merkitään ehtoja lyhyesti P (, y) := A = y, Q(, y) := A y A, jolloin Ry P (, y) Q(, y). E) Olkoon X mielivaltainen. Silloin A tai A, ja tarkasteltuina erikseen: ) Jos A, niin Q(, ) on tosi ja siis R. ) Jos A, niin P (, ) on tosi ja siis R. E) Olkoot, y X ja Ry. On taas kaksi mahdollisuutta: ) Jos toteutuu P (, y), niin A = y. Mutta silloin myös y A y = eli P (y, ). ) Jos toteutuu Q(, y), niin A y A. Mutta silloin y A A eli Q(y, ). 5

Siis joka tapauksessa P (y, ) Q(y, ) ja siten yr. E3) Olkoot, y, z X sekä Ry ja yrz. Koska Ry, on P (, y) tai Q(, y) tosi. ) Jos P (, y), niin A = y, joten y A. Koska yrz, on P (y, z) tai Q(y, z), joista edellisen nojalla käy vain P (y, z), ja siten = y = z. Näin ollen A = z eli P (, z), ja nyt Rz. ) Jos Q(, y), niin A y A. Koska yrz ja y A, on ainoa mahdollisuus Q(y, z), joten z A. Siis A z A eli Q(, z), ja nytkin Rz. Relaatio on siis ekvivalenssi, ekvivalenssiluokkia ovat A ja kukin yksiö {}, kun A. Relaatio ei ole yleensä osittainen järjestys. Se ei nimittäin ole antisymmetrinen, jos A on vähintäin kahden alkion joukko: Jos X := {,, 3} ja A := {, }, niin R ja R.. Olkoon f : A B injektio. Oletetaan, että joukossa B on osittainen järjestys, eli että pari (B, ) on osittain järjestetty joukko. Osoita, että joukossa A määritelty relaatio R: Ry f() f(y) on osittainen järjestys. Tämä osoittaa, että injektiossa maalijoukon järjestys indusoi järjestyksen lähtöjoukkoon. Ratkaisu. Määrittelynsä nojalla R on todella relaatio joukossa A eli R A A. J) Refleksiivisyys. Jokaiselle A on R, koska joukossa B on refleksiivinen: f() f(). J) Antisymmetrisyys. Oletetaan, että Ry ja yr. Silloin f() f(y) ja f(y) f(). Koska on antisymmetrinen, seuraa f() = f(y). Koska f on oletuksen mukaan injektio, on oltava = y. J3) Transitiivisuus. Oletetaan, että Ry ja yrz. Silloin f() f(y) ja f(y) f(z). Relaation transitiivisuuden nojalla f() f(z). Relaation R määrittelyn nojalla on Rz. Kohtien J-3) perusteella R on osittainen järjestys. 3. Todista, että pienintä alkiota ei voi olla, jos on kaksi minimaalista alkiota. Ratkaisu. Olkoon (X, ) osittain järjestetty joukko. Oletetaan, että minimaalisia on kaksi (tai enemmän), olkoot minimaalisia kaksi eri alkiota a, b X. Jotta alkio X olisi pienin, sen on oltava relaatiossa kaikkien alkioiden kanssa, siis myös alkioiden a ja b kanssa. Koska a ja a on minimaalinen, on oltava = a. Samalla tavoin olisi = b. Mutta tämä on mahdotonta, koska oli oletettu a b. Siis ei voi olla pienintä alkiota. Lisäkysymys: Onko totta, että jos osittain järjestetyssä joukossa on vain yksi maksimaalinen alkio, se on myös suurin? Vihje: Ajattele äärettömiäkin joukkoja! 6