T Johdatus tietoliikenteeseen ja multimediatekniikkaan Tietokonegrafiikka

Koko: px
Aloita esitys sivulta:

Download "T-110.1100 Johdatus tietoliikenteeseen ja multimediatekniikkaan Tietokonegrafiikka"

Transkriptio

1 Johdatus tietoliikenteeseen ja multimediatekniikkaan Tietokonegrafiikka Timo Tossavainen Mediatekniikan laitos, Aalto-yliopiston perustieteiden korkeakoulu

2 Sisältö Historiaa Rasterigrafiikkaa Vektorigrafiikkaa 3D-grafiikkaa 2/35

3 Historiaa 1940 Tietokoneet (Z3) 1950 CRT näyttö tietokoneessa (Whirlwind, SAGE) 1960 Vuorovaikutteinen grafiikka (Sketchpad) 1970 Grafiikan perusalgoritmit (mm. Utahin yliopisto) 1980 Fotorealistinen globaali valaistus 1990 Vuorovaikutteinen 3D-grafiikka yleistyy, OpenGL 2000 Ohjelmoitava kiihdytetty grafiikan liukuhihna 3/35

4 Rasterigrafiikkaa Digitaaliset kuvat koostuvat pikseleistä hilalla, rasterilla Pikselillä voi olla väri Tyypillinen esitys muistissa Pikselit peräkkäin Pikseleiden värikomponentit peräkkäin 4/35

5 Rasteriarkkitehtuuri Näytönohj. muisti Kuvapuskuri Videokontrolleri Monitori CPU Näytönohjain Muisti Väylä 5/35

6 Rasteriesityksen ongelmia Rakenteeton eli kasa pikseleitä Tilantarve Heikko muokattavuus (zoom, kierto) Riippuu näytön tarkkuudesta 6/35

7 Vektorigrafiikka Kuvataan piirrettävä kuva rakenteisesti äärettömän tarkkojen matemaattisten primitiivien avulla Renderoidaan eli muodostetaan kuva rasterille Resoluutioriippumaton: tarkkuus voi vaihdella Kuvan osat erikseen muokattavissa Tarvitaan sopivat primitiivit ja operaatiot Muunnokset: siirto, skaalaus, kierto Leikkaukset, etäisyydet Rasterointi eli piirtäminen 7/35

8 Vektorigrafiikan muunnokset Siirtojen, kiertojen ja skaalausten yhdisteet esitettävissä matriiseilla, kun koordinaattivektoreiden loppuun lisätään 1. Esim. Siirto (x, y) (x + x, y + y) matriisimuodossa 1 0 x x x + x 0 1 y y = y + y Kuvausten yhdiste = matriisikertolasku. Käänteismatriisi = käänteiskuvauksen matriisi. Projektiiviset muunnokset esitettävissä homogeenisilla koordinaateilla operoivilla matriiseilla samaistamalla (wx, wy, w), w 0, pisteen (x, y) koordinaateiksi. 8/35

9 Vektorigrafiikan primitiivit Säilyttävä muunnoksissa. Projektiivisissa esim. suora suora kolmio kolmio hypertaso hypertaso kartioleikkaus kartioleikkaus Tehokas kuvata, leikata, piirtää Suora, puolisuora, jana, hypertaso, pallo, ellipsoidi, kolmio, monikulmio, kartioleikkaus Parametrinen esitys. Esim. Jana PQ (1 t)p + tq, 0 t 1 Implisiittinen esitys. Esim. Ympyrä ja suora x 2 + y 2 r 2 = 0, ax + by + c = 0. 9/35

10 Geometrinen laskenta Piirtoalgoritmit rakentuvat primitiivien välisten geometristen laskelmien päälle Etäisyydet ja leikkaukset C P Q X 1 C X 2 r P u A B 10/35

11 Rasterointi Piirretään approksimaatio geometrisesta primitiivistä. P C r Q 11/35

12 Mallintaminen Mallinnetaan piirros aiemmin käsitellyillä matemaattisilla primitiiveillä V 1 V 8 V 2 V 3 V 6 V 7 V 4 V 5 Muunnokset: Voidaan tuottaa kuva piirroksesta eri asennoissa, eri mittakaavoissa ja eri resoluutioilla. 12/35

13 Katselu ja renderointi Piirrosta katsellaan ikkunan (window) läpi Ikkunasta näkyvä osuus piirretään näyttöalueeseen (viewport) esim. primitiivi kerrallaan 13/35

14 Leikkaaminen Näyttöalueen ulkopuolisia osia ei piirretä Hidasta testata pikseli kerrallaan (saksiminen) Yleensä primitiivit leikataan näyttöalueeseen ennen piirtoa 14/35

15 Antialiasointi Primitiivien määrittelemä ideaalikuva on äärettömän tarkka Pikselin värin poimiminen pistenäytteestä aiheuttaa laskostumista (aliasing) Optimaalinen: Alipäästösuodatetaan ideaalikuvaa Käytännössä: Piirretään korkeammalla resoluutiolla ja pienennetään tai käsitellään osittainen pikselin peitto heuristisesti 15/35

16 3D-vektorigrafiikka Sama periaate kuin 2D-vektorigrafiikassa Primitiivit ja muunnokset kolmiulotteisia Tarvitaan projektio tasolle Perspektiiviprojektio (realistinen) Yhdensuuntaisprojektio (esim. tekniset piirrokset) Näkyvyysongelma Sävytys 16/35

17 Perspektiiviprojektio P katsoja projektion keskus n u projektio ikkuna projektori katselutaso projektiotaso 17/35

18 Näkyvyysongelma / Piilopintojen poisto Myöhemmin piirretyt peittävät aiemmin piirretyt. Kuution piirto sivu kerrallaan voi tuottaa ao. tulokset. 18/35

19 Säteenheitto Heitetään säde jokaisen kuvapisteen läpi Haetaan säteen leikkaukset primitiivien kanssa Lähin leikkauspiste on näkyvä pinnan piste 19/35

20 Syvyyspuskuri (Z-buffer / depth buffer) Pidetään kirjaa jokaiseen pikseliin piirretyn pinnan pisteen syvyydestä Piirretään pinnan piste, jos lähempänä kuin aiemmin piirretty Läpinäkymättömät primitiivit voidaan piirtää mielivaltaisessa järjestyksessä Nopea: Käytetyin tekniikka reaaliaikaisessa grafiikassa Tarkkuusongelmia, jos suuria mittakaavaeroja 20/35

21 Sävytys (Shading) Pinnalta havaitun värin muodostaminen Valaistus, teksturointi, kuhmutus 21/35

22 Paikallinen valaistus Phongin malli: taustavalo (ambient) + hajaheijastuva valo (diffuse, mattapinnat) + peiliheijastuva valo (specular, kiiltävät pinnat) Yksinkertaisia valonlähteitä: piste, suunta, spotti x θ l n r θ θ θ α e x cos θ 22/35

23 Grafiikan liukuhihna (yksinkertaistettu) Reaaliaikaisessa grafiikassa käytetty laskennan malli kärkipisteet interpoloitava data Primitiivien kokoaminen kolmiot Leikkaus katselupyramidiin leikkaaminen kolmiot Rasterointi kolmion läpikäynti syvyyspuskuri näkyvät pintapisteet kolmion pinnalla interpoloitu data Sävytys tekstuurit vakiot ym. pikselin väri 23/35

24 Ohjelmoitava sävytys Liitetään mallin kulmapisteisiin tietoa, joka interpoloidaan kolmioiden yli. Sävytysfunktio (pixel/fragment shader) laskee pinnan värin vakioista ja interpoloidusta tiedosta, mm. Valonlähteiden paikat ja tyypit Materiaalin valaistusominaisuudet Tekstuurit ja tekstuurikoordinaatit Pinnan hienorakenne (kuhmut) Joissakin tekniikoissa useita piirtokertoja (esim. varjot). 24/35

25 Esimerkki: Volumetrinen sumu Väri muuttuu valonsäteen sumun sisällä kulkeman matkan mukaan 25/35

26 Esimerkki: Varjot Piste varjossa -testi piirtämällä varjotilavuudet 26/35

27 Esimerkki: Varjot (2) 27/35

28 Grafiikkaliukuhihnan ominaisuuksia Piirtää primitiivin kerrallaan Ei tarvitse tietoa koko näkymästä Läpinäkymättömien primitiivien piirtojärjestys vapaa Laitteistokiihdytetty Suurelta osin ohjelmoitavissa Maiseman geometriaa tarvitsevien tekniikoiden toteutus hankalaa (heijastukset, varjot, globaali valaistus). 28/35

29 Fotorealistinen kuvanmuodostus Simuloidaan valon heijastumista maisemassa Tarvitsee tietoa koko maisemasta Laskennallisesti raskasta 29/35

30 Tietokoneanimaatio Muutetaan piirrettävän maailman tilaa suhteessa aikaan Piirretään kuvia tietyillä ajanhetkillä Pieni muutos kuvien välillä saa aikaan liikehavainnon Reaaliaikainen 20+ kuvaa/s. Kaksoispuskurointi: Näytetään yksi kuva, piirretään toinen, vaihdetaan kun piirto valmis Ongelman monimutkaisuuden takia tarvitaan työkaluja helpottamaan animaation määrittelyä. Liikkeet voivat olla suunniteltuja tai pohjautua fysiikkaan tai interaktioon. 30/35

31 Esimerkki: Käänteiskinematiikka Nivelrakenteen liikkeen laskeminen tavoitteiden perusteella 31/35

32 Virtuaalimaailmat Törmäykset, fysiikka, interaktio 32/35

33 Tutkimus: Kuvapohjainen mallinnus 33/35

34 Grafiikan kurssit Vuorovaikutteisen tietokonegrafiikan perusteet Vuorovaikutteisen tietokonegrafiikan jatkokurssi 3D-tuotanto Tietokoneanimaatio Tietokonegrafiikan seminaari Keinotodellisuus Erikoiskurssit/tutkimusseminaarit 34/35

35 A? 35/35

Tietokonegrafiikka. Jyry Suvilehto T Johdatus tietoliikenteeseen ja multimediatekniikkaan kevät 2014

Tietokonegrafiikka. Jyry Suvilehto T Johdatus tietoliikenteeseen ja multimediatekniikkaan kevät 2014 Tietokonegrafiikka Jyry Suvilehto T-110.1100 Johdatus tietoliikenteeseen ja multimediatekniikkaan kevät 2014 1. Sovellusalueita 2. Rasterigrafiikkaa 3. Vektorigrafiikkaa 4. 3D-grafiikkaa 1. Säteenheitto

Lisätiedot

T-111.1100 Johdatus Tietoliikenteeseen ja Multimediaan

T-111.1100 Johdatus Tietoliikenteeseen ja Multimediaan T-111.1100 Johdatus Tietoliikenteeseen ja Multimediaan Tietokonegrafiikka Timo Tossavainen Mediatekniikan laitos Timo.Tossavainen@tkk.fi T-111.1100 p. 1 Sisältö Rasterigrafiikka Grafiikan matematiikkaa

Lisätiedot

T-111.4310 Vuorovaikutteinen tietokonegrafiikka Tentti 14.12.2011

T-111.4310 Vuorovaikutteinen tietokonegrafiikka Tentti 14.12.2011 T-111.4310 Vuorovaikutteinen tietokonegrafiikka Tentti 14.12.2011 Vastaa kolmeen tehtävistä 1-4 ja tehtävään 5. 1. Selitä lyhyesti mitä seuraavat termit tarkoittavat tai minkä ongelman algoritmi ratkaisee

Lisätiedot

Luento 3: 3D katselu. Sisältö

Luento 3: 3D katselu. Sisältö Tietokonegrafiikan perusteet T-.43 3 op Luento 3: 3D katselu Lauri Savioja Janne Kontkanen /27 3D katselu / Sisältö Kertaus: koordinaattimuunnokset ja homogeeniset koordinaatit Näkymänmuodostus Kameran

Lisätiedot

Luku 6: Grafiikka. 2D-grafiikka 3D-liukuhihna Epäsuora valaistus Laskostuminen Mobiililaitteet Sisätilat Ulkotilat

Luku 6: Grafiikka. 2D-grafiikka 3D-liukuhihna Epäsuora valaistus Laskostuminen Mobiililaitteet Sisätilat Ulkotilat 2D-grafiikka 3D-liukuhihna Epäsuora valaistus Laskostuminen Mobiililaitteet Sisätilat Ulkotilat 2D-piirto 2-ulotteisen grafiikan piirto perustuu yleensä valmiiden kuvien kopioimiseen näyttömuistiin (blitting)

Lisätiedot

Tilanhallintatekniikat

Tilanhallintatekniikat Tilanhallintatekniikat 3D grafiikkamoottoreissa Moottori on projektin osa joka vastaa tiettyjen toiminnallisuuksien hallinnasta hallitsee kaikki vastuualueen datat suorittaa kaikki tehtäväalueen toiminnot

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 201 Tietojenkäsittelytiede Harjoitus 6 1..201 1. Tarkastellaan Gouraudin sävytysmallia. Olkoon annettuna kolmio ABC, missä A = (0,0,0), B = (2,0,0) ja C = (1,2,0)

Lisätiedot

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus

Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus Tampereen yliopisto Tietokonegrafiikka 2013 Tietojenkäsittelytiede Harjoitus 2 7.2.2013 1. Matematiikan lukiokurssissa on esitetty, että ylöspäin aukeavan paraabelin f(x) = ax 2 +bx+c,a > 0,minimikohtasaadaan,kunf

Lisätiedot

Luento 10: Näkyvyystarkastelut ja varjot. Sisältö

Luento 10: Näkyvyystarkastelut ja varjot. Sisältö Tietokonegrafiikka / perusteet T-111.300/301 4 ov / 2 ov Luento 10: Näkyvyystarkastelut ja varjot Marko Myllymaa / Lauri Savioja 10/04 Näkyvyystarkastelut ja varjot / 1 Näkyvyystarkastelu Solurenderöinti

Lisätiedot

Luento 7: Lokaalit valaistusmallit

Luento 7: Lokaalit valaistusmallit Tietokonegrafiikan perusteet T-111.4300 3 op Luento 7: Lokaalit valaistusmallit Lauri Savioja 11/07 Lokaalit valaistusmallit / 1 Sävytys Interpolointi Sisältö Lokaalit valaistusmallit / 2 1 Varjostustekniikat

Lisätiedot

Luento 6: Piilopinnat ja Näkyvyys

Luento 6: Piilopinnat ja Näkyvyys Tietokonegrafiikan perusteet T-111.4300 3 op Luento 6: Piilopinnat ja Näkyvyys Janne Kontkanen Geometrinen mallinnus / 1 Johdanto Piilopintojen poisto-ongelma Syntyy kuvattaessa 3-ulotteista maailmaa 2-ulotteisella

Lisätiedot

Sisällys. T-111.4300 Tietokonegrafiikan perusteet. OpenGL-ohjelmointi 11/2007. Mikä on OpenGL?

Sisällys. T-111.4300 Tietokonegrafiikan perusteet. OpenGL-ohjelmointi 11/2007. Mikä on OpenGL? T-111.4300 Tietokonegrafiikan perusteet OpenGL-ohjelmointi 11/2007 Sisällys Mikä on OpenGL? historia nykytilanne OpenGL:n toiminta Piirtäminen ja matriisit Muuta hyödyllistä kameran sijoittaminen valaistus

Lisätiedot

T Tietotekniikan peruskurssi: Tietokonegrafiikka. Tassu Takala TKK, Tietoliikenneohjelmistojen ja multimedian laboratorio

T Tietotekniikan peruskurssi: Tietokonegrafiikka. Tassu Takala TKK, Tietoliikenneohjelmistojen ja multimedian laboratorio T-106.1041 Tietotekniikan peruskurssi: Tassu Takala TKK, Tietoliikenneohjelmistojen ja multimedian laboratorio Luennon aiheita (1) mitä on tietokonegrafiikka? tietokone piirtää kuvia mikä on digitaalinen

Lisätiedot

Luento 4: Näkyvyystarkastelut ja varjot

Luento 4: Näkyvyystarkastelut ja varjot Tietokonegrafiikan jatkokurssi T-111.5300 4 op Luento 4: Näkyvyystarkastelut ja varjot Lauri Savioja 02/07 Näkyvyystarkastelut ja varjot / 1 Näkyvyystarkastelu Solurenderöinti Portaalirenderöinti Quad-/Octtree

Lisätiedot

10.2. Säteenjäljitys ja radiositeettialgoritmi. Säteenjäljitys

10.2. Säteenjäljitys ja radiositeettialgoritmi. Säteenjäljitys 10.2. Säteenjäljitys ja radiositeettialgoritmi Säteenjäljitys Säteenjäljityksessä (T. Whitted 1980) valonsäteiden kulkema reitti etsitään käänteisessä järjestyksessä katsojan silmästä takaisin kuvaan valolähteeseen

Lisätiedot

Luento 2: 2D Katselu. Sisältö

Luento 2: 2D Katselu. Sisältö Tietokonegrafiikan perusteet T-111.4300 3 op Luento 2: 2D Katselu Lauri Savioja 11/07 2D katselu / 1 Sisältö Ikkuna ja näyttöalue Viivanleikkaus ikkunaan Monikulmion leikkaus ikkunaan Tekstin leikkaus

Lisätiedot

Visualisoinnin perusteet

Visualisoinnin perusteet 1 / 12 Digitaalisen arkkitehtuurin yksikkö Aalto-yliopisto Visualisoinnin perusteet Mitä on renderöinti? 2 / 12 3D-mallista voidaan generoida näkymiä tietokoneen avulla. Yleensä perspektiivikuva Valon

Lisätiedot

Oppimateriaali oppilaalle ja opettajalle : GeoGebra oppilaan työkaluna ylioppilaskirjoituksissa 2016 versio 0.8

Oppimateriaali oppilaalle ja opettajalle : GeoGebra oppilaan työkaluna ylioppilaskirjoituksissa 2016 versio 0.8 Oppimateriaali oppilaalle ja opettajalle : GeoGebra oppilaan työkaluna ylioppilaskirjoituksissa 2016 versio 0.8 Piirtoalue ja algebraikkuna Piirtoalueelle piirretään työvälinepalkista löytyvillä työvälineillä

Lisätiedot

T-110.1100 Johdatus tietoliikenteeseen ja multimediatekniikkaan Tietokonegrafiikka

T-110.1100 Johdatus tietoliikenteeseen ja multimediatekniikkaan Tietokonegrafiikka T-110.1100 Johdatus tietoliikenteeseen ja multimediatekniikkaan Tietokonegrafiikka Tapio Takala / Lauri Savioja Teknillinen korkeakoulu Mediatekniikan laitos T-110.1110 / 1 Oppimistavoitteet Tietokonegrafiikan

Lisätiedot

Osoita, että kaikki paraabelit ovat yhdenmuotoisia etsimällä skaalauskuvaus, joka vie paraabelin y = ax 2 paraabelille y = bx 2. VASTAUS: , b = 2 2

Osoita, että kaikki paraabelit ovat yhdenmuotoisia etsimällä skaalauskuvaus, joka vie paraabelin y = ax 2 paraabelille y = bx 2. VASTAUS: , b = 2 2 8. Geometriset kuvaukset 8.1. Euklidiset kuvaukset 344. Esitä muodossa x = Ax + b se avaruuden E 3 peilauskuvaus, jonka symmetriatasona on x 1 3x + x 3 = 6. A = 1 3 6 6 3, b = 1 1 18. 3 6 6 345. Tason

Lisätiedot

4.3 Kehäkulma. Keskuskulma

4.3 Kehäkulma. Keskuskulma 4.3 Kehäkulma. Keskuskulma Sellaista kulmaa, jonka kärki on ympyrän kehällä ja kumpikin kylki leikkaa (rajatapauksessa sivuaa) ympyrän kehää, sanotaan kehäkulmaksi, ja sitä vastaavan keskuskulman kyljet

Lisätiedot

4. Esittäminen ja visualisointi (renderöinti)

4. Esittäminen ja visualisointi (renderöinti) 4. Esittäminen ja visualisointi (renderöinti) Tutkitaan erilaisia renderöintimenetelmiä, joita käytetään luvuissa 2 ja 3 esitettyjen kuvien esitysmuotojen visualisointiin. Seuraavassa selvitetään: (1)

Lisätiedot

Tapio Takala / Lauri Savioja Teknillinen korkeakoulu Tietoliikenneohjelmistojen ja multimedian laboratorio

Tapio Takala / Lauri Savioja Teknillinen korkeakoulu Tietoliikenneohjelmistojen ja multimedian laboratorio T-110.1100 Johdatus tietoliikenteeseen ja multimediatekniikkaan Tietokonegrafiikka Tapio Takala / Lauri Savioja Teknillinen korkeakoulu Tietoliikenneohjelmistojen ja multimedian laboratorio T-110.1100

Lisätiedot

T Tietokonegrafiikan perusteet. OpenGL-ohjelmointi

T Tietokonegrafiikan perusteet. OpenGL-ohjelmointi T-111.4300 Tietokonegrafiikan perusteet OpenGL-ohjelmointi Id Softwaren huhtikuussa 2004 julkaisema Doom 3 -peli käyttää OpenGL-kirjastoa. Sisällys Mikä on OpenGL? historia nykytilanne OpenGL:n toiminta

Lisätiedot

Luento 6: Tulostusprimitiivien toteutus

Luento 6: Tulostusprimitiivien toteutus Tietokonegrafiikan perusteet T-111.4300 3 op Luento 6: Tulostusprimitiivien toteutus Lauri Savioja 11/07 Primitiivien toteutus / 1 ntialiasointi Fill-algoritmit Point-in-polygon Sisältö Primitiivien toteutus

Lisätiedot

6.5. Renderöintijärjestys

6.5. Renderöintijärjestys 6.5. Renderöintijärjestys Näkymän käsittelyjärjestyksiä on kahta tyyppiä. Ensimmäinen on monikulmioittainen käsittely, jossa kukin monikulmio prosessoidaan vuorollaan välittämättä muista. Toinen on selaussuorajärjestys,

Lisätiedot

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan.

KESKEISET SISÄLLÖT Keskeiset sisällöt voivat vaihdella eri vuositasoilla opetusjärjestelyjen mukaan. VUOSILUOKAT 6 9 Vuosiluokkien 6 9 matematiikan opetuksen ydintehtävänä on syventää matemaattisten käsitteiden ymmärtämistä ja tarjota riittävät perusvalmiudet. Perusvalmiuksiin kuuluvat arkipäivän matemaattisten

Lisätiedot

Osoite: https://ggbm.at/tewz3jsv Tehtävä 1. Tutkitaan appletin kuutioita. a) Kuinka monta eripituista janaa voidaan piirtää yhdistämällä kaksi kuution kärkeä? b) Mikä a-kohdan janoista on pisin? Perustelkaa.

Lisätiedot

Malleja ja menetelmiä geometriseen tietokonenäköön

Malleja ja menetelmiä geometriseen tietokonenäköön Malleja ja menetelmiä geometriseen tietokonenäköön Juho Kannala 7.5.2010 Johdanto Tietokonenäkö on ala, joka kehittää menetelmiä automaattiseen kuvien sisällön tulkintaan Tietokonenäkö on ajankohtainen

Lisätiedot

Luento 3: 2D Katselu. Sisältö

Luento 3: 2D Katselu. Sisältö Tietokonegrafiikan perusteet T-111.4300 3 op Luento 3: 2D Katselu Lauri Savioja 11/06 2D katselu / 1 Sisältö Ikkuna ja näyttöalue Viivanleikkaus ikkunaan Monikulmion leikkaus ikkunaan Tekstin leikkaus

Lisätiedot

2.2. Kohteiden konstruktiivinen avaruusgeometrinen esitys

2.2. Kohteiden konstruktiivinen avaruusgeometrinen esitys .. Kohteiden konstruktiivinen avaruusgeometrinen esitys Avaruusgeometrinen esitys on käyttäjäriippuvainen ja vaati erikoismenetelmiä tai lopuksi konversion monikulmiomalliksi. Se on korkean tason esitys

Lisätiedot

Opetusmateriaali. Tarvittavat välineet: KUVA 1. Rullakko 1. KUVA 2. Rullakko 2, jossa kiekoissa on kuhmu

Opetusmateriaali. Tarvittavat välineet: KUVA 1. Rullakko 1. KUVA 2. Rullakko 2, jossa kiekoissa on kuhmu Opetusmateriaali Tämän materiaali on suunniteltu yhdensuuntaisuuden käsitteen opettamiseen. Yhdensuuntaisuuden käsitettä tarkastellaan ympyrän käsitteen kautta tutkimalla sitä, miten ympyrän kaikki halkaisijat

Lisätiedot

Sisältö. Luento 1: Transformaatiot (2D) 1. Koordinaattimuunnokset. Muunnokset (jatkuu) 2. Perustransformaatiot. Perustransformaatiot (jatkuu)

Sisältö. Luento 1: Transformaatiot (2D) 1. Koordinaattimuunnokset. Muunnokset (jatkuu) 2. Perustransformaatiot. Perustransformaatiot (jatkuu) Sisältö ietokonegrafiikka / perusteet Ako/-.3/3 4 ov / 2 ov Perustransformaatiot ransformaatioiden hdistäminen Muunnosmatriisit Laskennallisia näkökohtia Luento : ransformaatiot (2D) Marko Mllmaa 6/4 2D

Lisätiedot

5. Grafiikkaliukuhihna: (1) geometriset operaatiot

5. Grafiikkaliukuhihna: (1) geometriset operaatiot 5. Grafiikkaliukuhihna: () geometriset operaatiot Johdanto Grafiikkaliukuhihnan tarkoitus on kuvata kolmiulotteisen kohdeavaruuden kuva kaksiulotteiseen kuva eli nättöavaruuteen. aikka kolmiulotteisiakin

Lisätiedot

Kahden suoran leikkauspiste ja välinen kulma (suoraparvia)

Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Kahden suoran leikkauspiste ja välinen kulma (suoraparvia) Piste x 0, y 0 on suoralla, jos sen koordinaatit toteuttavat suoran yhtälön. Esimerkki Olkoon suora 2x + y + 8 = 0 y = 2x 8. Piste 5,2 ei ole

Lisätiedot

Mihin käytetään (jatkuu) Mihin käytetään (jatkuu) Mihin käytetään (jatkuu) Grafiikkajärjestelmä. Graafiset näyttölaitteet.

Mihin käytetään (jatkuu) Mihin käytetään (jatkuu) Mihin käytetään (jatkuu) Grafiikkajärjestelmä. Graafiset näyttölaitteet. Oppimistavoitteet T-110.1100 Johdatus tietoliikenteeseen ja multimediatekniikkaan Tietokonegrafiikka Tietokonegrafiikan peruskäsitteistön tunteminen Kyky keskustella alan laitteista esim. näytönohjaimista

Lisätiedot

T-110.1100 Johdatus tietoliikenteeseen ja multimediatekniikkaan: Tietokonegrafiikka. Tassu Takala. Mediatekniikan laitos 23.3.2012

T-110.1100 Johdatus tietoliikenteeseen ja multimediatekniikkaan: Tietokonegrafiikka. Tassu Takala. Mediatekniikan laitos 23.3.2012 T-110.1100 Johdatus tietoliikenteeseen ja multimediatekniikkaan: Tassu Takala Mediatekniikan laitos Luennon aiheita (1) Mitä on tietokonegrafiikka? tietokone piirtää kuvia Mikä on digitaalinen kuva? rasterikuva

Lisätiedot

Monikulmiot 1/5 Sisältö ESITIEDOT: kolmio

Monikulmiot 1/5 Sisältö ESITIEDOT: kolmio Monikulmiot 1/5 Sisältö Monikulmio Monikulmioksi kutsutaan tasokuviota, jota rajaa perättäisten janojen muodostama monikulmion piiri. Janat ovat monikulmion sivuja, niiden päätepisteet monikulmion kärkipisteitä.

Lisätiedot

Geogebra -koulutus. Ohjelmistojen pedagoginen hyödyntäminen

Geogebra -koulutus. Ohjelmistojen pedagoginen hyödyntäminen Geogebra -koulutus Ohjelmistojen pedagoginen hyödyntäminen Geogebra Ilmainen dynaaminen matematiikkaohjelmisto osoitteessa http://www.geogebra.org Geogebra-sovellusversion voi asentaa tietokoneilla ja

Lisätiedot

I Geometrian rakentaminen pisteestä lähtien

I Geometrian rakentaminen pisteestä lähtien I Geometrian rakentaminen pisteestä lähtien Koko geometrian voidaan ajatella koostuvan pisteistä. a) Matemaattinen piste on sellainen, millä EI OLE LAINKAAN ULOTTUVUUKSIA. Oppilaita voi johdatella pisteen

Lisätiedot

Geometriaa GeoGebralla Lisätehtäviä nopeasti eteneville

Geometriaa GeoGebralla Lisätehtäviä nopeasti eteneville Geometriaa GeoGebralla Lisätehtäviä nopeasti eteneville Tutki GeoGebralla Näkymät->Geometria a) Kuinka suuria ovat kolmion kulmat, jos sen sivut ovat 5, 7 ja 9. Vihje: Aloita kolmion piirtäminen yhdestä

Lisätiedot

MATEMATIIKKA JA TAIDE II

MATEMATIIKKA JA TAIDE II 1 MATEMATIIKKA JA TAIDE II Aihepiirejä: Hienomotoriikkaa harjoittavia kaksi- ja kolmiulotteisia väritys-, piirtämis- ja askartelutehtäviä, myös sellaisia, joissa kuvio jatkuu loputtomasti, ja sellaisia,

Lisätiedot

Luento 2: Viivan toteutus

Luento 2: Viivan toteutus Tietokonegrafiikan perusteet T-111.4300 3 op Luento : Viivan toteutus Lauri Savioja 11/07 Primitiivien toteutus / 1 GRAAFISTEN PRIMITIIVIEN TOTEUTUS HUOM! Oletuksena on XY-koordinaatisto Suorien viivojen

Lisätiedot

12.5. Vertailua. Silmäillään laskostumisen estoa tietokonegrafiikan kannalta. Kuva 12.8. luonnehtii vaihtoehtoja.

12.5. Vertailua. Silmäillään laskostumisen estoa tietokonegrafiikan kannalta. Kuva 12.8. luonnehtii vaihtoehtoja. 1.5. Vertailua Silmäillään laskostumisen estoa tietokonegrafiikan kannalta. Kuva 1.8. luonnehtii vaihtoehtoja. (1)Esisuodatus äärettömästi näytteitä pikseliä kohti Lasketaan projisoidun kohteen palojen

Lisätiedot

TIES471 Reaaliaikainen renderöinti

TIES471 Reaaliaikainen renderöinti TIES471 Reaaliaikainen renderöinti 5.1 Valonlähteet Yksinkertaisin valolähde on pistemäinen valo (point light), joka säteilee joka suuntaan annetulla voimakkuudella ja värillä. Suunnattu valo (directional

Lisätiedot

Luento 2: Tulostusprimitiivit

Luento 2: Tulostusprimitiivit Tietokonegrafiikan perusteet T-111.4300 3 op Luento : Tulostusprimitiivit Lauri Savioja 11/06 D primitiivit / 1 Sisältö Mallintamisen alkeita Perusprimitiivit (GKS) attribuutteineen Näyttömuisti D primitiivit

Lisätiedot

Matematiikan ilmiöiden tutkiminen GeoGebran avulla

Matematiikan ilmiöiden tutkiminen GeoGebran avulla Johdatus GeoGebraan Matematiikan ilmiöiden tutkiminen GeoGebran avulla Harjoitus 1B. Konstruoi tasakylkinen kolmio ABC, jonka kyljen pituus on 5. Vihje: käytä Kiinteä jana työvälinettä kahdesti. Ota kolmion

Lisätiedot

3D-Maailman tuottaminen

3D-Maailman tuottaminen hyväksymispäivä arvosana arvostelija 3D-Maailman tuottaminen Eero Sääksvuori Helsinki 11.12.2017 Seminaari HELSINGIN YLIOPISTO Tietojenkäsittelytieteen laitos HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET

Lisätiedot

Esityksen sisältö. Peruskäsitteitä. 3D Grafiikka tietokonepeleissä. Piirto- ja taustapuskuri

Esityksen sisältö. Peruskäsitteitä. 3D Grafiikka tietokonepeleissä. Piirto- ja taustapuskuri Esityksen sisältö 3D Grafiikka tietokonepeleissä Peruskäsitteitä Korkean tason rakenne Piirron alkeisobjektit Tekstuurit Valotus Laitteistopiirtoliukuhihna Yhteenveto Peruskäsitteitä Piirto- ja taustapuskuri

Lisätiedot

Matematiikka vuosiluokat 7 9

Matematiikka vuosiluokat 7 9 Matematiikka vuosiluokat 7 9 Matematiikan opetuksen ydintehtävänä on tarjota oppilaille mahdollisuus hankkia sellaiset matemaattiset taidot, jotka antavat valmiuksia selviytyä jokapäiväisissä toiminnoissa

Lisätiedot

Yksinkertaistaminen normaalitekstuureiksi

Yksinkertaistaminen normaalitekstuureiksi TEKNILLINEN KORKEAKOULU 30.4.2003 Tietoliikenneohjelmistojen ja multimedian laboratorio Tik-111.500 Tietokonegrafiikan seminaari Kevät 2003: Reaaliaikainen 3D grafiikka Yksinkertaistaminen normaalitekstuureiksi

Lisätiedot

Controlling the Camera of 3D World by Using Real Time Face Tracking

Controlling the Camera of 3D World by Using Real Time Face Tracking Controlling the Camera of 3D World by Using Real Time Face Tracking Tomi Lamminsaari Department of Software Systems Tampere University of Technology Abstract Gestures have become very common elements of

Lisätiedot

Tietokonegrafiikan kertausta eli mitä jokaisen animaattorin tulisi tietää tekniikasta

Tietokonegrafiikan kertausta eli mitä jokaisen animaattorin tulisi tietää tekniikasta Tassu Takala Tietokonegrafiikan kertausta eli mitä jokaisen animaattorin tulisi tietää tekniikasta Mallinnustekniikkaa Animaation perustekniikkaa Harjoitustyöt 12.10.2006 1 Aiheita mallintaminen muodon

Lisätiedot

Paikkatiedon käsittely 4. Diskreettiä geometriaa

Paikkatiedon käsittely 4. Diskreettiä geometriaa HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Paikkatiedon käsittely 4. Diskreettiä geometriaa Antti Leino antti.leino@cs.helsinki.fi 25.1.2007 Tietojenkäsittelytieteen laitos Laskentatarkkuuden

Lisätiedot

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE - kykenee keskittymään matematiikan opiskeluun - kykenee kertomaan suullisesti matemaattisesta ajattelustaan

Lisätiedot

Konformigeometriaa. 5. maaliskuuta 2006

Konformigeometriaa. 5. maaliskuuta 2006 Konformigeometriaa 5. maaliskuuta 006 1 Sisältö 1 Konformigeometria 1.1 Viivan esitys stereograasena projektiona............ 1. Euklidisen avaruuden konformaalinen malli........... 4 Konformikuvaukset

Lisätiedot

Luento 6: Geometrinen mallinnus

Luento 6: Geometrinen mallinnus Tietokonegrafiikan perusteet T-111.4300 3 op Luento 6: Geometrinen mallinnus Lauri Savioja 11/05 Geometrinen mallinnus / 1 Mitä on mallintaminen? Perusmenetelmät Mallihierarkiat Sisältö Geometrinen mallinnus

Lisätiedot

T-111.210 Studio 4. luento 3: laskennallista geometriaa virikkeitä harjoituksiin: luovuudesta. matemaattista/abstraktia taidetta tietokonetaidetta

T-111.210 Studio 4. luento 3: laskennallista geometriaa virikkeitä harjoituksiin: luovuudesta. matemaattista/abstraktia taidetta tietokonetaidetta T-111.210 Studio 4 luento 3: laskennallista geometriaa virikkeitä harjoituksiin: matemaattista/abstraktia taidetta tietokonetaidetta luovuudesta 9.2.2007 Tassu Takala 1 muotojen matemaattista määrittelyä

Lisätiedot

Vektorimatematiikkaa Pisteet ja vektorit

Vektorimatematiikkaa Pisteet ja vektorit Geometriaa Vektorimatematiikkaa Pisteet ja vektorit Käytössä vektoriavaruus R 3 Merkitsemme pistettä p = x y z voidaan tilanteen mukaan esittää sekä pysty- että vaakavektorina (1 3 tai 3 1-matriisina)

Lisätiedot

3D-grafiikkamoottorin toteutus

3D-grafiikkamoottorin toteutus Anssi Seppä 3D-grafiikkamoottorin toteutus Metropolia Ammattikorkeakoulu Insinööri (AMK) Tietotekniikka Insinöörityö 24.4.2018 Tiivistelmä Tekijä(t) Otsikko Sivumäärä Aika Anssi Seppä 3D-grafiikkamoottorin

Lisätiedot

Tehtävä 1. Oletetaan että uv on neliö ja (u, v) = 1. Osoita, että kumpikin luvuista u ja v on. p 2j i. p j i

Tehtävä 1. Oletetaan että uv on neliö ja (u, v) = 1. Osoita, että kumpikin luvuista u ja v on. p 2j i. p j i JOHDATUS LUKUTEORIAAN (syksy 07) HARJOITUS 8, MALLIRATKAISUT Tehtävä. Oletetaan että uv on neliö ja (u, v) =. Osoita, että kumpikin luvuista u ja v on neliö. Ratkaisu. Olkoon p i alkuluku, joka jakaa luvun

Lisätiedot

/X.WXWNLHOPD 5HDDOLDLNDLVHWYDUMRWMD YDUMRVlUPL DOJRULWPL

/X.WXWNLHOPD 5HDDOLDLNDLVHWYDUMRWMD YDUMRVlUPL DOJRULWPL /X.WXWNLHOPD 5HDDOLDLNDLVHWYDUMRWMD YDUMRVlUPL DOJRULWPL TUOMAS MÄKILÄ * 17/04/2004 * tusuma@utu.fi TURUN YLIOPISTO Informaatioteknologian laitos TUOMAS MÄKILÄ: LuK-tutkielma, 29 s. Tietotekniikan DI-koulutusohjelma

Lisätiedot

GeoGebran 3D paketti

GeoGebran 3D paketti GeoGebran 3D paketti vielä kehittelyvaiheessa joitakin puutteita ja virheitä löytyy! suomennos kesken parhaimmillaan yhdistettynä 3D-lasien kanssa tilattavissa esim. netistä (hinta noin euron/lasit) 3D-version

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0004/A0006 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A4/A6 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 5.9.25 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x + x 2

Lisätiedot

Ympyrän yhtälö

Ympyrän yhtälö Ympyrän yhtälö ANALYYTTINEN GEOMETRIA MAA4 On melko selvää, että origokeskisen ja r-säteisen ympyrän yhtälö voidaan esittää muodossa x 2 + y 2 = r 2. Vastaavalla tavalla muodostetaan ympyrän yhtälö, jonka

Lisätiedot

3. Harjoitusjakso I. Vinkkejä ja ohjeita

3. Harjoitusjakso I. Vinkkejä ja ohjeita 3. Harjoitusjakso I Tämä ensimmäinen harjoitusjakso sisältää kaksi perustason (a ja b) ja kaksi edistyneen tason (c ja d) harjoitusta. Kaikki neljä harjoitusta liittyvät geometrisiin konstruktioihin. Perustason

Lisätiedot

TOMI LAMMINSAARI 3D-MAAILMAN KAMERAN OHJAAMINEN KASVOJEN PAIKANNUKSEN AVULLA. Diplomityö

TOMI LAMMINSAARI 3D-MAAILMAN KAMERAN OHJAAMINEN KASVOJEN PAIKANNUKSEN AVULLA. Diplomityö TOMI LAMMINSAARI 3D-MAAILMAN KAMERAN OHJAAMINEN KASVOJEN PAIKANNUKSEN AVULLA Diplomityö Tarkastaja: Tommi Mikkonen Aihe, tarkastaja ja kieli hyväksytty Tieto- ja sähkötekniikan tiedekunnan tiedekuntaneuvoston

Lisätiedot

Tassu Takala Teknillinen korkeakoulu Mediatekniikan laitos

Tassu Takala Teknillinen korkeakoulu Mediatekniikan laitos T-110.1100 Johdatus tietoliikenteeseen ja multimediatekniikkaan Tietokonegrafiikka Tassu Takala Teknillinen korkeakoulu Mediatekniikan laitos Oppimistavoitteet Tietokonegrafiikan peruskäsitteistön tunteminen

Lisätiedot

3D-NÄKYVYYSOPTIMOINTI MOBIILILAITTEILLA

3D-NÄKYVYYSOPTIMOINTI MOBIILILAITTEILLA 3D-NÄKYVYYSOPTIMOINTI MOBIILILAITTEILLA Miikka Kulmala Opinnäytetyö Toukokuu 2005 Informaatioteknologian instituutti 1 SISÄLTÖ LYHENTEET JA TERMIT... 4 1 NÄKYVYYSOPTIMOINTI, MITÄ JA MIKSI?... 6 2 3D-GRAFIIKAN

Lisätiedot

LW LightWorks. 1 Renderoijan perussäädöt. 1.3 LightWorks-tehosteet 1.3.1 Menetelmät ja reunantasoitus. 1.1 Sisältö. 1.2 Lightworksin käytön aloitus

LW LightWorks. 1 Renderoijan perussäädöt. 1.3 LightWorks-tehosteet 1.3.1 Menetelmät ja reunantasoitus. 1.1 Sisältö. 1.2 Lightworksin käytön aloitus VI.-1 LightWorks 1 Renderoijan perussäädöt 1.1 Sisältö Tässä luvussa käsitellään LightWorks-renderoijan käyttöönottoa ja säätöjä erilaisissa renderointitilanteissa. Uusi renderoija tuo ArchiCADiin säteenseurannan

Lisätiedot

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE

HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE HELSINGIN YLIOPISTON VIIKIN NORMAALIKOULUN MATEMATIIKAN OPETUSSUUNNITELMA TAVOITTEET 1. LUOKALLE kykenee keskittymään matematiikan opiskeluun kykenee kertomaan suullisesti matemaattisesta ajattelustaan

Lisätiedot

TIES471 Reaaliaikainen renderöinti

TIES471 Reaaliaikainen renderöinti TIES471 Reaaliaikainen renderöinti Laskuharjoitus 1 Lataa kirja 3D Math Primer for Graphics and Game development https://tfetimes.com/wp-content/uploads/2015/04/f.dunn-i.parberry-3d-math-primer-for-graphics-and-game-development.pdf

Lisätiedot

Luento 2: Transformaatiot (2D)

Luento 2: Transformaatiot (2D) ietokonegrafiikan perusteet -.43 3 op Luento 2: ransformaatiot (2D) Lauri Savioja /7 2D transformaatiot / Sisältö Perustransformaatiot ransformaatioiden hdistäminen Muunnosmatriisit Laskennallisia näkökohtia

Lisätiedot

Suorien ja tasojen geometriaa Suorien ja tasojen yhtälöt

Suorien ja tasojen geometriaa Suorien ja tasojen yhtälöt 6. Suorien tasojen geometriaa 6.1. Suorien tasojen yhtälöt 55. Osoita, että yhtälöt x = 3 + τ y = 1 3τ esittävät samaa tason suoraa. Yhteinen piste 1,5) suunta i 3j. x = 1 6τ y = 5 + 9τ 56. Määritä suoran

Lisätiedot

Vanhoja koetehtäviä. Analyyttinen geometria 2016

Vanhoja koetehtäviä. Analyyttinen geometria 2016 Vanhoja koetehtäviä Analyyttinen geometria 016 1. Määritä luvun a arvo, kun piste (,3) on käyrällä a(3x + a) = (y - 1). Suora L kulkee pisteen (5,1) kautta ja on kohtisuorassa suoraa 6x + 7y - 19 = 0 vastaan.

Lisätiedot

Tasogeometriaa GeoGebran piirtoalue ja työvälineet

Tasogeometriaa GeoGebran piirtoalue ja työvälineet Tasogeometriaa GeoGebran piirtoalue ja työvälineet Näissä harjoituksissa työskennellään näkymässä Näkymät->Geometria PIIRRÄ (ja MITTAA) a) jana toinen jana, jonka pituus on 3 b) kulma toinen kulma, jonka

Lisätiedot

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella.

Tasogeometria. Tasogeometrian käsitteitä ja osia. olevia pisteitä. Piste P on suoran ulkopuolella. Tasogeometria Tasogeometrian käsitteitä ja osia Suora on äärettömän pitkä. A ja B ovat suoralla olevia pisteitä. Piste P on suoran ulkopuolella. Jana on geometriassa kahden pisteen välinen suoran osuus.

Lisätiedot

Reaaliaikaiset varjoalgoritmit. Atso Kauppinen

Reaaliaikaiset varjoalgoritmit. Atso Kauppinen Reaaliaikaiset varjoalgoritmit Atso Kauppinen Tampereen yliopisto Tietojenkäsittelytieteiden laitos Tietojenkäsittelyoppi Pro gradu -tutkielma Maaliskuu 2008 Tampereen yliopisto Tietojenkäsittelytieteiden

Lisätiedot

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1.

1. a. Ratkaise yhtälö 8 x 5 4 x + 2 x+2 = 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on 2 x 1. ABIKertaus.. a. Ratkaise yhtälö 8 5 4 + + 0 b. Määrää joku toisen asteen epäyhtälö, jonka ratkaisu on. 4. Jaa polynomi 8 0 5 ensimmäisen asteen tekijöihin ja ratkaise tämän avulla 4 epäyhtälö 8 0 5 0.

Lisätiedot

3D-renderöinti OpenGL-ohjelmointirajapinnalla

3D-renderöinti OpenGL-ohjelmointirajapinnalla Mikko Kemppainen 3D-renderöinti OpenGL-ohjelmointirajapinnalla Tietotekniikan kandidaatintutkielma 28. huhtikuuta 2017 Jyväskylän yliopisto Tietotekniikka Tekijä: Mikko Kemppainen Yhteystiedot: mikko.t.a.kemppainen@student.jyu.fi

Lisätiedot

Tietokonegrafiikan perusteet

Tietokonegrafiikan perusteet Tietokonegrafiikan perusteet Kuvamallit Koordinaattijärjestelmät Ihmisnäön ominaisuudet Grafiikkalaitteisto Abstrakti kangas Piirtäminen Teksti Leikkaaminen Väri Petri Vuorimaa 1 Kuvamallit Kuvien esittämiseen

Lisätiedot

mlvektori 1. Muista, että Jacobin matriisi koostuu vektori- tai skalaariarvoisen funktion F ensimmäisistä

mlvektori 1. Muista, että Jacobin matriisi koostuu vektori- tai skalaariarvoisen funktion F ensimmäisistä Aalto-yliopisto, Matematiikan ja Systeemianalyysin laitos mlvektori 1. Muista, että Jacobin matriisi koostuu vektori- tai skalaariarvoisen funktion F ensimmäisistä osittaisderivaatoista: y 1... J F =.

Lisätiedot

Tieteellinen laskenta 2 Törmäykset

Tieteellinen laskenta 2 Törmäykset Tieteellinen laskenta 2 Törmäykset Aki Kutvonen Op.nmr 013185860 Sisällysluettelo Ohjelman tekninen dokumentti...3 Yleiskuvaus...3 Kääntöohje...3 Ohjelman yleinen rakenne...4 Esimerkkiajo ja käyttöohje...5

Lisätiedot

LightWorks. 1 Renderoijan perussäädöt. 1.1 Sisältö. 1.2 LightWorksin käytön aloitus

LightWorks. 1 Renderoijan perussäädöt. 1.1 Sisältö. 1.2 LightWorksin käytön aloitus 6.7.2010 ArchiCAD 14 VI. - 1 LightWorks 1 Renderoijan perussäädöt 1.1 Sisältö Tässä luvussa käsitellään LightWorks-renderoijan käyttöönottoa ja säätöjä erilaisissa renderointitilanteissa. Lightworks-renderoija

Lisätiedot

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011

PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9.2.2011 PRELIMINÄÄRIKOE PITKÄ MATEMATIIKKA 9..0 Kokeessa saa vastata enintään kymmeneen tehtävään.. Sievennä a) 9 x x 6x + 9, b) 5 9 009 a a, c) log 7 + lne 7. Muovailuvahasta tehty säännöllinen tetraedri muovataan

Lisätiedot

10. Esitys ja kuvaus

10. Esitys ja kuvaus 10. Esitys ja kuvaus Kun kuva on ensin segmentoitu alueisiin edellisen luvun menetelmin, segmentoidut pikselit kootaan esittämään ja kuvaamaan kohteita muodossa, joka sopii hyvin jatkokäsittelyä varten.

Lisätiedot

Aloitusohje versiolle 4.0

Aloitusohje versiolle 4.0 Mikä on Geogebra? Aloitusohje versiolle 4.0 dynaamisen matematiiikan työvälineohjelma helppokäyttöisessä paketissa oppimisen ja opetuksen avuksi kaikille koulutustasoille vuorovaikutteiset geometria, algebra,

Lisätiedot

Kaupunkisuunnittelua

Kaupunkisuunnittelua Kaupunkisuunnittelua Avainsanat: geometria, monikulmio, pinta-ala, tasogeometria, diagrammit Luokkataso: 6.-9. luokka, lukio Välineet: kynä, paperi, viivoitin, harppi tai kulmaviivain Kuvaus: Voronoi diagrammien

Lisätiedot

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet

5.3 Suoran ja toisen asteen käyrän yhteiset pisteet .3 Suoran ja toisen asteen käyrän yhteiset pisteet Tämän asian taustana on ratkaista sellainen yhtälöpari, missä yhtälöistä toinen on ensiasteinen ja toinen toista astetta. Tällainen pari ratkeaa aina

Lisätiedot

Gimp 3. Polkutyökalu, vektori / rasteri, teksti, kierto, vääntö, perspektiivi, skaalaus (koon muuttaminen) jne.

Gimp 3. Polkutyökalu, vektori / rasteri, teksti, kierto, vääntö, perspektiivi, skaalaus (koon muuttaminen) jne. Gimp 3. Polkutyökalu, vektori / rasteri, teksti, kierto, vääntö, perspektiivi, skaalaus (koon muuttaminen) jne. Moni ammatikseen tietokoneella piirtävä henkilö käyttää piirtämiseen pisteiden sijasta viivoja.

Lisätiedot

Luento 3: Transformaatiot (2D)

Luento 3: Transformaatiot (2D) ietokonegrafiikan perusteet -.43 3 op Luento 3: ransformaatiot (2D) Lauri Savioja /5 2D transformaatiot / Sisältö Perustransformaatiot ransformaatioiden hdistäminen Muunnosmatriisit Laskennallisia näkökohtia

Lisätiedot

11. Geometria Valikot ja näppäintoiminnot. Geometriasovelluksessa voit tehdä puhdasta tai analyyttista geometriaa.

11. Geometria Valikot ja näppäintoiminnot. Geometriasovelluksessa voit tehdä puhdasta tai analyyttista geometriaa. 11. Geometria Geometriasovelluksessa voit tehdä puhdasta tai analyyttista geometriaa. 11.1 Valikot ja näppäintoiminnot Kun valitset päävalikosta Geometry, näyttö tyhjenee ja näkyviin ilmestyy uusi painikevalikko

Lisätiedot

Tekijä Pitkä matematiikka

Tekijä Pitkä matematiikka K1 Tekijä Pitkä matematiikka 5 7..017 a) 1 1 + 1 = 4 + 1 = 3 = 3 4 4 4 4 4 4 b) 1 1 1 = 4 6 3 = 5 = 5 3 4 1 1 1 1 1 K a) Koska 3 = 9 < 10, niin 3 10 < 0. 3 10 = (3 10 ) = 10 3 b) Koska π 3,14, niin π

Lisätiedot

LightWorks. 1 Renderoijan perussäädöt. 1.1 Sisältö. 1.2 LightWorksin käytön aloitus

LightWorks. 1 Renderoijan perussäädöt. 1.1 Sisältö. 1.2 LightWorksin käytön aloitus 1.9.2009 ArchiCAD 13 VI. - 1 LightWorks 1 Renderoijan perussäädöt 1.1 Sisältö Tässä luvussa käsitellään LightWorks-renderoijan käyttöönottoa ja säätöjä erilaisissa renderointitilanteissa. Lightworks-renderoija

Lisätiedot

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä:

Solmu 3/2001 Solmu 3/2001. Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Frégier n lause Simo K. Kivelä Kevään 2001 ylioppilaskirjoitusten pitkän matematiikan kokeessa oli seuraava tehtävä: Suorakulmaisen kolmion kaikki kärjet sijaitsevat paraabelilla y = x 2 ; suoran kulman

Lisätiedot

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5.

Yhtälöryhmä matriisimuodossa. MS-A0007 Matriisilaskenta. Tarkastellaan esimerkkinä lineaarista yhtälöparia. 2x1 x 2 = 1 x 1 + x 2 = 5. 2. MS-A000 Matriisilaskenta 2. Nuutti Hyvönen, c Riikka Kangaslampi Matematiikan ja systeemianalyysin laitos Aalto-yliopisto 2..205 Tarkastellaan esimerkkinä lineaarista yhtälöparia { 2x x 2 = x x 2 =

Lisätiedot

Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä

Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä Käy vastaamassa kyselyyn kurssin pedanet-sivulla (TÄRKEÄ ensi vuotta ajatellen) Kurssin suorittaminen ja arviointi: vähintään 50 tehtävää tehtynä (vihkon palautus kokeeseen tullessa) Koe Mahdolliset testit

Lisätiedot

Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa

Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa Mohrin-Mascheronin lause kolmiulotteisessa harppi-viivaingeometriassa Matematiikka Sakke Suomalainen Helsingin matematiikkalukio Ohjaaja: Ville Tilvis 29. marraskuuta 2010 Tiivistelmä Harppi ja viivain

Lisätiedot

b 1. b m ) + ( 2b Ax) + (b b)

b 1. b m ) + ( 2b Ax) + (b b) TEKNILLINEN KORKEAKOULU Systeemianalyysin laboratorio Mat-9 Optimointioppi Kimmo Berg 5 harjoitus - ratkaisut min Ax b (vertaa PNS-tehtävät) a x + + a n x n a) Ax b = a m x + + a mn x n = x a a m }{{}

Lisätiedot