VÄLIKORVAN JA SISÄKORVAN VAIKUTUKSET NISÄKKÄIDEN KUULON YLÄRAJATAAJUUTEEN
|
|
- Hanna-Mari Laine
- 9 vuotta sitten
- Katselukertoja:
Transkriptio
1 VÄLIKORVAN JA SISÄKORVAN VAIKUTUKSET NISÄKKÄIDEN KUULON YLÄRAJATAAJUUTEEN Simo Hemilä, Tom Reuter, Sirpa Nummela Helsingin Yliopisto, Bio- ja ympäristötieteiden laitos PL 65, HELSINKI 1 JOHDANTO Maanisäkkäillä äänienergia siirtyy tärykalvolta sisäkorvaan välikorvan kuuloluiden välityksellä. Tällöin kuuloluiden inertia rajoittaa kuulon ylärajataajuutta f Y [1,2]. Toisaalta eräissä artikkeleissa on väitetty, että sisäkorvan simpukan transduktiomekanismi määrää kuulon ylärajan [3]. On siis perusteltua analysoida välikorvan ja sisäkorvan rooleja nisäkkäiden kuulon ylärajataajuuden määräytymisessä. Evoluution vaikutuksesta eläinlajin kuuloalue kehittyy siten, että se vastaa mahdollisimman hyvin lajin kommunikaatiotarpeita ja muuta tarpeellisen ääni-informaation keruuta. Pienten nisäkkäiden äänielimet ja muukin toiminta tuottavat yleensä korkeita ääniä, joten kuuloalueenkin pitäisi olla korkeilla taajuuksilla. Suurien nisäkkäiden kuuloalue on matalissa taajuuksissa. Tärkeä poikkeus on hammasvalaat, joiden kaikuluotaussignaalien on oltava suuritaajuisia. Jotta eläin kuulisi sille edullisella taajuusalueella, välikorvan on välitettävä tällä taajuudella äänienergiaa sisäkorvaan hyvällä hyötysuhteella, ja sisäkorvan on oltava herkkä tällä taajuusalueella. Kyseessä on välikorvan ja sisäkorvan koevoluutio. Olisi tuhlausta kasvattaa sisäkorvan simpukkaan karvasoluja, jotka olisivat herkkiä taajuuksille, joita ei sisäkorvaan saavu, ja välikorvan sisäkorvaan viemä energia on turhaa, jos sisäkorva ei reagoi kyseisellä taajuudella. Voidaan siis odottaa, että välikorvan ja sisäkorvan ylärajataajuudet vastaavat yleensä toisiaan. Seuraavassa testataan tätä ajatusta. Todetaan myös, että erikoistapauksissa nämä ylärajataajuudet eroavat merkittävästi. 2 MAANISÄKKÄIDEN VÄLIKORVAN KUULOLUIDEN INERTIA Ideaalisen välikorvamallin mukaan korvakäytävää pitkin saapuva ääniaalto värisyttää tärykalvoa (efektiivinen ala A 1e ), joka vasaran ja alasimen välityksellä värisyttää jalustinta soikeassa ikkunassa (ala A 2 ). Sisäkorvan herkkyys määräytyy pääasiassa sisäkorvaan tulevan aallon intensiteetistä, ja mallin mukaan intensiteetti suurenee alasuhteessa A 1e /A 2. Malli toteuttaa myös alasuhteen ja vipusuhteen avulla karkeasti akustisen sovituksen. Tällainen ideaali-välikorva välittäisi kaikki taajuudet. Kuuloluiden inertia aikaansaa kuitenkin sen, että tietystä taajuudesta alkaen äänienergian välitys sisäkorvaan alkaa pienentyä. Maanisäkkäiden välikorvat ovat likipitäen isometriset [4]. Kun kustakin eläimestä mitataan tietty samaa laatua oleva suhde, isometrisissä rakenteissa tämä suhde on vakio. Kuvassa 1 on esitetty kaksi tällaista suhdetta [4]. Pisteet asettuvat likipitäen suoralle, jonka kulmakerroin on varsin tarkasti yksi.
2 Hemilä, Reuter, Nummela NISÄKKÄIDEN KUULON YLÄRAJATAAJUUS Kuva 1 Esimerkkejä maanisäkkäiden välikorvan isometriasta [4]. Vasemmalla vasaran ja alasimen massojen suhteet, oikealla tärykalvon alan ja kuuloluumassojen 2/3-potenssien suhteet. Lajimerkinnät viitteestä [4]. Voidaan osoittaa, että isometrisissä välikorvissa inertian aikaansaama ylärajataajuus on kääntäen verrannollinen välikorvan lineaariseen kokoon. Kun kyseessä on nimenomaan kuuloluiden inertia, ja kuuloluiden tiheyttä voidaan pitää vakiona, sopivin lineaarinen mitta välikorvan koolle on tällöin kuuloluiden massan M kuutiojuuri. Kuvasta 2 ilmenee, että maanisäkkäiden ja hylkeiden kuulon ylärajataajuus f Y on todella yleensä likipitäen verrannollinen suureeseen 1/ 3 M [2]. Tämä tukee oletusta, että välikorvan kuuloluiden inertia määrää ylärajataajuutta. Kuva 2. Kokeellisesti audiogrammeista määritetyt maanisäkkäiden ylärajataajuudet kuuloluumassojen (vasara plus alasin) kuutiojuuren käänteisluvun funktiona. Lajien symbolit viitteestä [2].
3 Hemilä, Reuter, Nummela NISÄKKÄIDEN KUULON YLÄRAJATAAJUUS Isometrian perusteella saadaan jopa hyödyllinen eläinlajien audiogrammivertailu. Välikorvalle on laadittu monimutkaisia sijaiskytkentöjä. Kun tällaisessa mallissa komplianssit ja massat skaalataan korvan lineaarisen mitan mukaan ja oletetaan, että sisäkorvan impedanssi on reaalinen ja skaalattu saadaan tulokseksi, että isometristen välikorvien audiogrammit ovat log-log-esityksessä samanmuotoiset, ja maksimiherkkyys on sama, mutta korvan pienentyessä audiogrammi siirtyy odotetusti muotonsa säilyttäen korkeampiin taajuuksiin [5]. Pienimpiä maanisäkkäitä lukuunottamatta tämä pitääkin karkeasti paikkansa [5]. Yleensä kuitenkin audiogrammien korkeiden taajuuksien päässä kuulokynnys nousee hyvin jyrkästi. Kuuloluiden inertia ei voi selittää näin jyrkkää nousua. Olemmekin esittäneet, että kynnyksen jyrkkä nousu kuulon ylärajataajuuksilla johtuisi sisäkorvan herkkyysrajoituksesta. Tämähän oli odotettavissa koevoluutioajatuksen perusteella. Kuva 3. Pienien nisäkkäiden audiogrammit leikkautuvat. Leveä audiogrammi: koira (Canis familiaris), cotton rat (Sigmodon hispidus), hiiri (Mus musculus), kalastajalepakko (Noctilio leporinus), pikkulepakko (little brown bat, Myotis lucifugus). Pienien nisäkkäiden audiogrammit eivät ole isometrian edellyttämää vakiomuotoa. Kuvan 3 mukaan näyttää siltä, että näiden eläinten audiogrammeista leikkautuu yläpäästä osa pois [5]. Sisäkorvan simpukan karvasolujen toimintamekanismilla on ilmeisesti absoluuttinen ylärajataajuus vähän 100 khz:n yläpuolella. 3 HAMMASVALAIDEN KUULOMEKANISMI Veden alla maanisäkkäiden kuulomekanismi toimii huonosti. Veden karakteristinen impedanssi on suunnilleen sama kuin pehmeiden kudosten, joten veden alla ulkokorvista ei ole hyötyä. Kuulotorvi ei ohjaa ääntä, ja akustinen sovitus on vieläpä väärin päin, onhan sisäkorvan spesifinen akustinen impedanssi pienempi kuin veden karakteristinen akustinen impedanssi [6]. Hammasvalaiden kuulomekanismista on esitetty erilaisia spekulaatioita. Mekanismin on toteutettava hammasvalaiden kuulon herkkyys, joka on jopa parempi kuin ihmisen, kun verrataan tulevan tasoaallon intensiteettiä optimitaajuuksilla. Laatimamme malli
4 Hemilä, Reuter, Nummela NISÄKKÄIDEN KUULON YLÄRAJATAAJUUS kykenee selittämään suuren herkkyyden ja kuulon korkeilla taajuuksilla. Mallissa tympaaniluun hyvin ohut ulkoseinä toimii tärykalvon tapaan ääniaaltojen vastaanottajana, ja sen värähtely välittyy kuuloluiden välityksellä soikeaan ikkunaan [7]. Mallin mukaiset vipumekanismit ja värähtelypiirien värähtelyjen vaimennetut resonanssit toteuttavat akustista sovitusta, suurentaen hiukkasnopeutta (maanisäkkäillä kuuloluiden vipumekanismit lisäävät painetta ja pienentävät hiukkasnopeutta). Kuvassa 4 on eräs esimerkki mallinnuksesta. Kuva 4. Pullokuonodelfiinin (Tursiops truncatus) kokeellisesti mitattu audiogrammi [8] (ympyrät, jyrkkä nousu katkoviivalla) ja mallin ennustama audiogrammi (viiva). Kuvassa 4 kuuloalueen ylärajalla herkkyys pienenee paljon jyrkemmin kuin mekaaninen malli ennustaa. Kuten maanisäkkäillä, oletamme nytkin, että lopullinen jyrkkä nousu johtuu sisäkorvan rajoituksesta. Ensi silmäyksellä on perin yllättävää, että esimerkiksi miekkavalaan optimiherkkyyttä vastaava taajuus on jopa hiukan korkeampi kuin hiiren, vaikka kuuloluut ovat useita kertalukuja painavammat. Tämä on kuitenkin odotettavissa, kun otetaan huomioon, että veden karakteristinen impedanssi on ilmaan verrattuna noin 3700-kertainen. Vedessä hiukkasnopeudet, kiihtyvyydet ja inertiavoimat ovat ilmaan verrattuna pieniä, ja toisaalta ääniaallon suuri paine kohdistaa suuren voiman tympanic plate-levyyn. Impedanssiero selittää täysin miekkavalaan ja hiiren samanlaiset optimitaajuudet. Olettaen isometriset valaankorvat voidaan taas testata inertian vaikutusta. Maanisäkkäisiin verrattuna hammasvalaiden kokoalue on suppea, mutta näissäkin rajoissa todetaan, että kuuloluiden massan kasvaessa audiogrammi siirtyy vasemmalle suunnilleen verrannollisen massan kuutiojuuren käänteislukuun [9]. Tämähän vastaa oletusta inertian merkityksestä ylärajataajuuteen. Pienillä hammasvalailla ylärajataajuus on lähes 150 khz, samaa luokkaa kuin lepakoilla. Tämä 150 khz-raja määräytynee sisäkorvan toimintamekanismin absoluuttisesta ylärajasta. 4 HYLKEIDEN KUULO ILMASSA JA VEDESSÄ Hylkeiden audiogrammeja on mitattu sekä ilmassa että matalassa vedessä. Koska sisäkorvan toiminta tuskin muuttuu hylkeen pään painuessa veden alle, havaitut audiogrammierot johtu-
5 Hemilä, Reuter, Nummela NISÄKKÄIDEN KUULON YLÄRAJATAAJUUS vat mekanismeista ennen sisäkorvaa, jolloin inertialla on tärkeä osuus. Hylkeet kuulevat ilmassa samoin kuin maanisäkkäät, jolloin kuuloluiden inertia voi rajoittaa ylärajataajuutta. Vedessä hylkeiden oletetaan kuulevan luukuulon avulla (bone conduction hearing). Ääniaalto värisyttää kalloa ja sen mukana sisäkorvaa, mutta joustavasti kiinnitetyt kuuloluut värähtelevät vähemmän ja eri vaiheessa, joten taas jalustin liikkuu suhteessa soikeaan ikkunaan. Luukuulossa kallon inertia voi rajoittaa ylärajataajuutta. Vedessä inertian vaikutus on paljon vähäisempi (vertaa miekkavalas ja hiiri), joten on odotettavissa kuuloalueen siirtyvän korkeampiin taajuuksiin. Kuva 5. Hyljeaudiogrammeja ilmassa (avokuviot) ja veden alla (umpikuviot) viitteestä [10]. A, Varsinaiset hylkeet: Kirjohylje (Phoca vitulina), Pohjanmerinorsu (Mirounga angustirostris). B, Korvahylkeet: Kalifornian merileijona (Zalophus californianus), Pohjanmerikarhu (Callorhinus ursinus).
6 Hemilä, Reuter, Nummela NISÄKKÄIDEN KUULON YLÄRAJATAAJUUS Kuvassa 5 on kahden varsinaisen hylkeen ja kahden korvahylkeen audiogrammit ilmassa ja vedessä. Varsinaisten hylkeiden kuuloalue on vedessä korkeammilla taajuuksilla kuin ilmassa. Inertia yksin rajoittaa varsinaisten hylkeiden kuulon ilmassa, sisäkorva toimii korkeammillakin taajuuksilla. Korvahylkeiden audiogrammien yläraja on suunnilleen sama ilmassa ja vedessä. Nyt ilmeisesti sisäkorvaa stimuloidaan vedessä korkeammillakin taajuuksilla, mutta sisäkorva ei ole kehittynyt evoluutiossa vastaanottamaan näitä signaaleja. Siis sisäkorva yksin rajoittaa korvahylkeiden kuulon vedessä. LÄHTEET 1. HENSON O W Jr, Comparative anatomy of the middle ear. In Handbook of Sensory Physiology Vol. V/1 Auditory System (eds. W. D. Keidel, W. D. Neff), pp Springer-Verlag, Berlin (1974). 2. HEMILÄ S, NUMMELA S & REUTER T, What middle ear parameters tell about impedance matching and high frequency hearing. Hearing Research 85 (1995), RUGGERO M A & TEMCHIN A N, The roles of external, middle, and inner ears in determining the bandwidth of hearing. PNAS 99 (2002), NUMMELA S, Scaling of the mammalian middle ear. Hearing Research (1995) 85, NUMMELA S, Scaling and modeling the mammalian middle ear. Comments on Theoretical Biology 4 (1997), ROSOWSKI J J, Outer and middle ears. In Comparative Hearing: Mammals (eds. R R Fay & A N Popper). Springer-Verlag, New York (1994). 7. HEMILÄ S, NUMMELA S & REUTER T, A model of the odontocete middle ear. Hearing Research 133 (1999), JOHNSON C S, Sound detection thresholds in marine mammals. In Marine Bio- Acoustics II (ed. W. N. Tavolga), pp Oxford: Pergamon Press HEMILÄ S, NUMMELA S & REUTER T, Modelling whale audiograms: effects of bone mass on high-frequency hearing. Hearing Research 151 (2001), HEMILÄ S, NUMMELA S, BERTA A & REUTER T, High-frequency hearing in phocid and otariid pinnipeds: An interpretation based on inertial and cochlear constraints. The Journal of the Acoustical Society of America 120 (2006),
Kuuloaisti. Korva ja ääni. Melu
Kuuloaisti Ääni aaltoliikkeenä Tasapainoaisti Korva ja ääni Äänen kulku Korvan sairaudet Melu Kuuloaisti Ääni syntyy värähtelyistä. Taajuus mitataan värähtelyt/sekunti ja ilmaistaan hertseinä (Hz) Ihmisen
Kuulohavainnon perusteet
Kuulohavainnon ärsyke on ääni - mitä ääni on? Kuulohavainnon perusteet - Ääni on ilmanpaineen nopeaa vaihtelua: Tai veden tms. Markku Kilpeläinen Käyttäytymistieteiden laitos, Helsingin yliopisto Värähtelevä
Aistifysiologia II (Sensory Physiology)
Aistifysiologia II (Sensory Physiology) Kuuloaisti Modaliteetti = ilman paineen vaihtelut Korvan anatomia Ulkokorva Välikorva Sisäkorva Tärykalvo Simpukka 1 Äänen siirtyminen välikorvassa Ilmanpainevaihteluiden
KAIRAKONEEN AIHEUT- TAMA MELU VAIKUTUS KALOIHIN
Vastaanottaja Rajakiiri Oy Asiakirjatyyppi Raportti Päivämäärä 7.11.2011 Työnumero 82138362 KAIRAKONEEN AIHEUT- TAMA MELU VAIKUTUS KALOIHIN KAIRAKONEEN AIHEUTTAMA MELU VAIKUTUS KALOIHIN Päivämäärä 7.11.2011
Aaltoliike ajan suhteen:
Aaltoliike Aaltoliike on etenevää värähtelyä Värähdysliikkeen jaksonaika T on yhteen värähdykseen kuluva aika Värähtelyn taajuus on sekunnissa tapahtuvien värähdysten lukumäärä Taajuuden ƒ yksikkö Hz (hertsi,
Mikrofonien toimintaperiaatteet. Tampereen musiikkiakatemia Studioäänittäminen Klas Granqvist
Mikrofonien toimintaperiaatteet Tampereen musiikkiakatemia Studioäänittäminen Klas Granqvist Mikrofonien luokittelu Sähköinen toimintaperiaate Akustinen toimintaperiaate Suuntakuvio Herkkyys Taajuusvaste
KORVAKÄYTÄVÄN AKUSTIIKAN MITTAUS JA MALLINNUS 1 JOHDANTO 2 SIMULAATTORIT JA KEINOPÄÄT
Marko TKK, Signaalinkäsittelyn ja akustiikan laitos PL 3, FI-215 TKK Marko.@tkk.fi 1 JOHDANTO Ulkokorvan akustiset ominaisuudet vaikuttavat merkittävästi ihmisen kuuloaistimukseen. Yksilölliset erot ulkokorvan
Nimi: Muiden ryhmäläisten nimet:
Nimi: Muiden ryhmäläisten nimet: PALKKIANTURI Työssä tutustutaan palkkianturin toimintaan ja havainnollistetaan sen avulla pienten ainepitoisuuksien havainnointia. Työn mittaukset on jaettu kolmeen osaan,
Elektroniikan perusteet, Radioamatööritutkintokoulutus
Elektroniikan perusteet, Radioamatööritutkintokoulutus Antti Karjalainen, PRK 14.11.2013 Komponenttien esittelytaktiikka Toiminta, (Teoria), Käyttö jännite, virta, teho, taajuus, impedanssi ja näiden yksiköt:
Äänen eteneminen ja heijastuminen
Äänen ominaisuuksia Ääni on ilmamolekyylien tihentymiä ja harventumia. Aaltoliikettä ja värähtelyä. Värähtelevä kappale synnyttää ääntä. Pistemäinen äänilähde säteilee pallomaisesti ilman esteitä. Käytännössä
ÄÄNEKKÄÄMMÄN KANTELEEN MALLINTAMINEN ELEMENTTIME- NETELMÄLLÄ
ÄÄNEKKÄÄMMÄN KANTELEEN MALLINTAMINEN ELEMENTTIME- NETELMÄLLÄ Henna Tahvanainen 1, Jyrki Pölkki 2, Henri Penttinen 1, Vesa Välimäki 1 1 Signaalinkäsittelyn ja akustiikan laitos Aalto-yliopiston sähkötekniikan
Spektrin sonifikaatio
Spektrin sonifikaatio AS-0.3200 Automaatio- ja systeemitekniikan projektityöt Väliraportti Paula Sirén Sisällysluettelo 1. Johdanto... 2 2. Tehtävän kuvaus ja työn rakenne... 2 3. Teoria... 3 3.1 Ääni
Akustiikka ja toiminta
Akustiikka ja toiminta Äänitiede on kutsumanimeltään akustiikka. Sana tulee Kreikan kielestä akoustos, joka tarkoittaa samaa kuin kuulla. Tutkiessamme värähtelyjä ja säteilyä, voimme todeta että värähtely
Luento 15: Ääniaallot, osa 2
Luento 15: Ääniaallot, osa 2 Aaltojen interferenssi Doppler Laskettuja esimerkkejä Luennon sisältö Aaltojen interferenssi Doppler Laskettuja esimerkkejä Aaltojen interferenssi Samassa pisteessä vaikuttaa
20 Kollektorivirta kun V 1 = 15V 10. 21 Transistorin virtavahvistus 10. 22 Transistorin ominaiskayrasto 10. 23 Toimintasuora ja -piste 10
Sisältö 1 Johda kytkennälle Theveninin ekvivalentti 2 2 Simuloinnin ja laskennan vertailu 4 3 V CE ja V BE simulointituloksista 4 4 DC Sweep kuva 4 5 R 2 arvon etsintä 5 6 Simuloitu V C arvo 5 7 Toimintapiste
Yleistä äänestä. Ääni aaltoliikkeenä. (lähde
Yleistä äänestä (lähde www.paroc.fi) Ääni aaltoliikkeenä Ilmaääntä voidaan ajatella paineen vaihteluna ilmassa. Sillä on aallonpituus, taajuus ja voimakkuus. Ääni etenee lähteestä kohteeseen väliainetta
16 Ääni ja kuuleminen
16 Ääni ja kuuleminen Ääni on väliaineessa etenevää pitkittäistä aaltoliikettä. Ihmisen kuuloalue 20 Hz 20 000 Hz. (Infraääni kuuloalue ultraääni) 1 2 Ääniaallon esittämistapoja: A = poikkeama-amplitudi
3 Ääni ja kuulo. Ihmiskorva aistii paineen vaihteluita, joten yleensä äänestä puhuttaessa määritellään ääniaalto paineen vaihteluiden kautta.
3 Ääni ja kuulo 1 Mekaanisista aalloista ääni on ihmisen kannalta tärkein. Ääni on pitkittäistä aaltoliikettä, eli ilman (tai muun väliaineen) hiukkaset värähtelevät suuntaan joka on sama kuin aallon etenemissuunta.
ö ø Ilmaääneneristävyys [db] 60 6 mm Taajuus [Hz]
Aalto-yliopisto. ELEC-E564. Meluntorjunta L. Laskuharjoituksien -5 ratkaisut... a) Johda normaalitulokulman massalaki lg(m )-4 yhtälöstä (.6.). ½p. b) Laske ilmaääneneristävyys massalain avulla 6 ja 3
PHYS-C0240 Materiaalifysiikka (5op), kevät 2016
PHYS-C0240 Materiaalifysiikka (5op), kevät 2016 Prof. Martti Puska Emppu Salonen Tomi Ketolainen Ville Vierimaa Luento 7: Hilavärähtelyt tiistai 12.4.2016 Aiheet tänään Hilavärähtelyt: johdanto Harmoninen
Infrapunaspektroskopia
ultravioletti näkyvä valo Infrapunaspektroskopia IHMISEN JA ELINYMPÄ- RISTÖN KEMIAA, KE2 Kertausta sähkömagneettisesta säteilystä Sekä IR-spektroskopia että NMR-spektroskopia käyttävät sähkömagneettista
2.1 Ääni aaltoliikkeenä
2. Ääni Äänen tutkimusta kutsutaan akustiikaksi. Akustiikassa tutkitaan äänen tuottamista, äänen ominaisuuksia, soittimia, musiikkia, puhetta, äänen etenemistä ja kuulemisen fysiologiaa. Ääni kuljettaa
Akustointiratkaisujen vaikutus taajuusvasteeseen
AALTO-YLIOPISTO Insinööritieteidenkorkeakoulu Kon-41.4005Kokeellisetmenetelmät Akustointiratkaisujen vaikutus taajuusvasteeseen Koesuunnitelma Ryhmätyö TimoHämäläinen MikkoKalliomäki VilleKallis AriKoskinen
RATKAISUT: 22. Vaihtovirtapiiri ja resonanssi
Physica 9. painos (0) RATKAST. Vaihtovirtapiiri ja resonanssi RATKAST:. Vaihtovirtapiiri ja resonanssi. a) Vaihtovirran tehollinen arvo on yhtä suuri kuin sellaisen tasavirran arvo, joka tuottaa vastuksessa
33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ
TYÖOHJE 14.7.2010 JMK, TSU 33 SOLENOIDIN JA TOROIDIN MAGNEETTIKENTTÄ Laitteisto: Kuva 1. Kytkentä solenoidin ja toroidin magneettikenttien mittausta varten. Käytä samaa digitaalista jännitemittaria molempien
4.1 Kaksi pistettä määrää suoran
4.1 Kaksi pistettä määrää suoran Kerrataan aluksi kurssin MAA1 tietoja. Geometrisesti on selvää, että tason suora on täysin määrätty, kun tunnetaan sen kaksi pistettä. Joskus voi tulla vastaan tilanne,
1 Johdanto. 1.2 Psykofysiikka, psykoakustiikka. 1.1 Kuulon toiminta. Sisältö:
Kuulo Lähteet: Karjalainen. (1999). Kommunikaatioakustiikka. Rossing. (1990). The science of sound. Luvut 5 7. Moore. (1997). An introduction to the psychology of hearing. Springer Handbook of Acoustics,
Luento 14: Periodinen liike, osa 2. Vaimennettu värähtely Pakkovärähtely Resonanssi F t F r
Luento 14: Periodinen liike, osa 2 Vaimennettu värähtely Pakkovärähtely Resonanssi θ F µ F t F r m g 1 / 20 Luennon sisältö Vaimennettu värähtely Pakkovärähtely Resonanssi 2 / 20 Vaimennettu värähtely
Mitä tulisi huomioida ääntä vaimentavia kalusteita valittaessa?
Mitä tulisi huomioida ääntä vaimentavia kalusteita valittaessa? Kun seinät katoavat ja toimistotila avautuu, syntyy sellaisten työpisteiden tarve, joita voi kutsua tilaksi tilassa. Siirrettävillä väliseinillä
Käyttötoimikunta Sähköjärjestelmän matalan inertian hallinta
Käyttötoimikunta Sähköjärjestelmän matalan inertian hallinta Miksi voimajärjestelmän inertialla on merkitystä? taajuus häiriö, esim. tuotantolaitoksen irtoaminen sähköverkosta tavanomainen inertia pieni
MT , Sähkökemialliset tutkimusmenetelmät
MT-., Sähkökemialliset tutkimusmenetelmät Impedanssispektroskopia Sähkökemiallinen impedanssipektroskopia Electrochemical Impedance Spectroscopy, EIS Mitataan pintaa kuvaavaa sähköistä piiriä eri taajuuksilla
Luento 11: Periodinen liike
Luento 11: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r Konseptitesti 1 Tehtävänanto Kuvassa on jouseen kytketyn massan sijainti ajan funktiona. Kuvaile
RYHMÄKERROIN ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN
ÄÄNILÄHDERYHMÄN SUUNTAAVUUDEN ARVIOINNISSA Seppo Uosukainen, Jukka Tanttari, Heikki Isomoisio, Esa Nousiainen, Ville Veijanen, Virpi Hankaniemi VTT PL, 44 VTT etunimi.sukunimi@vtt.fi Wärtsilä Finland Oy
SEISOVA AALTOLIIKE 1. TEORIAA
1 SEISOVA AALTOLIIKE MOTIVOINTI Työssä tutkitaan poikittaista ja pitkittäistä aaltoliikettä pitkässä langassa ja jousessa. Tarkastellaan seisovaa aaltoliikettä. Määritetään aaltoliikkeen etenemisnopeus
Muuntajan toiminnasta löytyy tietoja tämän työohjeen teoriaselostuksen lisäksi esimerkiksi viitteistä [1] - [4].
FYS 102 / K6. MUUNTAJA 1. Johdanto Muuntajassa on kaksi eristetystä sähköjohdosta kierrettyä kelaa yhdistetty rautasydämellä ensiöpiiriksi ja toisiopiiriksi. Muuntajan toiminta perustuu sähkömagneettiseen
Organization of (Simultaneous) Spectral Components
Organization of (Simultaneous) Spectral Components ihmiskuulo yrittää ryhmitellä ja yhdistää samasta fyysisestä lähteestä tulevat akustiset komponentit yhdistelyä tapahtuu sekä eri- että samanaikaisille
Luento 13: Periodinen liike
Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä Laskettuja esimerkkejä ~F t m~g ~F r ELEC-A3110 Mekaniikka (5 op) Sami Kujala Syksy 2016 Mikro- ja nanotekniikan laitos Ajankohtaista
RF-tekniikan perusteet BL50A0301. 5. Luento 5.10.2015 Antennit Radioaaltojen eteneminen
RF-tekniikan perusteet BL50A0301 5. Luento 5.10.2015 Antennit Radioaaltojen eteneminen Antennit Antennit Antenni muuttaa siirtojohdolla kulkevan aallon vapaassa tilassa eteneväksi aalloksi ja päinvastoin
8 "Puheenhavaitsemiselimistö"
Puheen tuottaminen, havaitseminen ja akustiikka / Reijo Aulanko / 2016 2017 27 8 "Puheenhavaitsemiselimistö" Korvan rakenteen perusasiat, ks. esim. Aulanko, R. (2005). Puheen havaitsemisen peruskäsitteitä.
3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1. Tsunamin synty. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.
Akustiikan perussuureita, desibelit. 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 1 Tsunamin synty 3.1.2013 LUT CS20A0650 Meluntorjunta juhani.kuronen@lut.fi 2 1 Tasoaallon synty 3.1.2013
1. Lineaarinen optimointi
0 1. Lineaarinen optimointi 1. Lineaarinen optimointi 1.1 Johdatteleva esimerkki Esimerkki 1.1.1 Giapetto s Woodcarving inc. valmistaa kahdenlaisia puuleluja: sotilaita ja junia. Sotilaan myyntihinta on
Wien R-J /home/heikki/cele2008_2010/musta_kappale_approksimaatio Wed Mar 13 15:33:
1.2 T=12000 K 10 2 T=12000 K 1.0 Wien R-J 10 0 Wien R-J B λ (10 15 W/m 3 /sterad) 0.8 0.6 0.4 B λ (10 15 W/m 3 /sterad) 10-2 10-4 10-6 10-8 0.2 10-10 0.0 0 200 400 600 800 1000 nm 10-12 10 0 10 1 10 2
YLEINEN AALTOLIIKEOPPI
YLEINEN AALTOLIIKEOPPI KEVÄT 2017 1 Saana-Maija Huttula (saana.huttula@oulu.fi) Maanantai Tiistai Keskiviikko Torstai Perjantai Vk 8 Luento 1 Mekaaniset aallot 1 Luento 2 Mekaaniset aallot 2 Ääni ja kuuleminen
FYS03: Aaltoliike. kurssin muistiinpanot. Rami Nuotio
FYS03: Aaltoliike kurssin muistiinpanot Rami Nuotio päivitetty 24.1.2010 Sisältö 1. Mekaaninen aaltoliike 2 1.1. Harmoninen voima 2 1.2. Harmoninen värähdysliike 2 1.3. Mekaaninen aalto 3 1.4. Mekaanisen
Kuulon fysiologia. Välikorvan osat. Välikorva vahvistaa signaalia. Välikorvan vaimennusheijaste. Paineaallon liike ilmassa => ääni
Paineaallon liike ilmassa => ääni Kuulon fysiologia Antti Pertovaara Ihminen voi aistia ääniä taajuusalueella 20 20 000 Hz, miljoonakertaisella intensiteettialueella ja paikantaa äänen yhden asteen tarkkuudella
Näin hoidat Tinnitustasi
Näin hoidat Tinnitustasi Opas tinnituksen ymmärtämiseen ja hoitoon Sisältö Kohti parempaa terveyttä! 4 Mikä korvissani soi? 5 Mistä tinnitus johtuu? 6 Tinnitus ja aivot 7 Miten tinnitus liittyy kuulonalenemaan?
Yleistä. Digitaalisen äänenkäsittelyn perusteet. Tentit. Kurssin hyväksytty suoritus = Harjoitustyö 2(2) Harjoitustyö 1(2)
Yleistä Digitaalisen äänenkäsittelyn perusteet Jouni Smed jouni.smed@utu.fi syksy 2006 laajuus: 5 op. (3 ov.) esitiedot: Java-ohjelmoinnin perusteet luennot: keskiviikkoisin 10 12 12 salissa β perjantaisin
ERITTÄIN JOUSTAVAA MUKAVUUTTA AKUSTOINTIIN
ERITTÄIN JOUSTAVAA MUKAVUUTTA AKUSTOINTIIN Suunniteltu erityisesti vähentämään hulevesi- ja viemäriputkien melua Loistava suorituskyky jo ohuella akustisella kerroksella Helppo levittää ja ylläpitää 107
Työn tavoitteita. 1 Teoriaa
FYSP103 / K3 BRAGGIN DIFFRAKTIO Työn tavoitteita havainnollistaa röntgendiffraktion periaatetta konkreettisen laitteiston avulla ja kerrata luennoilla läpikäytyä teoriatietoa Röntgendiffraktio on tärkeä
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-1200 Signaalinkäsittelyn menetelmät, Tentti 24.4.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
Mustan kappaleen säteily
Mustan kappaleen säteily Musta kappale on ideaalisen säteilijän malli, joka absorboi (imee itseensä) kaiken siihen osuvan säteilyn. Se ei lainkaan heijasta eikä sirota siihen osuvaa säteilyä, vaan emittoi
ÄÄNTÄ VAHVISTAVAT OLOSUHDETEKIJÄT. Erkki Björk. Kuopion yliopisto PL 1627, 70211 Kuopion erkki.bjork@uku.fi 1 JOHDANTO
ÄÄNTÄ VAHVISTAVAT OLOSUHDETEKIJÄT Erkki Björk Kuopion yliopisto PL 1627, 7211 Kuopion erkki.bjork@uku.fi 1 JOHDANTO Melun vaimeneminen ulkoympäristössä riippuu sää- ja ympäristöolosuhteista. Tärkein ääntä
1. Erään piirin impedanssimittauksissa saatiin seuraavat tulokset:
521384A RADIOTEKNIIKAN PERUSTEET Harjoitus 4 1. Erään piirin impedanssimittauksissa saatiin seuraavat tulokset: f [MHz] [Ω] 870 120-j100 875 100-j80 880 80-j55 885 70-j30 890 70-j15 895 65+j10 900 70+j30
Kommunikaatioakustiikan perusteet. Ville Pulkki
Kommunikaatioakustiikan perusteet Ville Pulkki Mitä on akustiikka? Akustiikka 1) ääntä tutkiva tiede ja sen tekniset sovellukset 2) suljetun tilan (huoneen) kuuluvuus, kaiuntasuhteet Ääni 1) kuulohavainto
Elektroniikka, kierros 3
Elektroniikka, kierros 3 1. a) Johda kuvan 1 esittämän takaisinkytketyn systeemin suljetun silmukan vahvistuksen f lauseke. b) Osoita, että kun silmukkavahvistus β 1, niin suljetun silmukan vahvistus f
THE audio feature: MFCC. Mel Frequency Cepstral Coefficients
THE audio feature: MFCC Mel Frequency Cepstral Coefficients Ihmiskuulo MFCC- kertoimien tarkoituksena on mallintaa ihmiskorvan toimintaa yleisellä tasolla. Näin on todettu myös tapahtuvan, sillä MFCC:t
SIIRTOMATRIISIN JA ÄÄNENERISTÄVYYDEN MITTAUS 1 JOHDANTO. Heikki Isomoisio 1, Jukka Tanttari 1, Esa Nousiainen 2, Ville Veijanen 2
Heikki Isomoisio 1, Jukka Tanttari 1, Esa Nousiainen 2, Ville Veijanen 2 1 Valtion teknillinen tutkimuskeskus PL 13, 3311 Tampere etunimi.sukunimi @ vtt.fi 2 Wärtsilä Finland Oy PL 252, 6511 Vaasa etunimi.sukunimi
KOHINA LÄMPÖKOHINA VIRTAKOHINA. N = Noise ( Kohina )
KOHINA H. Honkanen N = Noise ( Kohina ) LÄMÖKOHINA Johtimessa tai vastuksessa olevien vapaiden elektronien määrä ei ole vakio, vaan se vaihtelee satunnaisesti. Nämä vaihtelut aikaansaavat jännitteen johtimeen
MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö
MS-A010{3,4,5} (ELEC*, ENG*) Differentiaali- ja integraalilaskenta 1 Luento 11: Lineaarinen differentiaaliyhtälö Pekka Alestalo, Jarmo Malinen Aalto-yliopisto, Matematiikan ja systeemianalyysin laitos
6. Äänitasomittauksia Fysiikka IIZF2020
6. Äänitasomittauksia Fysiikka IIZF2020 Juha Jokinen (Selostuksesta vastaava) Janne Kivimäki Antti Lahti Mittauspäivä: 10.2.2009 Laboratoriotyön selostus 21.2.2009 Audio measurements. In this physics assignment
Molaariset ominaislämpökapasiteetit
Molaariset ominaislämpökapasiteetit Yleensä, kun systeemiin tuodaan lämpöä, sen lämpötila nousee. (Ei kuitenkaan aina, kannattaa muistaa, että työllä voi olla osuutta asiaan.) Lämmön ja lämpötilan muutoksen
Lämmityksen lämpökerroin: Jäähdytin ja lämmitin ovat itse asiassa sama laite, mutta niiden hyötytuote on eri, jäähdytyksessä QL ja lämmityksessä QH
Muita lämpökoneita Nämäkin vaativat työtä toimiakseen sillä termodynamiikan toinen pääsääntö Lämpökoneita ovat lämpövoimakoneiden lisäksi laitteet, jotka tekevät on Clausiuksen mukaan: Mikään laite ei
Kommunikaatioakustiikan perusteet. Ville Pulkki
Kommunikaatioakustiikan perusteet Ville Pulkki Mitä on akustiikka? Akustiikka 1) ääntä tutkiva tiede ja sen tekniset sovellukset 2) suljetun tilan (huoneen) kuuluvuus, kaiuntasuhteet Ääni 1) kuulohavainto
Termodynamiikka. Fysiikka III 2007. Ilkka Tittonen & Jukka Tulkki
Termodynamiikka Fysiikka III 2007 Ilkka Tittonen & Jukka Tulkki Tilanyhtälö paine vakio tilavuus vakio Ideaalikaasun N p= kt pinta V Yleinen aineen p= f V T pinta (, ) Isotermit ja isobaarit Vakiolämpötilakäyrät
ÄÄNESAUDIOMETRIA ILMA JA LUUJOHTOKYNNYSTEN MÄÄRITTÄMINEN
ÄÄNESAUDIOMETRIA ILMA JA LUUJOHTOKYNNYSTEN MÄÄRITTÄMINEN Suomen audiologian yhdistyksen työryhmä: Lars Kronlund Lauri Viitanen Tarja Wäre Kerttu Huttunen Nämä ohjeet ovat päivitetty versio Valtakunnallisten
Erityinen suhteellisuusteoria (Harris luku 2)
Erityinen suhteellisuusteoria (Harris luku 2) Yliopistonlehtori, TkT Sami Kujala Mikro- ja nanotekniikan laitos Kevät 2016 Ajan ja pituuden suhteellisuus Relativistinen työ ja kokonaisenergia SMG-aaltojen
Harjoitustehtävät 6: mallivastaukset
Harjoitustehtävät 6: mallivastaukset Niku Määttänen & Timo Autio Makrotaloustiede 31C00200, talvi 2018 1. Maat X ja Y ovat muuten identtisiä joustavan valuuttakurssin avotalouksia, mutta maan X keskuspankki
3. AUDIOTEKNIIKAN PERUSTEITA
3. AUDIOTEKNIIKAN PERUSTEITA Audiotekniikassa esiintyy suuri määrä käsitteitä, joista monet ovat tuttuja sähkötekniikan ja fysiikan alueilta. Näiden käsitteiden soveltaminen äänitekniikkaan on varsin loogista,
Luento 13: Periodinen liike. Johdanto Harmoninen värähtely Esimerkkejä F t F r
Luento 13: Periodinen liike Johdanto Harmoninen värähtely Esimerkkejä θ F t m g F r 1 / 27 Luennon sisältö Johdanto Harmoninen värähtely Esimerkkejä 2 / 27 Johdanto Tarkastellaan jaksollista liikettä (periodic
Varauspumppu-PLL. Taulukko 1: ulostulot sisääntulojen funktiona
Varauspumppu-PLL Vaihevertailija vertaa kelloreunoja aikatasossa. Jos sisääntulo A:n taajuus on korkeampi tai vaihe edellä verrattuna sisääntulo B:hen, ulostulo A on ylhäällä ja ulostulo B alhaalla ja
Muita lämpökoneita. matalammasta lämpötilasta korkeampaan. Jäähdytyksen tehokerroin: Lämmityksen lämpökerroin:
Muita lämpökoneita Nämäkin vaativat ovat työtälämpövoimakoneiden toimiakseen sillä termodynamiikan pääsääntö Lämpökoneita lisäksi laitteet,toinen jotka tekevät on Clausiuksen mukaan: laiteilmalämpöpumppu
BM30A0240, Fysiikka L osa 4
BM30A0240, Fysiikka L osa 4 Luennot: Heikki Pitkänen 1 Oppikirja: Young & Freedman: University Physics Luku 14 - Periodic motion Luku 15 - Mechanical waves Luku 16 - Sound and hearing Muuta - Diffraktio,
SGN-1200 Signaalinkäsittelyn menetelmät, Tentti
SG-1200 Signaalinkäsittelyn menetelmät, Tentti 21.3.2006 Kirjoita nimesi ja opiskelijanumerosi jokaiseen paperiin. Vastauspaperit tullaan irrottamaan toisistaan. Jos tila ei riitä, jatka kääntöpuolelle
HARJOITUSTYÖ: Mikropunnitus kvartsikideanturilla
Tämä työohje on kirjoitettu ESR-projektissa Mikroanturitekniikan osaamisen kehittäminen Itä-Suomen lääninhallitus, 2007, 86268 HARJOITUSTYÖ: Mikropunnitus kvartsikideanturilla Tarvittavat laitteet: 2 kpl
Luento 8. Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli. Sähkönjohtavuus Druden malli
Luento 8 Lämpökapasiteettimallit Dulong-Petit -laki Einsteinin hilalämpömalli Debyen ääniaaltomalli Sähkönjohtavuus Druden malli Klassiset C V -mallit Termodynamiikka kun Ei ennustetta arvosta! Klassinen
SGN-1200 Signaalinkäsittelyn menetelmät Välikoe
SGN-00 Signaalinkäsittelyn menetelmät Välikoe 9.3.009 Sivuilla - on. Älä vastaa siihen, jos et ollut ensimmäisessä välikokeessa. Tentin kysymykset ovat sivuilla 3-4. Vastaa vain jompaan kumpaan kokeeseen,
1. Perusteita. 1.1. Äänen fysiikkaa. Ääniaalto. Aallonpituus ja amplitudi. Taajuus (frequency) Äänen nopeus
1. Perusteita 1. Äänen fysiikkaa 2. Psykoakustiikka 3. Äänen syntetisointi 4. Samplaus ja kvantisointi 5. Tiedostoformaatit 1.1. Äänen fysiikkaa ääni = väliaineessa etenevä mekaaninen värähtely (aaltoliike),
Perusopintojen Laboratoriotöiden Työselostus 1
Perusopintojen Laboratoriotöiden Työselostus 1 Kalle Hyvönen Työ tehty 1. joulukuuta 008, Palautettu 30. tammikuuta 009 1 Assistentti: Mika Torkkeli Tiivistelmä Laboratoriossa tehdyssä ensimmäisessä kokeessa
Kuuloaistin ominaisuuksia
www.physicst day.org January 2014 A publication of the American Institute of Physics volume 67, number 1 Kuuloaistin ominaisuuksia Professori Tapio Lokki Aalto-yliopiston perustieteiden korkeakoulu Tietotekniikan
Puheen akustiikan perusteita Mitä puhe on? 2.luento. Äänet, resonanssi ja spektrit. Äänen tuotto ja eteneminen. Puhe äänenä
Puheen akustiikan perusteita Mitä puhe on? 2.luento Martti Vainio Äänet, resonanssi ja spektrit Fonetiikan laitos, Helsingin yliopisto Puheen akustiikan perusteita p.1/37 S-114.770 Kieli kommunikaatiossa...
SGN-4200 Digitaalinen audio
SGN-4200 Digitaalinen audio Luennot, kevät 2013, periodi 4 Anssi Klapuri Tampereen teknillinen yliopisto Kurssin tavoite Johdanto 2! Tarjota tiedot audiosignaalinkäsittelyn perusteista perusoperaatiot,
PUTKIJÄRJESTELMÄSSÄ ETENEVÄN PAINEVAIHTELUN MALLINNUS HYBRIDIMENETELMÄLLÄ 1 JOHDANTO 2 HYBRIDIMENETELMÄN MATEMAATTINEN ESITYS
PUTKIJÄRJESTELMÄSSÄ ETENEVÄN PAINEVAIHTELUN MALLINNUS HYBRIDIMENETELMÄLLÄ Erkki Numerola Oy PL 126, 40101 Jyväskylä erkki.heikkola@numerola.fi 1 JOHDANTO Työssä tarkastellaan putkijärjestelmässä etenevän
Braggin ehdon mukaan hilatasojen etäisyys (111)-tasoille on
763343A KIINTEÄN AINEEN FYSIIKKA Ratkaisut 2 Kevät 2018 1. Tehtävä: Kuparin kiderakenne on pkk. Käyttäen säteilyä, jonka aallonpituus on 0.1537 nm, havaittiin kuparin (111-heijastus sirontakulman θ arvolla
VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA. Lauri Karppi j82095. SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI.
VAASAN YLIOPISTO TEKNILLINEN TIEDEKUNTA SÄHKÖTEKNIIKKA Oskari Uitto i78966 Lauri Karppi j82095 SATE.2010 Dynaaminen kenttäteoria DIPOLIRYHMÄANTENNI Sivumäärä: 14 Jätetty tarkastettavaksi: 25.02.2008 Työn
AKUSTISIA SIMULAATIOITA PÄÄ- JA TORSOMALLILLA. Tomi Huttunen, Timo Avikainen, John Cozens. Kuava Oy Microkatu 1, 70210 Kuopio tomi.huttunen@uku.
AKUSTISIA SIMULAATIOITA PÄÄ- JA TORSOMALLILLA Tomi Huttunen, Timo Avikainen, John Cozens Kuava Oy Microkatu 1, 70210 Kuopio tomi.huttunen@uku.fi Nokia Corporation Itämerenkatu 11-13, 00180 Helsinki timo.avikainen@nokia.com
ÄÄNENVAIMENTIMIEN MALLINNUSPOHJAINEN MONITAVOITTEINEN MUODONOPTIMOINTI 1 JOHDANTO. Tuomas Airaksinen 1, Erkki Heikkola 2
ÄÄNENVAIMENTIMIEN MALLINNUSPOHJAINEN MONITAVOITTEINEN MUODONOPTIMOINTI Tuomas Airaksinen 1, Erkki Heikkola 2 1 Jyväskylän yliopisto PL 35 (Agora), 40014 Jyväskylän yliopisto tuomas.a.airaksinen@jyu.fi
V astaano ttav aa antennia m allinnetaan k u v an 2-1 8 m u k aisella piirillä, jo ssa o n jänniteläh d e V sarjassa
Antennit osana viestintäjärjestelm ää Antennien pääk äy ttö tark o itu s o n to im inta v iestintäjärjestelm issä. V astaano ttav aa antennia m allinnetaan k u v an 2-1 8 m u k aisella piirillä, jo ssa
S-108-2110 OPTIIKKA 1/10 Laboratoriotyö: Polarisaatio POLARISAATIO. Laboratoriotyö
S-108-2110 OPTIIKKA 1/10 POLARISAATIO Laboratoriotyö S-108-2110 OPTIIKKA 2/10 SISÄLLYSLUETTELO 1 Polarisaatio...3 2 Työn suoritus...6 2.1 Työvälineet...6 2.2 Mittaukset...6 2.2.1 Malus:in laki...6 2.2.2
Suodattimet. Suodatintyypit: Bessel Chebyshev Elliptinen Butterworth. Suodattimet samalla asteluvulla (amplitudivaste)
Suodattimet Suodatintyypit: Bessel Chebyshev Elliptinen Butterworth Suodattimet samalla asteluvulla (amplitudivaste) Kuvasta nähdään että elliptinen suodatin on terävin kaikista suodattimista, mutta sisältää
5 Akustiikan peruskäsitteitä
Puheen tuottaminen, havaitseminen ja akustiikka / Reijo Aulanko / 2016 2017 14 5 Akustiikan peruskäsitteitä ääni = ilmapartikkelien edestakaista liikettä, "tihentymien ja harventumien" vuorottelua, ilmanpaineen
FYS206/5 Vaihtovirtakomponentit
FYS206/5 Vaihtovirtakomponentit Tässä työssä pyritään syventämään vaihtovirtakomponentteihin liittyviä käsitteitä. Tunnetusti esimerkiksi käsitteet impedanssi, reaktanssi ja vaihesiirto ovat aina hyvin
KATSAUS NYKYAIKAISTEN KUULOKOJEIDEN TEKNIIKKAAN JA TOIMINTAPERIAATTEISIIN. Ville Sivonen
KATSAUS NYKYAIKAISTEN KUULOKOJEIDEN TEKNIIKKAAN JA TOIMINTAPERIAATTEISIIN Ville Sivonen Akustisten, ääntä vahvistavien kuulokojeiden keskeisiä osia ovat yksi tai useampi mikrofoni, digitaaliset signaalinkäsittelypiirit
Mekaniikan jatkokurssi Fys102
Mekaniikan jatkokurssi Fys102 Syksy 2009 Jukka Maalampi LUENTO 12 Aallot kahdessa ja kolmessa ulottuvuudessa Toistaiseksi on tarkasteltu aaltoja, jotka etenevät yhteen suuntaan. Yleisempiä tapauksia ovat
SAVONLINNASALI, KOY WANHA KASINO, KONSERTTISALIN AKUSTIIKKA. Yleistä. Konserttisali
INSINÖÖRITOIMISTO HEIKKI HELIMÄKI OY Akustiikan asiantuntija puh. 09-58933860, fax 09-58933861 1 SAVONLINNASALI, KOY WANHA KASINO, KONSERTTISALIN AKUSTIIKKA Yleistä Konserttisali Helsinki 19.5.2003 Konserttisalin
3 = Lisäksi z(4, 9) = = 21, joten kysytty lineaarinen approksimaatio on. L(x,y) =
BM20A5810 Differentiaalilaskenta ja sovellukset Harjoitus 6, Syksy 2016 1. (a) Olkoon z = z(x,y) = yx 1/2 + y 1/2. Muodosta z:lle lineaarinen approksimaatio L(x,y) siten että approksimaation ja z:n arvot
Puheenkäsittelyn menetelmät
8003051 Puheenkäsittelyn menetelmät Luento 16.9.2004 Akustista fonetiikkaa Ääniaalto Ääniaallolla tarkoitetaan häiriön etenemistä väliaineessa ilman että väliaineen hiukkaset (yleensä ilman kaasumolekyylit)
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ HYVÄN VASTAUKSEN PIIRTEITÄ
MATEMATIIKAN KOE, LYHYT OPPIMÄÄRÄ 24.9.2019 HYVÄN VASTAUKSEN PIIRTEITÄ Alustavat hyvän vastauksen piirteet on suuntaa-antava kuvaus kokeen tehtäviin odotetuista vastauksista ja tarkoitettu ensisijaisesti
IMPEDANSSIMITTAUKSIA. 1 Työn tavoitteet
1 IMPEDANSSIMITTAUKSIA 1 Työn tavoitteet Tässä työssä tutustut vaihtojännitteiden ja virtojen sekä vaihtovirtapiirissä olevien komponenttien impedanssien suuruuksien eli vaihtovirtavastusten mittaamiseen.
Radiokurssi. Modulaatiot, arkkitehtuurit, modulaattorit, ilmaisimet ja muut
Radiokurssi Modulaatiot, arkkitehtuurit, modulaattorit, ilmaisimet ja muut Modulaatiot CW/OOK Continous Wave AM Amplitude Modulation FM Frequency Modulation SSB Single Side Band PM Phase Modulation ASK
OPERAATIOVAHVISTIN. Oulun seudun ammattikorkeakoulu Tekniikan yksikkö. Elektroniikan laboratoriotyö. Työryhmä Selostuksen kirjoitti 11.11.
Oulun seudun ammattikorkeakoulu Tekniikan yksikkö Elektroniikan laboratoriotyö OPERAATIOVAHVISTIN Työryhmä Selostuksen kirjoitti 11.11.008 Kivelä Ari Tauriainen Tommi Tauriainen Tommi 1 TEHTÄVÄ Tutustuimme